Form 43-101F1 Technical Report

The Boumadine Polymetallic (Au, Ag, Zn, Pb, Cu) Deposit Province, Kingdom of

MAYA GOLD AND SILVER INC.

April 2, 2014

View of the ancient mining installations at the Boumadine mine site.

Michel Boily, PhD, P. Géo.

GÉON DATE AND SIGNATURE

CERTIFICATE OF QUALIFICATIONS

I, Michel Boily, Ph.D., P. Geo. HEREBY CERTIFY THAT:

I am a Canadian citizen residing at 2121 de Romagne, Laval, Québec, Canada.

I obtained a PhD. in geology from the Université de Montréal in 1988.

I am a registered Professional Geologist in good standing with l’Ordre des Géologues du Québec (OGQ; permit # 1097). I have praticed the profession of geologist for the last 37 years.

I had the following work experience:

From 1986 to 1987: Research Associate in Cosmochemistry at the University of Chicago, Chicago, Illinois, USA.

From 1988 to 1992: Researcher at IREM-MERI/McGill University, Montréal, Québec as a coordinator and scientific investigator in the high technology metals project undertaken in the Abitibi greenstone belt and Labrador.

From 1992 to present: Geology consultant with Geon Ltée, Montréal, Québec. Consultant for several m ining companies. I participated, as a geochemist, in two of the most important geological and m etallogenic studies accomplished by the Ministère des Richesses naturelles du Québec (MRNQ) in the Jam es Bay area and the Far North of Québec (1998-2005). I am a specialist of granitoid-hosted precious and rare metal deposits and of the stratigraphy and geochemistry of Archean greenstone belts.

I have gathered field experience in the following regions : James Bay, Quebec; Strange Lake, Labrador/Quebec; Val d’Or and Rouyn-Noranda, Quebec; Grenville (Saguenay and Gatineau area); Cadillac, Quebec; Otish Mountains, Quebec, Lower North Shore, Quebec,Sinaloa, Sonora and Chihuahua states, Mexico, Marrakech and , Morocco and San Juan, Argentina

I am the author of the 43-101F1 Technical Report entitled : "The Boumadine Polymetallic (Au, Ag, Zn, Pb, Cu) Deposit Errachidia Province, Kingdom of Morocco" written for MAYA GOLD AND SILVER INC. with an effective date of April 2, 2014.

I consent to the filing of this report with any stock exchange and any other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public.

As of the date of the certificate, to the best of my knowledge, information and belief, this Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

The Qualified Person, Michel Boily, has written this report in its entirety and is responsible for its content.

I read the National Instrument 43-101 Standards of Disclosure for Mineral Projects (the "Instrument") and the report fully complies with the Instrument.

I am an independent qualified person, QP, according to NI 43-101. I have no relation to Maya Gold and Silver Inc. according to section 1.5 of NI 43-101 and thus I am independent of the Issuer. I also have no relation with the Vendor, l'ONHYM (l'Office National des Hydrocarbures et des Mines) and thus I am independent of the Vendor.I am not aware of any relevant fact which would interfere with my judgment regarding the preparation of this technical report.

As of the effective date of April 2, 2014, to the best of my knowledge, information and belief, this technical report contains all scientific and technical information that is required to be disclosed to make the report not misleading. ii

I have had no prior involvement with the Boumadine property that is the subject of this report.

I last visited the Boumadine property on September 13 and 14 2012.

______Michel Boily, PhD., P. Geo. Dated at Montréal, Qc April 2, 2014

iii

DATE AND SIGNATURE ii TABLE OF CONTENTS iv

ITEM 1 SUMMARY 1 ITEM 2 INTRODUCTION 5 ITEM 3 RELIANCE ON OTHER EXPERTS 6 ITEM 4 PROPERTY DESCRIPTION AND LOCATION 6 ITEM 5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY 13 ITEM 6 HISTORY 16 ITEM 7 GEOLOGICAL SETTING AND MINERALIZATION 35 7.1-Geology of Morocco 35 7.2- The Anti-Atlas Orogen of Southern Morocco 37 7.3- The Proterozoic Ougnat "Window" (Boutonnière) 39 7.4-Geology of the Boumadine Property 41 7.4.1- The Tamerzaga-Timrachine Formation (TTF) 41 7.4.2- Late Mafic-felsic Dykes and Rhyolite ("Chonoliths") Intrusions 46 7.4.3- Alteration of the Late Proterozoic Volcanosedimentary Formations 50 7.4.3.1-Propylitization 50 7.4.3.2-Phyllic Alteration 50 7.4.3.3- Late Silicification 51 7.4.3.4- Supergene Alteration 52 7.4.4- Structure 52 7.4.5- Mineralization 55 7.4.5.1-Description of the Polymetallic Veins and Alteration 55 7.4.5.2-Mineral Paragenesis 59 7.4.5.3-Tectonic Control of the Mineralization 64 ITEM 8 DEPOSIT TYPE 65 8.1- Description of Epithermal-Type Deposits 65 8.2-Description of Low Sulfidation Epithermal Deposits 67 8.3- Model of Low Sulfidation Ore Deposits 69 8.4-Origin of the Boumadine Polymetallic Deposit 71 ITEM 9 EXPLORATION 73 9.1-Ore Mineralogy at the Boumadine Mine 73 9.1.1-Analytical Method 73 9.1.2-Rock Description 73 9.1.3-X-ray Diffraction Results and Discussion 73 9.2-FE-SEM-EDS Analyses 79 9.2.1-Analytical Method 79 9.2.2-Mineral Compositions 80 9.2.2.1-Fe-As Sulfides 80 9.2.2-Cu-bearing Phases 83 9.2.3-Zn-bearing Phases 83 9.2.4-Pb-bearing Phases 84 9.2.5-Ag-Sn-base Metal Micronuggets 84 9.2.6-Sb-bearing Phases 88 9.2.7- Gold 88 9.3- Geochemistry of the Tamerzaga-Timrachine Formation Altered Volcanic Rocks 88 iv

TABLE OF CONTENTS (Ctnd.)

9.4- Geochemistry of the Boumadine Tailing Material, Polymetallic Veins, Mineralized Muck Piles and Wallrocks 98 ITEM 10 DRILLING 110 ITEM 11 SAMPLE PREPARATION, ANALYSES AND SECURITY 110 ITEM 12 DATA VERIFICATION 113 ITEM 13 MINERAL PROCESSING AND METALLURGICAL TESTING 113 13.1- Cyanuration of Unoxydized Material 113 13.2- Oxydation, Lixiviation and Chloration 115 13.3- Cyanuration of Oxydized Material 122 13.4- Conclusions 122 ITEM 14 MINERAL RESOURCES ESTIMATE 123 ITEM 23 ADJACENT PROPERTY 123 ITEM 24 OTHER RELEVANT DATA AND INFORMATION 123 ITEM 25 INTERPRETATION AND CONCLUSIONS 123 25.1- A Petrogenetic Model for Polymetallic Mineralization at the Boumadine Mine 123 25.2- Conclusions 129 ITEM 26 RECOMMENDATIONS 137 26.1-Budget Breakdown 143 ITEM 27 REFERENCES 145

LIST OF FIGURES

Figure 1. The Moroccan Anti-Atlas with the Proterozoic “boutonnières” harbouring numerous polymetallic (Au, Ag, Cu, Zn, Pb, Co) deposits including the Boumadine polymetallic mine. 7 Figure 2. Localization of the two permits (PE 2959 and 34565) that form the Boumadine property acquired by Maya Gold and Silver Inc. 8 Figure 3. a)View of one of the shaft sunk in the Central Zone of the Boumadine Mine (Foreground), b) View of the remains of the Boumadine mining installations. 11 Figure 4. a) . Picture of the largest dry-stack tailings at Boumadine forming the residue after ore extraction and beneficiation from 1986 to 1992. It is estimated that the two tailings deposits contain 240,000 t of material @ 2.80 g/t Au and 178 g/t Ag., b) Photo of the two dry-stacked tailings at Boumadine. 12 Figure 5. a) Typical sparse vegetation in the Boumadine desert expressed by hardy bushes and scrubland growing in the scree where some underground humidity is present, b) Grazing camels in the harsh desert of Boumadine 15 Figure 6. Geology of a typical Boumadine polymetallic vein, level -70 m in the South Zone. Assay results for Au, Ag, Pb, Zn, Cu and Sn from chip samples collected from the gallery faces are reproduced in the accompanying table 29 Figure 7. Longitudinal section of the principal polymetallic vein mined in the South Zone. Panels or blocks are defined according to their historical 32 Figure 8. Geologic map of the Boumadine area. 36

v

LIST OF FIGURES (Ctnd.)

Figure 9. Geological map of the Late Proterozoic Ougnat “boutonnière”. 40 Figure 10. Geologic map of the Boumadine area showing the two permits forming the property. 42 Figure 11. Typical stratigraphic assemblage of the Tamerzaga-Timrachine Formation (TTF) in the Boumadine area. 43 Figure 12. Lithostratigraphic succession in the Ougnat Proterozoic window 44 Figure 13. Geological map of the Boumadine mine area showing the different exploited zones, shafts and approximate localization of historical drillholes. 47 Figure 14. a) The Boumadine mine area is characterized by the presence of dyke swarms of gabbroic, doleritic and andesitic compositions, principally N160°E-oriented, injected into the felsic rocks of the TTF, b) Silicified and Cu-mineralized rhyolite dome/”chonolith” which appears to crosscut the polymetallic veins cropping out in the South Zone. 49 Figure 15. a) Oxydized veins exploited by the ancient miners for ochre and precious metals. Central Zone, Boumadine mine, b) Trace of N150°E-trending shear zones showing dextral movements and developed in corridors already affected by a strong pyropylitization. 53 Figure 16. Distribution of stress in a senestral shear zone. 54 Figure 17. High-resolution Quickbird satellite photo of the Boumadine mine and surrounding area. The principal swarms of polymetallic mineralized veins are shown with the localization of the ancient mining shafts.The five main mineralized zones exploited for base metals: Tizi, Imariren, North,Central and South are outlined in hashed blue. 57 Figure 18. a) Typical brecciated and slightly oxydized pyrite rich ore with quartz veinlets mined form polymetallic veins and collected from the Central Zone, b) Galena-rich ore with pyrite, pyrrhotite, chalcopyrite, sphalerite and second stage quartz veins that contain most of the Au and Ag mineralization. Collected from the Central Zone muck pile. 58 Figure 19. Stratigraphic column from the historical drillhole log descriptions for holes BMF-13 and 22 given in Saint Gal de Pons (1975). 60 Figure 20. Stratigraphic column from the historical drillhole log descriptions for holes BM-46 and 43 given in Saint Gal de Pons (1975). 61 Figure 21. Stratigraphic column from the historical drillhole log descriptions for holes BM-49 and 41 given in Saint Gal de Pons (1975). 62 Figure 22. Petrogenetic model describing the formation of low-sulfidation epithermal deposits. 66 Figure 23. Petrogenetic model of a low-sulfidation epithermal deposit depicting the possible paleolocation at depth of the Boumadine polymetallic veins. 70 Figure 24. a) Ore sample BOU2012-01 collected from the muck pile near Shaft A of the Central Zone, Boumadine mine, b) Ore sample BOU2012-02 collected from the muck pile near Shaft A of the Central Zone, Boumadine mine. 74 Figure 25. a) Reflected light microphotograph showing the paragenetic relationship between pyrite, galena and sphalerite. Sample BOU2012-02, b) Reflected light microphotograph showing the paragenetic relationship between pyrite, galena and sphalerite. Sample BOU2012-02 77

vi

LIST OF FIGURES (Ctnd.)

Figure 26. a) Transmitted light photomicrograph showing mineralogical and textural variations in sphalerite+quartz veins in sample BOU2012-02. Low Fe-bearing sphalerite (yellow-brown) occurs in the core of a diverging quartz vein that is cutting recristallized coarse-grained massive pyrite, b) Transmitted light microphotograph of a quartz-sphalerite vein. Sphalerite is found at the contact with massive pyrite and shows a quartz core with coarse-grained disseminated pyrite. 78 Figure 27. High resolution Back Scattered Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) Arsenopyrite, b) Galena and c), Pyrite. 81 Figure 28. High resolution Back Scattered Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) As-rich pyrite, b) Sphalerite and c), Sphalerite. 82 Figure 29. High resolution Back Scattered Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) Sphalerite, b) Ag-Sn nuggets in pyrite and c), Ag-Sn nuggets in pyrite. 85 Figure 30. High resolution Back Scattered Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) Cassiterite/Native Sn b), Galena and c), Galena. 86 Figure 31. Localization of grab rock samples of the Timrachine-Tamerzaga Formation (TTF) analyzed for their major and trace element contents. 91 Figure 32. a) Moderately-oxydized/silicified layered rhyolitic tuff exposed within the TTF , b) Strongly oxydized intermediate-felsic volcanic rock of the TTF invaded by numerous sub-parallel quartz veinlets. 92 Figure 33. a) 33a. Silicified and pyritized rhyolite of the TTF cut by a shallow-dipping west-verging shear zone, b) Slightly oxydized and silicified felsic volcanic rock collected from the TTF. 93 Figure 34. Nb/Y vs. Zr/TiO2 classification plot for volcanic rocks using immobile trace element ratios. This plot provides the closest approximation of the true rock nomenclature for the Tarmazaga-Timrachine altered volcanic rocks which are located within the fields of , rhyodacite- and rhyolite compositions. 96 Figure 35. 2Ca+Na+K/Al (Molar) vs. K/Al (Molar) plot showing the strong alteration of volcanic rocks of the TTF surrounding the Boumadine mineralization. The altered rocks principally express strong Ca and Na loss and K gain associated with the phyllic alteration. 97 Figure 36. Binary plot, Alteration Index (100*(K2O+MgO))/(K2O+MgO+Na2O+CaO) vs. CCP Index (100*(MgO+FeO)/(MgO+FeO+Na2O+K2O), illustrating, in part, the type of alteration experienced by the Tamerzaga-Timrachine Formation (TTF) volcanic rocks surrounding the polymetallic veins at the Boumadine site. This diagram reveals the superposition of weak and strong sericite alteration (i.e. loss of Ca and Ca) with addition of pyrite. It does not however reflect the process of silicification. 103

vii

LIST OF FIGURES (Ctnd.)

Figure 37. Binary plot, Alteration Index (100*(K2O+MgO))/(K2O+MgO+Na2O+CaO) vs. K2O (wt. %), illustrating in part, the type of alteration experienced by the Tamerzaga-Timrachine Formation (TTF) volcanic rocks surrounding the polymetallic veins at the Boumadine site. This diagram reveals the superposition of Na, Ca loss, increase in K and strong silicification. 104 Figure 38. Al2O3 (wt. %) vs. Zr (ppm) binary plot showing the trend of silicification experienced by several volcanic rocks of the Tamerzaga-Timrachine Formation (TTF) surrounding the polymetallic veins of the Boumadine deposit. The correlation does not reflect the loss of Al but a dilution by introduction of silica. 106 Figure 39. Al2O3 (wt. %) vs. K2O (wt.%) binary plot showing the trend of silicification experienced by several volcanic rocks of the Tamerzaga-Timrachine Formation (TTF) surrounding the polymetallic veins of the Boumadine deposit. The correlation does not reflect the loss of Al but a dilution by introduction of silica. 107 Figure 40. Localization of grab rock samples of mineralized rocks of the Timrachine- Tamerzaga Formation (TTF) analyzed for precious and base metals content. 108 Figure 41. Formation of the Late Proterozoic Boumadine Caldera. Emplacement of pyroclastic flows (ignimbrites), porphyritic andesitic sills and flows of the TTF. 125 Figure 42. Injection of mantle-derived, volatile-rich basic at the base of the felsic magma chamber. Formation of a mixing/differentiation zone at the interface. Migration of volatile and differentiated magma to the apex of the felsic magma chamber. Establishment of a strong geothermal system in the TTF resulting in pervasive regional propylitic alteration. 126 Figure 43. Massive injection of gabbroic to andesitic dyke swarms along 160° tension gash within the TTF. Continuous differentiation in the felsic magma chamber accompanied by concentration of volatile-rich intermediate-felsic magma at the apex of the chamber. Maintenance of the high geothermal gradient in the TTF (aquifer) and percolation of magmatic-derived hydrothermal fluids resulting in regional propylitic alteration. 127 Figure 44. Early mineralizing event (Stage 1). Focused circulation of magmatically± meteoric- derived mineralizing fluids in 160° tension gash. Deposition of pyrite and arsenopyrite veins. Intense phyllic (quartz-sericite-pyrite) surrounding the polymetallic veins overprinting the propylitic alteration. 128 Figure 45. New orientation of tectonic stress. Stage II mineralization involving the deposition of sphalerite, galena, chalcopyrite ± pyrite ± arsenopyrite in 160°-oriented shears . Intense brecciation/recristallization of Stage I sulfides The end-stage of mineralization involves the deposition of native Ag, Au, Bi, Sn and Ag-rich sulfides and sulfates. The composition of hydrothermal fluids gradually evolves from pure magmatic to dominantly meteoric with decreasing temperatures reaching ~ 150°C. Formation of acid sulfate steam heated pools and fumaroles at the surface. Intrusion of felsic dykes and domes (”chonoliths”). 130

viii

LIST OF FIGURES (Ctnd.)

Figure 46. Emission of the Terminal Ignimbrite of the TTF along 15°-35°-oriented shear zones followed by an intense episode of widespread low-temperature silicification. The Terminal Ignimbrite acted as an aquitard (”cap rock”). Coeval injection of late rhyolitic domes crosscutting the mineralized veins and containing disseminated Cu mineralization. 131 Figure 47. Lithological legend for figures 41 to 46. 132 Figure 48. Localization of the Mag geophysical and rock/soil survey grid (in pale green). The IP geophysical survey grid covers the core of the deposit and is presented in yellow. 139 Figure 49. Proposed auger sampling survey of the two tailing mounds left near the Boumadine installation sites. The program involves 324 “soil” samples at one meter depth interval. 141

LIST OF TABLES

Table 1. Historical resource estimate established par Saint Gal de Pons in 1975 and classified according to their category type. 19 Table 2. Concentrations and proportion (in %) of Au and Ag in the Boumadine ore minerals. 21 Table 3. Historical drillholes collared from 1966 to 1975 at Boumadine with the best intersections for base and precious metals as reported by Saint Gal de Pons (1975). 22 Table 4. Historical resource estimate established par Chaki in 1981 and classified according to their category type. 26 Table 5. Reagents used and their consumption during the crushing and flotation testing process of the galena, sphalerite and pyrite forming the Boumadine ore. 28 Table 6. Historical resource estimate established par Bakkari and Nicot (1985) and classified according to their category type and zone exploited. 31 Table 7. Historical resource estimate established par the SODECAT (1993) and BRMP (1998) and classified according to their category type and zone exploited. 34 Table 8. Summary of the paragenetic succession of ore veins at Boumadine. 63 Table 9. Major and trace element geochemistry of grab rock samples collected from the Tamerzaga-Timrachine Formation during the 2013 exploration campaign. 90 Table 10. Major and trace element geochemistry of least altered grab rock samples collected from the Tamerzaga-Timrachine Formation. Data from Saidi (1992) and Abia (2001). 95 Table 11. Compilation of precious and base metal assay values from samples of: a) tailings, b) muck piles, c) oxydized surface veins and d) ENE-oriented veins all collected from the Boumadine property. 99 Table 12. Rate of extraction for Au and Ag provided by testing of the cyanuration process on Boumadine tailing samples; URSTM laboratory, Rouyn-Noranda, Quebec. 114 Table 13. Geochemical analyses of Boumadine tailing samples BMF and BMS performed by the SGS Laboratories. 116

ix

LIST OF TABLES (Ctnd.)

Table 14. Solubilization of base and precious metal in various grade of sulfuric acid. 117 Table 15. Rates of Au and Ag extraction after chloration of the oxydized residues; samples BMF and BMS. 117 Table 16. Cumulative rates of Au and Ag extraction after NaCl oxydation, lixiviation HNO3/H2SO4 and chloration 300/30, 2% NaOCl. 118 Table 17. Cumulative rates of Au, Ag and Sn (BMF: after NaCl oxydation, lixiviation 2g HNO3 and 10 g H2SO4, chloration 300/30, 2% NaOCl). 118 Table 18. Cumulative rates of Au, Ag and Sn extraction (BMF: oxydation, oxydation with 2g HNO3 and 10 g H2SO4, chloration 300/30, 2% NaOCl). 119 Table 19. Cumulative rates of Au, Ag and Sn extraction (BMS: oxydation, oxydation with 2g HNO3 and 10 g H2SO4, chloration 300/30, 2% NaOCl). 119 Table 20. Rate of extraction for Au and Ag for re-crushed samples BMF and BMS (lixiviation with 1N HNO3 / 2.5N H2SO4 solution; chloration 300/30- 2% NaOCl). 120 Table 21. Au and Ag extraction rate for samples BMS and BMF according to the duration of oxydation. 121 Table 22. Generation of high-value energy during the production of sulfuric acid. 121

APPENDICES

Appendix 1. Research and Exploration Permits, Boumadine property 151 Appendix 2. Certificates of analyses. 158

x

ITEM1 SUMMARY

The Boumadine polymetallic deposit represents one of the most prospective mining terrane within the Kingdom of Morocco. Historical resources last established in 1998 by the BRPM stands at 3,838,970 t @ 0.86 wt. % Pb, 3.9 wt. % Zn, 203 g/t Ag (25.1 M oz.) and 3.60 g/t Au (444,330 oz.) *.

*The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

In 2013, Maya Gold and Silver acquired 85 % of the Boumadine property through a joint venture with the Office National des Hydrocarbures et des Mines of Morocco (ONHYM) who retained the remaining 15%. The Boumadine property consists of two Exploitation Permits covering an area of 32 km2. Exploitation permits entitle the holder to work the deposit and dispose of the substances, herein Pb, Zn, Ag, Au and Cu and provide legal access to the property. The Boumadine polymetallic deposit is exposed within the Ougnat Proterozoic window ("boutonnière") of the Anti-Atlas mountain range of southwestern Morocco. The Proterozoic Ougnat window contains a folded and schistose metasedimentary Proterozoic basement unconformable overlain by a Late Proterozoic volcanosedimentary sequence. The basal sequence is made by the Tamerzaga-Timrachine Formation (TTF) which consists of ignimbrite sheets, vitroclastic tuffs, and intercalation of andesite flows/sills. Swarms of N160°E-oriented andesitic, gabbroic to dolerite dykes were intruded within the TTF. Late rhyolitic intrusions form ovoid domes and dykes

1 ("chonoliths") oriented N160°E to N-S. The TTF is affected by propylitic, phyllic and late silicic alteration and hosts all polymetallic veins (Au-Ag-Pb-Zn-Cu) forming the Boumadine deposit.

The polymetallic mineralization at Boumadine extends for at least 4 km on the surface. The mineralized zones consist of 1 to 4 m-wide, mostly N160°E-oriented lenses/veins dipping sharply (> 70°) to depths of 350 m. The veins contain massive pyrite, sphalerite, arsenopyrite, and galena with subordinate amounts of chalcopyrite, cassiterite, silver-rich sulfosalts, stannite, enargite, bismuthinite, native silver, tin, copper and bismuth. The upper 20 to 50 m are affected by supergene alteration (Fe-hydroxyde-rich ‘‘iron caps’’).There are two principal mineralizing stages controlled by the strain applied to the TTF volcanosedimentary assemblage. The first mineralizing event involved the deposition of massive pyrite, occasionally banded, succeeded by the injection of parallel veinlets of arsenopyrite. The second stage lead to crystallization of sphalerite and galena cementing the first stage sulfides or occurring as vein filling material forming banded ore. Then, late deposition of quartz in dissolution cavities and as crosscutting veinlets was followed by crystallization of native Sn, Ag, Au and precious metal sulfosalts and sulfides.

There are existing surface and underground mine workings which include at least 6 excavated shafts (638 m) and 6,036 m of underground adits, raises and stopes distributed in 5 main areas: Central Zone, Northern Zone, South Zone, Tizi Zone and Imariren Zone. There is a prolonged history of exploitation at Boumadine starting with Portuguese (?) artisans mining the oxydized upper section of the polymetallic veins for ochre and precious metals during the XV and XVI centuries. From1963 to 1975, the Central and North sectors were explored through surface and underground drilling (30, 156 m), shafts (387 m) and galleries/drifts/raises/stopes (2,095 m). New exploration initiated in 1975 and ending in 1984 was conducted on the Central, South and Tizi zones and involved 1,030m of surface and underground drilling completed by 140 m of shafts and 1,885 m of galleries/drifts/raises/stopes. From 1985 to 1992, metallurgical testing was conducted on 261,485 t of Boumadine ore extracted from the Central and South sectors. The differential flotation process yielded ~ 10,000 t of sphalerite, galena and pyrite concentrates but left a poor recuperation rate for Au and Ag for the latter. 1,570 m of surface and underground drilling were collared, 111 m of shafts with 1,243 m of galleries/drifts/raises/stopes were bored.

2

A recent mineralogical study of the Boumadine ore material described the occurrence of Ag and Sn as Ag-Sn (± other base metals + S) micronuggets (<5 μm and typically <1 μm) included in pyrite. It is most likely that Ag occurs as native silver. New major and trace element analyses of TTF altered rocks document: 1) The strong Na and Ca loss accompanied by potassium enrichment, 2) Intense pyrite-sericite alteration and 3), The imprint of late silicification.

Rock samples of tailing material, polymetallic veins, mineralized muck piles and wallrocks were assayed for precious and base metals and other strategic metals. Results from dry-stacked tailing samples indicate that most of the gold and silver in the Boumadine ore still rest in the tailings. Average concentrations of Au (2.80 g/t) and Ag (178 g/t) are similar to that reported in 1998 by the BRMP. Grab samples from unoxydized sulfide-rich rocks from several muck piles show comparable average concentrations of Au and Ag (3.00 g/t and 279 g/t respectively) to that of the BRMP average ore (i.e. 3.50 g/t Au and 200 g/t Ag). Surface samples of moderately to strongly oxydized mineralized rocks ("iron cap") yielded slightly higher gold concentrations (Average of 4.08 g/t) relative to the sulfide ore. Wallrock samples were found to contain moderate amount of gold (Av: 0.31 g/t) and Ag (Av: 22 g/t) up to 70 m from the contact with the mineralized polymetallic veins.

The Boumadine polymetallic deposit represents one of the most prospective mining terrane within the Kingdom of Morocco. Several observations presented in this document strengthen the precious metal potential of the deposit: 1) Recent assay values of shallow-depth oxydized zones overlying the sulfide-rich polymetallic veins confirm their gold enrichment (i.e. reaching 13 g/t Au), but there is yet no evaluation of their potential, 2) Economic to sub-economic gold mineralization may extend up to 60-70 m outside the polymetallic veins within the highly silicified wallrocks, 3) Late rhyolitic flow/domes emplaced along a NNE-SSW lineament in the eastern part of the permit # 2959, show disseminated to stockwork Cu mineralization (~0.2-0.4 wt. %) strongly hinting at a porphyry-type mineralization and 4), The author noticed the absence of past geophysical surveys on the property. A ground-base EM or IP survey would certainly unearth new potentially sulfide- rich veins.

3 Maya Gold and Silver will implement a strong exploration program on its Boumadine property first involving IP and Mag surveys, rock and soil sampling, geological and structural mapping and tailing sampling. This is expected to cost $922,787. A second exploration phase will be entirely devoted to drilling 8,000 m of core to validate and expand the historical resources and establish Inferred and possibly Indicated Resources. The total estimated cost of drilling is $2,140,208.

4 ITEM 2 INTRODUCTION AND TERMS OF REFERENCE

On March 14, 2013, Maya Gold and Silver Inc. of Blainville, Canada, mandated Michel Boily (PhD, P. Geo) to write a 43-101F1 Technical Report on the Boumadine property located in the Anti-Atlas mountains of southeastern Morocco. The Boumadine mine constitutes a property of merit for Maya who proceeded to obtain an 85 % participation through a joint venture with the Office National des Hydrocarbures et des Mines of Morocco (ONHYM). The purpose of this report is to describe the geological, structural and metallogical characteristics of the property. The document will describe all underground and surface mining works that lead to the mine development and operation from 1957 to 1992. Historical mineral resources will be presented through the exploration years and a new exploration campaign will be proposed. This report will also comply with the TSX Venture Exchange regulatory requirements and follow the guidelines and framework defined in the Form 43-101-F1 pertaining to National Instrument 43-101: “Standards of Disclosure for Mineral Projects”. Finally, the report will support the technical disclosures by Maya Gold and Silver Inc. in its Annual Information Form. The study is based on in-house reports and documents obtained from Maya Gold and Silver and other documents acquired from the ONHYM office in , Morocco.

Units presented in this report use the metric system. Precious metal concentrations are given in grams of metal per metric ton (g/t) or in parts per million metal (ppm). Reference to base metals is reported in weight percent (wt. %) or ppm. Tonnage figures are in dry metric tons unless otherwise stated. Currency units used are the Canadian Dollar ($CAD) or Moroccan Dirham ($MAD). The weight and the measurement which are used in the course of this study are in conformity with the nomenclature of the international system (IS).

The author has relied upon a limited amount of correspondence, pertinent maps and agreements information provided by Maya Gold and Silver Inc. that described the joint venture agreement ("Convention de Partenariat") into which Maya entered into the Boumadine project. The author has also reviewed the Mining Permit and ownership agreement. Consequently it is the opinion of the author that the Boumadine property is in good standing. The exploitation concession documented in this report was obtained from the ONHYM through Mr. Raouid Douiri (Ministère de l'Énergie, des Mines, de l'Eau et

5 l'Environnement, Département de l'Énergie et des Mines) and is considered current as of October 2014 (See Appendix 1). The author does not accept any responsibility for errors pertaining to this information.

The author has visited the Boumadine property on September, 13 and 14 2012. The visit consisted of a general tour of the property that included a close survey of all different types of lithologies, structures and mineralization. According to subsection 6.2(1) of the Instrument (43-101 CP), there is no new important material scientific or technical information about the Boumadine property since the personal visit of the author on September 2012. The nature of the work completed in 2013 does not affect the validity of the inspection. The sampling campaign was implemented to validate the chemical composition of the different volcanic lithologies of the TTF Formation compiled from the theses of Abia (2001) and Ait Sasdi (1992). Sampling of the various muck piles, exposed polymetallic veins, wall rock and tailing material was also carried out to confirm the precious and base metal values determined during past exploration and drilling campaigns. To the exception of the sampling campaign carried out under the supervision of Dr. Abdelkhalek Alansari from the Université Cadi Ayyad in 2013, the author can attest that no other work was conducted on the Boumadine property.

ITEM 3 RELIANCE ON OTHER EXPERTS

There is no reliance on other experts

ITEM4 PROPERTY DESCRIPTION AND LOCATION

The Boumadine polymetallic deposit (Zn, Pb, Cu, Ag, Au) is located within the Ougnat Proterozoic window (boutonnière) in the Errachidia province of southeastern Morocco (Figure 1). The mine is located approximately 295 km east of the major city of Ouarzazate (pop. 496,536) and 71 km SW of Errachidia (pop. 95,265) the capital of the namesake state. The nearest town is Tinejad (pop. 7,494), situated 17 km north of Boumadine and easily accessible from the mine on a sturdy gravel road. The Boumadine property consists of two Exploitation Permits (no. 2959 and 34565) (Figure 2 and Appendix 1).

Each permit is 4 km x 4 km and the property occupies an area of 32 km2 . The center of the property is situated at Longitude: 4° 55’ 36” West and Latitude: 31° 23’ 28” North at an elevation of 1200 m ASL or at coordinates: Easting=316797, Northing=3474543 (WGS84; Zone 30N). The boundary stone (Point de Pivot) for permit no. 2959 is established at Easting= 544550 and Northing=88602 (Nord Maroc; Merchich), whereas it

6 Bou Madine South Atlas (Zn, Pb, Cu, Au, Ag) Tamlelt Au

Imiter Tagmout Ag Sidi Flah Cu, Ag Zgounder Au gA Ougnat

Tafrent Ouarzazate Saghro Tiouit Au Au Siroua

Agadir Central Anti-Atlas Fault Ighern

Bou Azzer (Co, Ni, As, Ag, Au)

Atlantic Ocean Akka Legend

Ifni Kerdous Ordovician and younger

Iourin Au Infracambrian to Cambrian Late Neoproterozoic Bas Draa Middle Neoproterozoic and Paleoproterozoic 0 50 100 m M o r o cSource c ando date: AG, 2004.

Figure 1. The Moroccan Anti-Atlas with the Proterozoic “boutonnières” harboring numerous polymetallicdeposits (Au, Ag, Cu, Zn, Pb, Co) including the Boumadine polymetallic mine.

7 312400mE 318400mE 316400mE 320400mE 314400mE

PE 2959

3478000mN

Cambrian cover

3476000mN

Main polymetallic (Au-Ag-Zn-Pb-Cu) vein

Propertry boundary

PE 34565

3474000mN

Source: This study Late Proterozoic Ougnat “window” Bou Madine South Atlas Fault (Zn, Pb, Cu, Au, Ag)

Ougnat Ouarzazate Saghro Siroua

Agadir Central Anti-Atlas Fault Ighern

Atlantic Ocean Akka Legend

Ifni Kerdous Ordovician and younger Infracambrian to Cambrian 0 500 1000 m Late Neoproterozoic Bas Draa Middle Neoproterozoic M o r o c c o and Paleoproterozoic 0 50 100 m Source and date: AG, 2004.

Figure 2. Localization of the two permits (PE 2959 and 34565) composing the Boumadine property acquired by Maya Gold and Silver Inc. UTM Coord.: E=Easting, N=Northing; WGS84, Zone 30N.

8 is located at Easting=544725 and Northing=87984 (Nord Maroc; Merchich) for permit no. 34565. Exploitation permits entitle the holder to work the deposit and dispose of the substances, herein Pb, Zn, Ag, Au and Cu and provide legal access to the property. They are valid for a period of four years and were renewed until May 2016 (see Appendix 1).

Maya Gold and Silver Inc. ("The Corporation") situated on 10 Boulevard de la Seigneurie East, Blainville, Quebec, Canada, J7C 3VS and L’Office National des Hydrocarbures et des Mines (“ONHYM”) located on 5, Moulay Hassan Ave., BP 99, Rabat, Morocco, signed in October 9, 2012 a Joint Venture Agreement for the acquisition of the Boumadine polymetallic deposit (“Agreement”) located in the of the southern Kingdom of Morocco. Under the terms of the Agreement, the Corporation acquired 85% of the Boumadine project for total cash payments of $3,292,800 ($MAD 28,000,000), including: a) An initial amount of $705,600 ($MAD 6,000,000) paid in May 2013, b) $705,600 ($MAD 6,000,000) payable 12 months after the date of the Agreement, c) $705,600 ($MAD 6,000,000) payable 24 months after the date of the Agreement and d), A final payment of $1,176,000 ($MAD 10,000,000) payable 36 months after the Agreement date. The transfer of the property will occur once a separate company has been established in Morocco for this purpose, to be 85% owned by the Corporation and 15% owned by l’ONHYM. A letter of credit has been subscribed to by the Corporation to the benefit of l’OHNYM, in the amount of $258,720 ($MAD 2,200,000), representing 10% of the balance of the purchase price of the project. The new Company to be created will recognize a debt to l’ONHYM in regard to the past expenses incurred in the amount of $1,764,000 ($MAD 15,000,000). As a former holder of the deposit, ONHYM will perceive a 3% royalty from the revenues of the newly formed society eligible from the first year of exploitation. Furthermore, Maya will get a payment equal to 2.75 % of the society revenues eligible from the first year of exploitation.

All justified decisions, commonly agreed, concerning future or possible increase in the issued capital will have to respect the agreed participation. Maya confirmed to have visited and verified the Boumadine mining site and installations and agreed to their acquisition in their current state without any future claim against ONHYM for any reason. There was no liability on the Boumadine polymetallic deposit at the time of signing of the Partnership Agreement.

9

Maya is committed to the development of the Boumadine polymetallic deposit and will put in place the following program : 1) Classification of resources/reserves, 2) Metallurgical testing, 3) Mining infrastructures and 4), Exploration and research. The program is expected to be achieved within the next 60 months.

All exploration and rehabilitation work is under the care of Maya who will realize all necessary financial, industrial and commercial operations related to the future exploitation of the Boumadine polymetallic mine. Maya agreed to inform periodically the Direction Régionale de l'Énergie et des Mines and ONHYM on the work progress.

Maya agreed to respect the environmental laws and regulations currently in force in Morocco. Maya will undertake all possible means and procedures to protect the environment of the Boumadine mine and surrounding terrane. Maya is committed to minimize the negative environmental impacts of any future work at the Boumadine mine.

There are historical mineral resources on the Boumadine property according to the 2010 CIM Definition Standards. There are existing surface and underground mine workings which include at least 6 excavated shafts (638 m) and 6,036 m of underground adits, raises and stopes distributed in 5 main areas: Central Zone, Northern Zone, South Zone, Tizi Zone and Imariren Zone (Figure 3a). Numerous pits and trenches are visible throughout the property. These can be small, a few m2 in area, but others extend for few hundred of meters in length. Invariably these excavations are associated with highly oxydized (supergene) exposed polymetallic veins and were mined for ochre and precious metals by artisanal miners since the 16th century. Remnants and ruins of the mining installations are still visible at the mine site (Figure 3b). The installations were probably dismantled shortly after the mine closure in 1992. Two dry stacked tailings are exposed on site totaling approximately 240,000 t of material (Figure 4a, b). These residues were generated upon the underground exploitation of the Boumadine deposit from 1986 to 1992.

10 Source: This study

Figure 3a. View of one of the shaft sunk in the Central Zone of the Boumadine Mine (Foreground).

Source: This study

Figure 3b. View of the remains of the Boumadine mining installations. They were probably dismantled 11 shortly after the mine closure in 1992. Source: This study

Figure 4a. Picture of the largest dry-stack tailing at Boumadine forming the residue after ore extraction and beneficiation from 1986 to 1992. It is estimated that the two tailings deposits contain 240,000 t of material @ 2.80 g/t Au and 178 g/t Ag.

Source: This study

Figure 4b. Picture of the two dry-stacked tailings at Boumadine.

12

According to Moroccan government records, no part of the land covered by the property is a park or mineral reserve. Mining exploration is currently permitted on the entire surface of the permits without restrictions. The property is devoid of royalties, back in rights, payments or other encumbrances. The Issuer holds two title of the Boumadine property. There are no other significant factors and risks that may affect access, title, or the right or ability to perform work on the property. The author is unaware of any environmental liabilities, public hazards or any other liabilities associated with the property. The current exploration permits allow the Issuer to carry on exploration and exploitation work on the Boumadine property.

ITEM 5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES INFRASTRUCTURE AND PHYSIOGRAPHY

The Boumadine mine is accessible year long from the town of Tinejad (N10 highway). From the center of Tinejad one has to take Highway N10 eastward for 2 km to the junction with road R702. Travelling south and then northeast toward the Kassr village for 2.8 km we arrive at a gravel road which we need to take south for 13 km before arriving at the Boumadine site. There are numerous dirt roads and paths that lead to former shafts, adits and other remnants of the mining installations.

The topography at the Boumadine mine site is rather flat (1175 to 1200 m ASL) with small surrounding hills. There are several dry oueds which constitute the low points. The summits of the Anti-Atlas range reach heights of 1,700 to 2,000 m ASL mainly to the west and southwest of the Ougnat "window". The Atlas mountain range can be seen in the northern foreground with the characteristic snowy peaks attaining 3,000 m.

During the summer, the Azores anticyclone produces a northerly air stream over almost the entire North African region, but although the stream passes over the Mediterranean, it is dry and brings virtually no rain. These dry winds blow right across Morocco to the

13 Sahara. A high pressure dome prevails over the Sahara during the winter and winds then blow off the desert toward the southwest and northeast. They are hot, dry and dusty.

The area near Boumadine is characterized by hot and dry summers, but can be very cold in winter, with icy winds coming from the High Atlas mountains. Precipitations are sporadic and minimal (only 110 mm/year) occurring mainly in the winter months (September to February: 81 mm). Average temperatures in January reach a high of 17°C and a low of 2°C; whilst summers can be scorching hot with averages of 38°C (max) and 21°C (low) in July.

Most of the Boumadine mine area is covered by scrublands (Figure 5a). Plants of the Moroccan desert were adapted to the climate to reduce evaporation and increase water absorption: very small leaves, very long roots which can reach the most humid layers of soil (ex: acacias, tamarisks), water accumulation in the tissues and leaves covered with wax (ex: succulent), loss of their roots to absorb the atmosphere humidity (roses of Jericho). Bushes are often widely spaced, with a considerable amount of bare stony ground between the clumps which gives the vegetation a very parched appearance in the summers. Isolated bushes made of tamarisks and acacias are found in river beds. The rare showers can bring about some meager meadows. Date palm trees, introduced by the Arabs, are requisite for the existence of humans in oasis. The soils of the Moroccan desert are formed of rock debris and desert detritus and are very weakly developed.

Animals have also created some strategies to preserve water and avoid hot weather: thick skin and underground life for scorpions and insects, recuperation of water steam in pulmonary air by condensing it in nostrils etc... The larger animal life is dominated by the extensive nomadic herds of goats, sheep and camels (Figure 5b) which use the most inaccessible and barren patches of wilderness as seasonal grazing areas. Other herbivores include the Edmi gazelle and the rare Addax antelope. Smaller animals include the desert hedgehog and the jerboa. Although the desert heat can be hard on many animals, Morocco boasts more than 454 species of birds, nearly all of them native to the country.

14 Source: This study

Figure 5a. Typical sparse vegetation in the Boumadine desert expressed by hardy bushes and scrubland growing in the scree where some underground humidity is present.

Source: This study

Figure 5b. Grazing camels in the harsh desert of Boumadine 15 The most common types of birds include pheasants, pigeons, doves, woodpeckers, and partridges. There is a wide range of lizard, scorpion and snake species.

Low skilled workers are probably available from the village of Tinejad. Ouarzazate is the closest major urban center. Known as the "Porte du désert" the city is propelled by the tourist and cinematographic industries. Ouarzazate has an international airport with daily access to , the economic hub of Morocco. It is also accessible by road (3½ hours drive) from Marrakech (pop. 1,063,415).

ITEM 6 HISTORY

XV–XVIth centuries- Portuguese (?) workers have mined out the limonitic mantos, (“iron cap”) blanketing the polymetallic veins to a depth of 20-40 m. The ancients exploited the oxydized zones for ochre and precious metals.

1957-Early modern exploration targeted the N70°E-oriented Hercynian Pb-Cu veins principally exposed north of the Central Zone near the Imariren zone (Lafargues, 1957).There were four mains veins : 1) Imariren, 2) Boumadine, 3) Miferguim and 4), Tizi Nehalas. The veins show irregular patterns frequently branching in sub-veinlets. The mineralization consists of galena and cerussite with accessory chalcopyrite. Enrichment occurs when the veins intersect NNE and NNW-oriented structures. Surface and underground works involved 441 m of drillcores distributed in seven DDH, 15 m of shafts and 136 m of galleries. The report mentioned sporadic Pb and Cu mineralization yielding very low possible tonnage.

1966- St Gal de Pons (1966a, b) presented a summary of mining excavations and exploration work accomplished from 1957 to 1964 in the Central Zone. 90 surface and underground drillholes were completed for a total of 8,399 m of core and 1,153 m of shafts/galleries/drifts/ stopes were excavated. In reviewing the previous mining exploration, Saint Gal de Pons observed several drillholes intersecting reverse faults so that the same mineralized veins could have been crosscut several times. Saint Gal de

16 Pons (1966a, b) also described a "diffuse" mineralization related to several veinlets that surround the main polymetallic veins. In 1966, this author calculated an historical resources of 1,977,000 t brought from 12 sampled panels and yielding 1.4 wt. % Pb, 4.2 wt. % Zn, 140 g/t Ag and 1.8 g/t Au*

A new exploration campaign was instituted in 1966 in the Central Zone on four previously sampled panels (1957-1966). A tonnage evaluation of two main polymetallic veins located was conducted (Saint Gal de Pons, 1966a, b). The principal vein is 650 m long with an average width of 2 .0 m. It is bounded to the north and south by major faults showing displacement of 5 to 30 m. The second vein (satellite) measures 450 m in length and has an average width of 0.80 m. The principal vein was systematically sampled on the face of the main drift for 450 m and complemented by 200 m of drillcore. The satellite vein was sampled at 5 m intervals, with 0.5 to 2.5 m chip samples. Underground drilling was completed at 10 to 25 m intervals. Category I historical resources come from all vein material which show economic base metal concentrations upon drilling and extending longitudinally for 100 m. Category II historical resources constitute the extension for 100 m along dip of the Category I historical resources. The Category I historical mineral resources produced by the BRPM yielded 422,700 t @1.3 wt. % Pb, 4.7 wt. % Zn and 288 ppm Ag for the main vein and 126,600 t @ 1.2 wt. % Pb, 7.2 wt. % Zn, 141 ppm Ag*f or the satellite vein. The gold content was estimated at 2.3 g/t based on surface drilling.

*The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify

17 the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

1973- A summary of the surface and underground exploration work accomplished by the BRMP was presented by Saint Gal de Pons (1975). A new historical mineral resource was then presented.

The exploration and mining works were divided into three stages: 1) The evaluation of shallow sulfide and oxydized polymetallic mineralization through surface drilling, 2) The sinking of two main shafts, drifts, galleries and raises tracing the polymetallic veins succeeded by underground drilling and 3), Longitudinal underground tracing of the main veins and deep surface drilling (300-500 m). In total 75 drillholes totaling 14,402 m were collared from the surface, whereas 26 holes were completed underground for 965 m. In the Central Zone, underground work included the sinking of two shafts, A (154 m) and B ( 52 m), followed by forcing of galleries and drifts at levels -50 (1,080 m) and - 100 m (677.8 m). In the North Zone, a 50 m shaft was sunk followed by 288 m of galleries and drifts.

Several sampling methods adapted to the vein characteristics were used such as chip sampling of the gallery roof and face, sampling of underground core, long hole stoping and blasting. Geochemical data from ore samples collected from galleries and adit faces and roof taken at different depth appear to display: a) A decrease in Pb concentrations with depth, b) Similar Zn, Ag and As content irrespective of the level of sampling and c), Increasing Au, Cu and Sn assay values with depth#. Furthermore, surface drilling and underground working suggested an augmentation of vein thickness with depth. Conflicting silver assay values were obtained during core and underground chip sampling, the latter being nearly double the core values.

#A note from the author. The geochemical correlations presented above are suspect to author since he has been unable to detect any statically meaningful correlation between

18 the assay value contents of precious and base metals and the depth of the sampled drillcore.

The historical resources calculation used four resources categories with the degree of confidence decreasing from I to IV. Category I historical resources are established from vein segments comprised between the oxydized zone (“iron cap”) and a block located 50 m under the deepest underground workings (either at the 1050 or 950 m levels). Most of these historical resources are located in the Central and North zones. Category II historical resources are determined from the end of the oxydized zone (usually 10 to 20 m) downward until reaching level 1050 m. This category mostly applied to satellite veins parallel to the principal veins. Historical resources classified as Category III concerns: a) The vein segment found under Category II historical resources (commonly satellite veins) provided that this segment was investigated by drilling, b) All segments recognized by surface drilling and having a maximum vertical extension of 100 m. Category IV historical resources contain all resources defined by a 100 m zone located below Category I resources in areas of extensive mining work or on a 100 m lateral extension zone. At the end of 1975 the historical resources as summarized by Saint-Gal de Pons were set at:

Historical Tonnage Pb (wt. Zn (wt. Ag Au Cu (wt. Resources (t) %) %) (g/t) (g/t) %)

Category I* 916,500 0.8 3.7 218 3.97 0.22

Category II 131,000 1.2 7.5 143 2.00

Category III 1,967,300 1.3 4.1 117 1.20

Category IV 2,164,000

Table 1. Historical resource estimate established par Saint Gal de Pons in 1975 and classified according to their category type.

19 *The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

The BRPM also conducted a sampling campaign of alluvial sediments in the principal oueds crossing the Boumadine mine site and found very low gold and silver values. Analyses of the oxydized zones ("iron cap") encountered in the drillcore, underground and surface works indicated average Ag and Au concentrations of 250 g/t and 3.5 g/t on at least 614 m of vein material.

Saint Gal de Pons (1975) also provided a summary of mineralogical studies of the Boumadine ore. According to a study performed by the TSMIGRI institute in 1970 (URSS), gold is foremost distributed in pyrite and arsenopyrite, then with galena and sphalerite. Silver does occur in pyrite, but also constitutes its own silver sulfate and sulfide minerals (ex: argentopyrite, schapbachite and pyrargyrite ) which partially explained the 40.2 % in the "Other" category.

20 Au Ag % Au in % Ag in Mineral % in ore (g/t) (g/t) ore ore

Pyrite 55.0 4.5 228 64.4 41.1 Galena 2.0 50.9 1531 26.8 10.1 Sphalerite 8.6 3.3 303 7.5 8.6 Other 34.0 0.02 356 0.3 40.2

Total 100 3.8 305 100 100

Table 2. Concentrations and proportion (in %) of Au and Ag in the Boumadine ore minerals.

Saint-Gal de Pons (1975) has also compiled the logging sheets and more significant base and precious metals intersections for drillholes collared from 1963 to 1968. Table 3 reproduced the data given in the publication. In total 12,240 m of core are represented. However, most of hole locations are missing. The author could only get their approximate location from a geological map of the Boumadine area published by the BRPM in 1998 (see Figure 13). The logs included in Saint-Gal de Pons report give scant details of the lithologies and alteration and mostly provide the type of mineralization with the corresponding assay values for base and precious metals.

1981-1982- Chaki (1981) gives a description of the surface and underground work achieved by the BRPM. Underground work was implemented to better define the lateral extension of the main polymetallic vein in the Central Zone and identify other satellite veins at the -150 m level. The Central Zone was also prepared for future exploitation.

The exploration works consisted of 147 m of underground chip sampling, two raises (75 m). A new sub-level (-25 m) with 73.5 m of chip sampling, 127 m of long holes at level - 150 m with chip sampling, and sampling of blasting residues were performed. At the -150

21 Table 3. Historical drillholes collared from 1966 to 1975 at Boumadine with the best intersections for base and precious metals as reported by Saint Gal de Pons (1975)

DDH # Year Azimuth (°) Plunge (°) Depth (m) Zone From (m) To (m) Width (m)Pb (wt. %) Zn (wt. %) Ag (g/t) Au (g/t) S (wt.%) * BMF-1 1964 68 15.5 56.6 Center 34.9 37.0 2.1 1.0 1.6 261 1.40 26.0 * BMF-2 1965 110.5 16.0 60.2 Center 27.6 28.5 0.9 0.4 3.7 625 11.40 23.8 29.6 30.3 0.7 0.4 3.2 58 2.30 23.8 * BMF-3 1964 88.5 3.3 23.1 Center 0.9 1.3 0.4 1.7 6.1 244 34.3 BMF-4* 1964 87.4 4.3 35.3 Center 3.4 4.2 0.8 1.2 12.7 38 3.00 34.6 BMF-5* 1964 72 3.5 25.0 Center 4.3 5.0 0.7 0.2 9.0 165 4.00 18.0 12.8 13.2 0.4 0.1 7.6 278 5.60 33.7 17.5 18.3 0.8 0.9 6.8 88 4.50 38.2 * BMF-6 Center 3.9 4.4 0.6 0.7 9.1 112 1.30 27.6 * BMF-7 Center 8.3 8.5 0.2 0.4 13.6 248 8.50 22.7 BMF-8* Center 2.3 3.4 1.1 2.1 10.6 145 4.90 14.7 15.9 1.2 0.7 5.2 42 BMF-9* Center BMF-10* Center 41.8 43.7 1.9 1.3 4.0 155 2.90 38.8 BMF-11* 1965 65 0.0 35.0 Center 2.6 3.6 1.0 1.9 9.8 34 1.20 25.8 6.1 6.5 0.4 1.3 2.1 45 25.7 12.4 12.8 0.4 0.6 3.4 37 0.80 44.5 14.2 15.0 0.8 1.6 2.4 51 0.70 39.0 BMF-12* 1965 241 0.0 40.1 Center 33.5 34.7 1.2 0.8 1.7 1150 5.90 34.9 BMF-13* 1965 0.0 31.0 Center 3.7 4.7 1.0 1.5 2.7 78 1.00 29.4 8.6 9.2 0.6 2.4 4.5 4 2.00 30.0 23.3 26.3 3.1 0.9 1.7 183 2.50 36.3 BMF-14* 1965 253 0.0 30.1 Center BMF-15* 12.9 14.8 1.9 0.4 2.0 11 0.50 15.0 BMF-16* 1965 62 0.0 16.3 Center 9.9 10.4 0.5 2.9 8.6 58 0.70 31.2 28.1 30.1 2.0 1.1 6.7 165 0.70 38.1 BMF-17* 1965 71 1.0 20.0 Center 15.1 16.5 1.4 0.8 3.6 55 0.90 34.5 BMF-18* 1965 218 0.0 42.0 Center 28.3 29.9 1.7 1.1 1.5 111 0.60 43.2 37.0 40.0 3.0 0.5 3.1 313 2.80 36.6 40.7 41.5 0.8 0.4 3.5 103 0.60 40.8 BMF- 19* 1965 75 000.0 30. 0 Center 20. 8 21. 7 090.9 121.2 050.5 117 3503.50 39. 2 BMF-20* 1965 245 1.0 41.5 Center 27.2 29.4 2.2 1.1 0.3 540 3.70 36.5 BMF-21* 1965 64 0.0 60.0 Center 58.1 59.9 1.8 0.5 0.5 90 0.30 41.8 BMF-22* 1965 270 0.0 30.4 Center 21.4 23.4 2.0 2.4 3.0 459 3.80 44.0 BMF-23* 1965 77 0.0 40.2 Center 12.9 13.9 1.0 1.0 7.5 84 0.20 27.1 BMF-24* 1965 270 0.0 28.5 1.7 2.3 0.6 0.5 11.8 31 0.00 26.6 4.9 5.8 0.9 0.5 5.9 48 1.10 25.0 BMF-26* 1966 19 0.0 52.5 Center

* BMF-27 1984 50 0.0 63.2 Center

* BMF-28 1984 230 0.0 65.5 Center 11.9 14.6 2.7 0.2 0.7 15 0.43 8.2

* BMF-29 1984 50 0.0 50.0 Center 13.8 16.3 2.5 0.8 1.5 31 0.74 16.0

* BMF-30 1984 44 0.0 40.3 Center 17.3 23.3 6.0 0.5 0.6 26 1.47 24.7

* BMF-31 1984 50 0.0 40.0 Center

* BMF-32 1984 45 0.0 45.0 Center 28.0 34.0 6.0 0.5 2.4 54 3.17 24.4

* BMF-33 1984 60 0.0 41.1 Center 1.7 4.5 2.8 0.2 0.2 125 1.00 18.6

* BMF-34 1984 72 0.0 68.8 Center

* BMF-35 1984 45 0.0 67.2 Center 44.0 46.3 2.3 0.2 0.3 15 0.30 11.7

22 Table 3. Historical drillholes collared from 1966 to 1975 at Boumadine with the best intersections for base and precious metals as reported by Saint Gal de Pons (1975)

DDH # Year Azimuth (°) Plunge (°) Depth (m) Zone From (m) To (m) Width (m)Pb (wt. %) Zn (wt. %) Ag (g/t) Au (g/t) S (wt.%)

* BMF-36 1984 20 0.0 67.3 Center 4.0 8.0 4.0 0.1 1.5 41 2.80 26.3

* BMF-37 1984 50 55.0 140.0 Center 52.3 60.0 7.7 0.1 0.8 18 0.88 16.6

* BMF-38 50 50.0 165.0 Center 0.0 7.0 7.0 0.1 0.3 20 1.23 20.1 19.0 22.0 3.0 1.0 1.9 49 38.33 15.9 126.0 131.0 5.0 * BMF-39 40 50.0 173.0 Center 139.5 143.3 3.8 0.3 0.5 9 0.00 7.3

BM-1 66.0 100.1 South 67.4 69.4 2.0 1.2 5.3 78 1.10 69.4 73.9 4.5 73.9 78.9 5.0 0.8 3.5 339 1.10 BM-2 100.0 South BM-3 35.0 102.1 Center 20.0 23.0 3.0 1.6 7.6 317 1.30 25.2 25.8 0.6 8.0 11.0 402 3.20 BM-4 65.0 61.8 South 44.4 45.2 0.9 1.8 5.4 37 0.90 50.1 57.2 7.1 4.2 1.6 199 1.30 BM-5 45.0 81.0 South 51.5 54.0 2.5 0.7 4.3 40 1.30 67.4 73.4 6.0 1.1 4.1 2 2.70 BM-6 54.0 156.5 Center 12.4 13.7 1.3 0.8 0.1 232 1.40 BM-7 29.0 110.0 North 42.4 44.2 1.9 0.8 4.6 64 2.00 77.4 78.9 1.6 0.7 10.0 76 1.00 89.9 90.9 0.9 4.5 10.0 88 0.30 BM-8 47.0 123.2 Center 73.0 76.4 3.4 2.9 8.2 192 2.60 110.4 114.3 4.0 4.3 3.2 80 118.4 121.8 3.5 0.3 6.4 12 1.80 BM-9 32.0 95.8 Center 39.6 41.1 1.5 1.5 6.6 12 5.40 52.3 55.7 3.4 2.1 8.2 24 1.70 64.7 65.1 0.4 2.0 10.0 54 8.20 74.3 78.5 4.2 2.2 7.7 62 3.70 BM-10 44.0 100.2 Center 46.7 48.2 1.5 0.5 2.0 280 1.40 52.3 55.7 3.4 0.5 2.0 256 1.80 32.0 60.3 63.5 3.2 0.7 2.7 640 6.00 38.7 70.3 73.9 3.6 0.7 6.7 133 3.60 31.0 BM-11 1963 255 55.0 126.0 South 54.1 54.9 0.8 1.4 3.8 38 BM-12 1963 255 55.0 84.7 South 43.0 44.1 1.1 0.3 3.5 106 BM-12 (Bis) 1963 255 55.0 127.0 South BM-13 1963 90 40.0 111.1 Center BM-14 1963 249 50.0 121.4 Center 94.8 99.8 5.0 0.3 2.5 204 4.20 BM-15 1965 52 38.0 112.1 South (?) 77.1 78.3 1.2 9.2 3.7 40 BM-16 1963 63 45.0 112.4 South 81.0 83.5 2.5 0.1 0.5 6 0.40 7.0 86.9 88.1 1.1 0.1 0.1 18 1.80 10.6 89.1 90.8 1.8 0.1 0.7 57 2.20 18.9 BM-17 1963 240 60.0 103.2 South BM-18 1964 88 55.0 96.9 Center 59.9 61.7 1.8 1.6 1.7 70 2.80 32.5 71.2 73.6 2.3 0.8 0.8 49 3.50 36.5 BM-19 45.0 Center 128.4 130.2 1.8 0.9 2.2 150 1.70 43.3 188.4 191.3 2.9 0.1 1.5 20 1.80 26.0 220.5 224.3 3.8 0.9 3.2 65 4.50 27.7 BM-20 30.0 South 211.5 212.8 1.3 0.1 0.2 22 41.0 BM-21 South 166.4 166.9 0.5 0.1 0.6 30 1.50 BM-22 35.0 South 144.3 144.7 0.4 1.3 5.3 56 2.00 162.6 163.7 1.1 2.7 6.9 233 1.40 32.5 175.7 176.2 0.5 4.3 5.2 3.50 16.3 188.0 195.0 7.0 0.9 5.5 135 1.80 35.0 202.0 203.4 1.4 1.4 4.4 57 1.60 36.1 BM-23 1963 40.0 128.2 Center 75.3 78.1 2.8 0.2 5.7 110 1.00 30.1 85.6 86.1 0.5 0.5 8.6 59 1.50 30.0 97.7 101.4 3.7 0.7 5.4 105 1.60 110.9 114.4 3.4 2.1 9.6 118 1.00 114.4 116.9 2.5 0.5 7.4 54 0.80 BM-24 1963 89 50.0 122.0 North

23 Table 3. Historical drillholes collared from 1966 to 1975 at Boumadine with the best intersections for base and precious metals as reported by Saint Gal de Pons (1975)

DDH # Year Azimuth (°) Plunge (°) Depth (m) Zone From (m) To (m) Width (m)Pb (wt. %) Zn (wt. %) Ag (g/t) Au (g/t) S (wt.%) BM-25 1964 249 50.0 120.0 North 86.8 91.4 4.6 0.9 2.2 33 103.5 107.8 4.3 0.6 3.5 17 109.9 111.9 2.0 0.3 1.2 28 BM-26 1964 268 55.0 95.0 North BM-27 1964 60 40.0 108.7 South BM-28 252 50.0 359.7 Center 138.8 139.3 0.5 0.9 1.8 38 32.7 219.7 223.7 4.0 0.6 1.6 25 2.00 21.3 BM-29 359.2 Center BM-30 60.0 307.3 Center 200.1 203.1 3.0 0.1 1.8 78 3.00 37.3 268.7 269.5 0.8 0.9 2.5 88 6.50 43.4 BM-31 51.0 160.7 Center 90.3 93.7 3.5 0.6 4.8 54 24.0 116.2 121.3 5.1 0.7 1.3 91 3.30 44.4 137.9 141.3 3.3 0.4 6.3 81 4.10 39.8 BM-32 50.0 105.8 Center 33.0 33.8 0.8 1.8 6.8 74 1.87 36.3 56.2 61.2 0.8 4.9 77.0 2 45.50 87.1 88.5 0.8 1.0 13.0 37 0.80 25.5 89.7 91.2 0.8 0.1 9.3 11 6.00 23.2 94.6 98.7 0.8 1.0 6.4 115 4.80 35.3 BM-33 102.0 North BM-34 1963 235 60.0 111.5 South 61.8 62.9 1.1 5.5 12.7 1380 0.00 33.9 76.8 79.7 2.9 0.5 3.9 26 0.70 BM-35 1964 58 40.0 125.0 North BM-36 1964 295 45.0 121.0 47.2 48.3 1.1 0.4 1.3 56 1.37 31.8 BM-37 1964 83 45.0 114.9 North 57.3 59.3 2.0 3.0 7.3 182 1.70 32.3 BM-38 1964 264 45.0 313.1 Center 193.6 195.0 1.4 0.2 0.8 62 2.40 BM-39 1965 69 50.0 316.2 Center 59.9 61.7 1.8 1.6 1.7 70 2.80 32.5 71.2 73.6 2.4 0.8 0.8 49 3.50 36.5 BM-40 Center 179.5 181.7 2.3 0.9 5.3 65 3.00 49.4 269.6 271.9 2.3 1.9 1.3 60 1.20 23.5 413.9 414.7 0.8 0.4 0.2 13 0.10 21.7 453.7 455.9 2.2 0.4 0.2 51 0.10 21.5 BM-40 (Bis) Center 180.4 182.0 1.5 1.2 4.4 61 2.00 36.0 268.9 269.1 0.3 0.7 0.2 31 0.50 44.2 650.7 651.5 0.8 0.4 1.5 28 0.20 44.0 BM- 41 1969 240 55. 0 452. 8 Center 135. 0 136. 1 111.1 30 0300.30 18. 0 185.9 190.9 5.0 0.5 1.0 103 1.30 43.4 237.1 240.0 2.9 0.5 1.6 194 1.00 29.3 249.8 251.2 1.4 0.5 0.7 107 5.30 44.3 349.1 350.0 0.9 0.6 2.6 55 2.00 41.9 403.1 404.0 0.9 0.8 4.4 79 0.70 34.5 BM-42 1968 257 62.0 621.3 Center 408.4 410.7 2.3 5.4 0.6 120 509.5 510.0 0.4 1.1 1.0 32 0.20 33.4 538.5 540.5 2.0 0.2 0.1 52 2.40 43.3 544.4 545.3 1.0 0.1 0.2 21 0.30 37.6 BM-43 1967 275 55.0 508.0 Center 371.2 373.8 2.7 1.1 2.1 53 1.00 35.1 383.4 384.3 0.8 0.3 2.0 93 1.20 31.9 386.5 386.9 0.4 0.7 14.5 186 1.50 36.4 441.4 441.8 0.4 0.8 5.0 70 1.10 32.8 BM-45 1968 240 55.0 527.1 Center 436.4 437.1 0.7 1.3 1.7 30 0.10 33.3 500.9 503.4 2.5 0.6 0.4 14 0.10 30.0 BM-46 1968 245 50.0 350.0 Center 126.3 128.1 1.8 0.1 1.7 BM-47 1968 275 60.0 176.1 North 106.7 111.0 4.3 0.7 2.5 78 1.50 28.0 143.4 144.7 1.3 0.7 1.2 106 0.40 24.7 160.6 163.7 3.0 7.5 0.0 55 BM-48 1968 95 55.0 257.5 North 61.1 63.8 2.7 0.2 1.4 30 0.10 20.0 221.9 224.0 2.0 1.0 2.0 73 1.50 30.5 BM-49 1968 240 55.0 184.0 Center 97.6 99.0 1.4 0.8 1.1 21 0.60 23.2 100.3 104.7 4.4 0.2 0.7 15 0.40 22.0 BM-50 1968 75 55.0 200.1 North BM-51 1968 75 55.0 200.0 Center 98.1 99.6 1.5 0.4 2.9 78 3.40 37.6 BM-52 275 401.3 North 104.5 106.5 2.0 0.3 10.0 54 2.30 30.2 127.6 130.6 3.0 0.5 5.7 89 2.20 38.5 194.7 195.6 0.9 0.5 5.7 89 2.20 38.5 307.0 307.4 0.4 0.2 0.2 83 2.40 40.4

24 Table 3. Historical drillholes collared from 1966 to 1975 at Boumadine with the best intersections for base and precious metals as reported by Saint Gal de Pons (1975)

DDH # Year Azimuth (°) Plunge (°) Depth (m) Zone From (m) To (m) Width (m)Pb (wt. %) Zn (wt. %) Ag (g/t) Au (g/t) S (wt.%) 377.3 378.8 1.6 2.9 0.1 19 BM-55 1968 252 45.0 155.6 North 31.9 32.8 0.9 0.5 2.2 30 0.10 16.1 83.5 88.2 4.7 1.6 7.7 74 0.50 28.5 99.5 101.9 2.4 1.7 3.1 71 0.40 38.7 BM-56 1969 210 45.0 129.5 North IM1 1965 315 53.0 84.0 Imariren 32.3 33.6 1.4 0.3 2.0 91 5.10 44.0 IM2 1965 322 60.0 77.9 Imariren 32.5 33.7 1.3 0.1 4.0 29 0.30 21.5 73.6 76.3 2.7 0.2 2.5 44 4.20 41.5 IM3 1965 24 49.0 100.1 Imariren 67.2 74.5 7.2 1.3 3.0 47 0.80 26.5 90.3 91.1 0.8 2.8 4.4 31 14.4 IM4 1965 115 55.0 101.7 Imariren 75.8 78.5 2.7 0.1 4.8 20 1.60 21.5 90.8 91.8 1.0 0.1 0.1 2 1.50 45.5 IM5 1969 280 40.0 113.7 Imariren 36.7 38.1 1.5 0.5 3.7 62 0.60 19.0 49.7 53.4 3.7 2.6 2.8 88 0.30 28.1 56.7 57.7 1.0 0.7 1.5 32 0.10 25.5 IM6 1969 92 50.0 150.0 Imariren IM7 1969 248 45.0 125.0 Imariren 88.8 88.9 0.1 1.6 5.1 36 0.20 41.6 IM8 1969 285 50.0 103.0 Imariren 40.6 41.1 0.5 0.5 6.0 47 1.90 26.4 65.1 66.5 1.5 0.3 1.6 20 0.50 26.8 IM9 1969 220 50.0 51.4 Imariren 30.0 31.1 1.1 2.4 6.2 62 1.60 26.4 53.3 55.0 1.7 2.2 1.7 54 1.20 26.5 TO-1 1963 77 55.0 110.0 Tizi 38.6 39.8 1.2 0.3 0.9 72 1.60 44.6 70.2 73.6 3.4 1.6 2.4 236 2.40 28.0 TO-2 1963 259 55.0 110.2 Tizi TO-2 (Bis) 1965 220 50.0 96.5 Tizi TO-3 61.0 110.5 Tizi 58.4 60.9 2.5 2.1 5.5 64 0.20 39.2 TO-4 1965 270 65.0 148.2 Tizi 44.5 47.7 3.3 1.7 4.3 159 0.90 30.0 46.6 47.8 1.2 1.0 1.8 28 24.9 TO-5 35.0 99.1 Tizi 105.0 109.2 4.2 2.4 3.8 134 0.50 21.8 27.0 29.2 2.3 0.2 0.2 111 1.10 93.6 95.6 2.0 0.2 0.2 27 1.20 50.6 TO-6 1968 260 80.0 356.3 Tizi 95.6 97.4 1.8 0.1 0.1 4 0.40 24.4 TO-7 1968 260 55.0 200.9 Tizi TO-8 1968(?) 280 45.0 145.3 Tizi 82.0 83.9 2.0 0.0 0.1 9 1.90 25.4 38. 7 39. 8 121.2 040.4 040.4 16 0900.90 27. 0

25 m level in the South Zone, a second vein was identified and extended for 20 m. Some assay values reached 4,000 g/t Ag and 38.3 g/t Au.

Up until 1982, underground work completed consisted of 3,500 m of galleries, drifts, stokes and raises in four zones (Chaki, 1982). Between levels -50 to -150 m, the Central Zone comprises 700 m of vein forming 80% of the Category I historical resources. The North Zone is an extension of the Central Zone and contains 4% of the Category I historical resources on 120 m of gallery at level -50 m. The Tizi Zone was identified on 300 m of underground work and holds 8% of the Category I historical resources. Finally the South Zone includes 8 % of the Category I historical resources. About a hundred surface and underground drillholes totaling 16,537 m were used to establish the historical resources. The underground and surface work allowed the delimitation of 15 panels commonly separated by dextral faults with meter to decameter displacements. At the end of 1982 Chaki (1981) determined the historical resources as follows:

Historical Tonnage Pb (wt. Zn (wt. Ag Au Cu (wt. Resources (t) %) %) (g/t) (g/t) %)

Category I* 1,300,495 0.9 3.9 203 3.60 0.19

Category II 300,160 0.9 3.4 185 2.30

Category III 569,800 0.6 3.0 160 1.15

Category IV 1,926,000

Table 4. Historical resource estimate established par Chaki in 1981 and classified according to their category type.

*The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the

26 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

1983- A feasibility study was carried out by the BRPM on a 100 t/day test pilot plant built at the Boumadine mine in view of constructing a more permanent plant with a 1,000 t/day capacity (BRPM, 1983).

An economic feasibility studies on the operation of the Boumadine mine was produced by Benkhadra and Celko (1983). The study evaluated the cost and logistics of the planning process, mine production, mining installations, method of exploitation, processing and metallurgical plant, energy and water supply and management.

Ore beneficiation was completed at the BRPM metallurgical laboratory or other laboratories abroad. It was confirmed that the best metallurgical process for the Boumadine ore was by differential flotation to produce concentrates of galena, sphalerite and pyrite (Table 5). Further testing and economic studies were conducted only on the galena and sphalerite concentrates, the recommendation being to stock the pyrite concentrates until a better process is found to extract the precious metals.

27 Consumption Process Reagents (Kg/t)

Crushing Lime 2.5 Sodium sulfide 0.3 Sodium cyanide 0.2

Flottation galena Sodium cyanide 0.2 Sodium sulfide 0.6 Potassium Ethylxanthate 0.1 Cresylic acid 0.06

Flottation sphalerite Potassium Ethylxanthate 0.1 Copper sulfate 0.9 Sulfuric acid 1.2 Lime 0.4

Flottation pyrite Pine oil 0.03 Sodium silicate 0.03 Potassium amylxanthate 0.05

Table 5. Reagents used and their consumption during the crushing and flotation testing process of the galena, sphalerite and pyrite forming the Boumadine ore.

1984-1985- Further surface and underground work performed by the BRPM were detailed by Bakkari and Nicot (1985). Overall, 139.5 m of shaft was sunk in the Southern and Tizi (level -70 m) zones followed by 1885 m of gallery and drifts (see Figure 6). Underground drilling included 13 holes totaling 1029 m of core at level -150 m in the Central Zone.

A new historical resources estimate was established. Category I historical resources include polymetallic vein segments sampled at each 5 or 10 m intervals with 50 m lateral extensions. Category II historical resources included polymetallic vein segments defined by small interval drilling and limited underground work. This category commonly relates to satellite veins in the Central Zone. Category III and IV historical resources were not defined in Bakkari and Nicot (1985) report. The historical resources used a simple

28 Sample no. Thickness (m) Au (g/t) Ag (g/t) Pb (wt.%) Zn (wt. %) Cu (wt.%) Cu (ppm) S (wt.%) Sn (ppm) As (ppm) A 17854 0.70 <0.35 10 0.06 0.06 0.01 100 10.40 <100 1000 17855 0.40 <0.35 32 0.14 0.57 0.03 300 19.68 <100 2500 17856 0.70 <0.35 55 0.15 0.46 0.05 500 17.92 <100 2900 17857 1.10 <0.35 113 0.20 0.34 0.13 1300 34.84 <100 4400 B 17851 1.00 <0.35 53 0.07 0.20 0.01 100 12.48 <100 1100 17852 0.60 2.10 288 1.80 6.14 0.12 1200 35.65 250 14300 17853 1.00 0.30 57 0.58 2.74 0.02 200 16.96 <100 11500 C 17848 0.80 1.00 52 0.32 1.53 0.05 500 16.00 <100 3800

75° 17849 0.50 1.40 122 0.87 3.03 0.06 600 25.92 <100 8200 75° 17850 0.70 1.40 286 3.32 7.51 0.13 1300 20.00 370 7200 D 17787 0.70 <0.1 5 0.03 0.05 0.0018 18 10.72 <100 <40 A 17788 0.90 0.28 22 0.18 1.80 0.078 780 8.76 <100 2400 17789 0.50 <0.1 5 0.05 0.10 0.058 580 8.00 <100 <40 E E 17783 1.00 <0.1 84 0.55 2.56 0.038 380 14.26 800 1800 78° 17784 0.75 1.54 300 1.70 7.20 0.09 900 31.60 700 5000 74° 17785 0.75 4.62 200 0.27 0.34 0.114 1140 34.92 900 8800 F 17778 1.00 0.56 34 0.68 1.28 0.01 100 11.32 <100 1300 75° 17779 1.00 2.52 350 2.69 5.70 0.112 1120 32.80 600 6700 17780 1.00 1.26 140 2.25 8.20 0.114 1140 30.40 700 2000 17781 1.20 4.48 240 0.26 3.04 0.082 820 32.96 800 29500 65° B 17782 1.00 <0.1 20 0.05 2.48 0.014 140 7.20 <100 1300 G 17773 1.00 0.35 54 0.10 0.92 0.014 140 16.32 <100 3500 80° 17774 1.15 2.50 450 2.70 8.50 0.135 1350 36.00 1300 C 17775 1.15 3.50 380 1.65 6.50 0.2 2000 37.44 2400 65° 02 5 m 17776 1.00 <0.35 100 0.15 1.75 0.0405 405 33.84 800 17777 0.70 <0.35 80 0.09 3.00 0.048 480 13.84 700 70° H 17769 1.00 <0.35 57 0.09 0.38 0.028 280 15.20 800 20030 17770 0.75 2.80 200 1.70 4.90 0.12 1200 26.65 900 17300 D 17771 0.75 <0.35 800 5.20 14.50 0.18 1800 31.68 1400 7800 17772 0.40 <0.35 83 0.40 2.25 0.04 400 14.65 700 7800 I 68° 17763 1.00 <0.35 42 0.37 0.96 0.0075 75 11.20 <100 17764 1.00 <0.35 66 0.21 0.30 0.085 850 26.88 1400 17765 1.00 <0.35 50 0.14 0.26 0.0165 165 41.12 <100 17766 1.00 <0.35 340 2.70 8.50 0.12 1200 32.20 1200 E 80° 17767 1.00 <0.35 135 0.60 5.10 0.105 1050 28.32 1500 17768 1.00 <0.35 13 0.44 0.78 0.009 90 7.04 <100 75° J 17758 1.10 <0.35 17 0.12 0.33 0.0055 55 8.96 700 17759 1.00 <0.35 82 0.36 0.60 0.0325 325 32.68 2900 17760 1.00 <0.35 290 1.45 3.50 0.835 8350 33.20 700 F 17761 0.70 <0.35 100 0.60 2.10 0.55 5500 30.32 900 17762 1.00 <0.35 130 0.57 1.40 0.0375 375 22.16 67° K 16192 1.00 2.05 300 1.02 3.85 0.13 1300 37.00 16193 1.00 4.30 570 1.25 5.40 0.17 1700 36.10 85° 16194 0.50 2.00 90 0.19 2.20 0.08 800 36.50 18583 1.00 <0.1 34 0.48 3.00 0.4 4000 9.60 18584 1.00 <0.1 27 0.45 0.98 0.02 200 10.40 85° L G 16189 1.00 5.90 128 0.45 2.85 0.03 300 39.57 70° 16190 1.00 3.10 390 1.06 5.70 0.15 1500 37.30 82° 16191 1.00 1.70 260 0.21 1.85 0.13 1300 27.68 50° 18581 1.00 <0.1 53 0.90 2.40 0.36 3600 12.16 18582 1.00 <0.1 31 0.32 1.06 0.05 500 14.40 M 16186 1.00 3.50 459 4.60 4.70 0.07 700 38.88 16187 1.00 2.80 370 2.70 6.00 0.07 700 40.00 16188 1.00 2.90 522 0.98 8.50 0.21 2100 34.88

85° 18579 0.65 <0.1 72 0.21 0.77 0.05 500 12.20 2000 65° 18580 0.80 <0.1 140 1.44 0.92 0.02 200 13.76 H N 11125 1.20 1.20 370 3.10 9.50 0.11 1100 28.80 80° 11126 1.00 1.00 158 2.90 8.50 0.14 1400 34.00 70° 18577 0.80 0.80 18 0.16 0.90 0.01 100 8.00 18578 1.00 1.00 17 0.05 0.28 0.01 100 9.28

62° O I 11121 1.00 1.70 186 0.61 6.00 0.22 2200 25.97 11122 0.90 2.70 188 1.05 6.75 0.11 1100 28.25 11123 0.45 1.50 85 2.20 3.85 0.09 900 22.45 85° 75° 11124 0.60 2.70 132 1.05 4.45 0.16 1600 27.10 18575 1.00 <0.1 50 0.30 1.15 0.07 700 10.24 18576 0.80 <0.1 91 0.31 0.68 0.04 400 15.52 P 11118 1.00 2.10 540 0.41 3.60 0.2 2000 38.30 75° 11119 1.00 2.70 370 0.94 5.75 0.13 1300 32.65 11120 1.00 3.10 220 0.76 6.75 0.15 1500 37.89 85° 18573 1.00 <0.1 62 0.15 0.55 0.01 100 9.60 18574 1.00 <0.1 240 0.44 0.84 0.2 2000 19.20 5000 Q 11113 0.55 0.70 36 0.12 1.38 0.05 500 14.50 J 11114 0.90 0.80 58 0.19 1.35 0.03 300 27.20 11115 1.30 1.30 221 0.78 7.00 0.08 800 26.95 11116 0.50 2.10 280 0.76 5.00 0.16 1600 26.10 75° 11117 0.60 <0.1 26 0.24 0.95 0.02 200 11.85 18570 1.00 <0.1 22 0.86 0.15 0.01 100 17.28

K

85°

80° 75° L Boumaadine 60° M (South Zoner) Legend 82° 85° Level -70 m 78° Rhyodacite wallrock N 75° Au, Ag, Pb, Zn, Cu 75°

Massive sulphide vein 60°

60° Gallery, drift 75°

Fault O 75°

85° 75° 75° 75° Srike/dip P Q Fault, vein 80°

Corridor Chip sampling Source: BRMP (1998)

Figure 6. Geology of a typical Boumadine polymetallic vein, level -70 m in the South Zone. Assay results for Au, Ag, Pb, Zn, Cu and Sn from chip samples collected from the gallery faces are reproduced in the accompanying table.29 geometric calculation taking the weighted mean of the width, length and height of a block representing the volume of a particular vein. Weighted means of assay values for Pb, Zn, Cu, Ag and Au and the vein width were extended for a maximum of 50 m laterally. Table 6 presents the calculated historical resources for Category I, II and III detailed for the Boumadine exploited zones.

1986-1992- The SODIM Society entered in a joint venture with the BRPM to realize industrial metallurgical studies (SODECAT, 1993). From July 1986 to October 1987, SODIM did process 23,700 t of Boumadine ore grading 1.57 wt. % Pb and 4.97 wt. % mainly extracted form level -50 m in the Central Zone.

In June 1988, the Boumadine property returned to the BRPM who continued the metallurgical testing. From June 1988 to May 1989, 42,785 t of ore @ 1.57 wt. % Pb and 4.97 wt. % Zn, all extracted from level -50 m, were processed. SODECAT re-optioned the property in 1989 and invested in the mining infrastructures. The underground works were concentrated at the -100 m level in the Central Zone and -120 m level in the South Zone. From July 1989 to August 1992, 1,570 m of surface drilling, 111 m of shaft, 1,058 m of galleries and drifts, and 187 m of raises were completed.

Metallurgical testing by the SODIM and BRPM was completed on 66,485 t of ore grading 1.50 wt. % Pb and extracted from level -50 m from the Central Zone. Resources from level -50 are thus depleted. SODECAT further extracted the ore at the -100 m level in the Central Zone to continue the production. The South Zone shaft was equipped for the extraction of the ore at the -70 m level and other shaft was sunk to access level -120 m (Figure 7). The Central Zone ore was found to be enriched in gold, whereas the ore coming from the South Zone yielded high concentrations of Pb, Zn and Ag. The mine closed in 1992 due to the declining price of Zn and owing to the difficulty of recuperating the precious metals form the Boumadine ore.

From July 1989 to August 1992, SODECAT extracted 191,000 t of ore grading 0.94 wt. % Pb, 328 g/t Ag and 3.69 g/t Au of which 132,000 t came from the Central Zone and

30 Table 6. Historical resource estimate established par Bakkari and Nicot (1985) and classified according to their category type and zone exploited. Average Zone Tonnage (t) Pb (wt. %) Zn (wt. %) Ag (g/t) Au (g/t) Cu (wt. %) vein widht (m)

Category I

* Central 1,017,465 0.8 4.0 200 4.12 0.23 2.77

South 113,830 1.3 5.2 274 2.27 0.11 2.55

Tizi 118,200 1.5 2.3 169 0.40 0.03 1.3

North 51,000 0.6 2.1 181 2.80 0.13 1.15

Total 1,300,495 0.9 3.9 203 3.57 0.19 2.55

Category II

Central 300,160 0.9 3.4 185 2.30 1.65

Category III

South 321,000 0.6 3.7 274 1.50 5.5

Tizi 85,800 0.8 2.4 145 0.50 2.4

North 163,000 0.4 1.8 84 0.87 1.1

Total 569,800 0.6 3.0 160 1.15 3.7

* The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

31 N South Zone S (Longitudinal section)

Exploited zone

Oxydized zone (”iron cap”) Shaft no, 2 Drift

Pillars BM-34 BM-1

BM-1 (bis) BM-5 Fault BM-34 (bis)

BM-17 Historical drillhole Level -70 m

BM-17

BM-16

Level -120

BM-89-4

BM-89-3 BM-22

BM-82-2 BM-22 (bis)

Level -170m BM-82-2 (bis)

Resources (Panels)

BM-89-6 Category I

Category I BM-89-1

Category III 0 25 50 m

Category IV Source: SODECAT (1993)

Figure 7. Longitudinal section of the principal polymetallic vein mined in the South Zone. Panels or blocks are defined according to their historical resources category. 32 59,000 t from the South Zone. In total, the tonnage extracted from the Boumadine Mine by the BRPM, SODIM and SODECAT reached 261,485 t @ 1.08 wt. % Pb, 4.56 wt. % Zn; 58,900 t taken from the South Zone and 198,585 t from the Central Zone.

Category I historical resources concerned a block limited to longitudinal extensions of 25 m at level -50 m. For level -150 m, the historical resources are defined at a 25 m elevation from the gallery. Category II historical resources relate to 25 m high blocks from levels -50, -75, -125 and -150 m which were defined by drilling. Category III historical resources are blocks limited by Category I resources and determined at levels - 75 and -125 m. Category IV historical resources are delimited between category II and III resources between levels -175 to -200 m. The historical resources provided by SODECAT at the end of 1993 used a cutoff grade of 2.0 wt. % Zn and are detailed in each Category (I to IV) for the different zones investigated at Boumadine (Table 7).

1998- The BRPM wrote a final report giving a summary of all surface and underground work carried by state-sponsored and private mining companies. Overall, 32,756 m of surface and underground core material was generated, 638 m of shaft, 6,036 m of galleries and drifts, 187 m of raises and 320 m of underground montage. Historical resources were completed for six zones, three of them; Central, South and Tizi considered well developed. At the end of the mining exploitation in 1992, the BRMP estimated a historical Mineral resources of 3,338, 970 t of ore of which 1,043,010 t are considered Category I resources grading at 0.86 wt. % Pb, 3.9 wt. % Zn, 203 g/t Ag and 3.60 g/t Au*. Up until 1992, 261,485 t of ore was extracted from the Boumadine mine. The historical resources classified by category and investigated zones are given in Table 7. The author has been unable to find the definition of these categories in the 1998 BRPM document nor does the BRPM mentioned any cutoff grade or provide any detail of the resources calculations.

*The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the

33 Table 7. Historical resource estimate established par the SODECAT (1993) and BRMP (1998) and classified according to their category type and zone exploited. .

Zone Category I Category II Category III Category IV

Vein Vein Vein Tonnage* Pb Zn Tonnage Pb Zn Tonnage Vein Pb Zn Tonnage Pb Zn widht Ag (g/t) Au (g/t) widht Ag (g/t) Au (g/t) Ag (g/t) Au (g/t) widht Ag (g/t) Au (g/t) (t) (wt. %) (wt. %) (t) (wt. %) (wt. %) (t) widht (m) (wt. %) (wt. %) (t) (wt. %) (wt. %) (m) (m) (m)

SODECAT 1993 (Cutoff = 2.0 wt. % Zn)

Central* 208,775 2.50 0.65 3.78 152 3.32 167,670 2.16 0.68 3.72 136 3.10 8,730 1.90 0.53 3.33 115 2.23 59,830 1.91 0.53 2.80 114 2.50 South 21,060 2.00 1.42 5.61 336 2.60 55,700 2.20 1.38 3.32 240 2.09 31,300 2.25 1.50 5.48 260 1.91 North 51,000 1.15 0.61 2.05 181 2.80 81,000 2.15 0.83 2.15 117 0.33 Tizi 100,000 1.41 1.61 2.53 187 0.90 85,800 2.40 0.80 2.42 145 0.50 Imariren 315,000 2.50 1.14 2.82 1.18 Panel IX 36,870 2.00 0.90 8.60 80 2.40 Total 280,775 1.88 0.70 3.60 171 3.17 267,670 1.78 1.02 3.27 155 2.27 231,230 2.16 0.86 3.03 115 1.06 450,000 2.16 1.05 3.51 95 1.52

BRPM 1998 713,000 Central 818,880 2.77 0.77 4.12 202 4.28 300,160 1.65 0.85 3.40 185 2.30 60,000 South 54,930 2.55 1.44 5.50 305 2.27 321,000 5.50 0.56 3.70 203 1.50 459,000 North 51,000 1.15 0.61 2.05 181 2.80 163,000 1.10 0.40 1.83 84 0.87 245,000 Tizi 118,200 1.30 1.46 2.69 169 0.40 85,800 2.40 0.80 2.42 145 0.50 100,000 Imariren 63,000 Panel IX 73,000 Central-South 105,000 Total 1,043,000 1.94 0.86 3.90 203 3.06 300,160 1.65 0.85 3.40 185 2.30 569,800 3.00 0.55 2.97 163 1.17 1,926,000 * The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

34 NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

2013- Joint venture between Maya Gold and Silver Inc (85%) and ONHYM (15%) to explore and develop the Boumadine property.

ITEM 7 GEOLOGICAL SETTING AND MINERALIZATION

7.1-Geology of Morocco

The Kingdom of Morocco is situated at the west end of North Africa and borders the Saharan Shield. The physiography and geology of Morocco are dominated by the Atlas Mountains (Figure 8). The geological assemblages of the Kingdom of Morocco are divided into five major domains (Michard, 1976). The Anti-Atlas and Saharian domain are characterized by Archean and Proterozoic basement rocks folded during the Eburnean and Pan-African orogenies and covered by Paleozoic rocks slightly deformed during the Hercynian Orogeny. The southern boundary is defined by the South Atlasic Fault. The Mesetian domain is a region of plains, plateaus and hills characterized by Paleozoic rocks folded, metamorphosed and granitized during the Hercynian Orogeny and unconformably overlain by Mesozoic-Cenozoic deposits. The Western and Eastern Mesetian domains are separated by the Middle Atlas. The Atlasic domain is divided into Middle and High Atlas and constitutes an intracontinental mountain range built during the Tertiary. The range corresponds to the inversion of the Atlasic through which was filled by a thick assemblage of Mesozoic and Cenozoic sediments later folded and faulted. The

35 Tell 32°N 200 km Mellila

Saharian atr Meseta Eastern

0 ideAtlas Middle Property Mediterranean Sea Boumadine Source and date: This study, 2013. Source and date: This study, Riff

Tanger eta ihAtlas High Central

Rabat Anti-Atlas 8°W Casablanca

Figure 8. Geological outline of the Kingdom Morroco

etr Meseta Western Marrakech

etr ihAtlas High Western tatcOcean Atlantic Agadir Essaouira 36 Atlantic passive margin consists of a thick package of Mesozoic sediments locally deformed by salt tectonics and gravity induced imbrications with important turbidite deposits present basinwards. Finally, the Rif domain is a thrust and fold belt uplifted during the Tertiary. It is part of the Alpine range borne out of the collision of the African and Eurasian plates. The Rif domain is constituted of allochtonous Mesozoic and Cenozoic rocks thrusted southward on the African plate. The structural evolution of Morocco was marked by two major compressional events, the Hercynian and Alpine orogenies, separated by an extensional period related to opening of the Atlantic ocean. The Hercynian Orogeny involved an Upper Devonian-Carboniferous compression resulting in folding and faulting of Paleozoic rocks. Important remnants of the Hercynian fold belt crop out in the Anti-Atlas and the Moroccan Meseta. A Triassic-Liassic extension was related to the opening of the Atlantic ocean and was preceded by Triassic- Lower Jurassic rifting which was followed by massive regional subsidence during the Jurassic and much of the Lower Cretaceous in the Atlantic passive margin. This extension was also responsible for the opening of the Atlas troughs. The Alpine Orogeny occurred during the Upper Eocene-Oligocene, the Atlas Mesozoic troughs were inverted to form the High and Middle Atlas. The late collision of Africa with Europe during the Neogene resulted in the formation of the Rif which is a segment of the Western Mediterranean Alpine fold belt.

7.2- The Anti-Atlas Orogen of Southern Morocco

The Anti-Atlas Orogen of Southern Morocco represents an important segment of the Pan- African belt of North Africa (~500 Ma) (Thomas et al., 2002, 2004). The orogen consists of a series of SW-NE-trending rock formations that extend 700 km across southern Morocco. The segment is over 150 km wide in the central part, west of Ouarzazate (Figure 1). The Anti-Atlas Orogen comprises two main rock assemblages; a Paleoproterozoic metamorphic basement (~2.1 Ga) and Neoproterozoic rock formations of the orogen proper.

37 The Paleoproterozoic basement ranges in age from 2200 to 2030 Ma (Aït Malek et al., 1998; Thomas et al., 2002) and was metamorphosed and deformed during the Eburnian– Birimian orogeny common to the West African Craton. In Morocco, the basement defines isolated ‘‘boutonnières’’(Figure 1). These inliers are characterized by layered supracrustal schists, paragneiss and migmatites, interpreted as metamorphosed volcanosedimentary rocks that were intruded by granitic to granodioritic plutonic rocks.

Thomas et al. (2002) proposed the term Anti-Atlas Supergroup to designate all Neoproterozoic volcanosedimentary rocks of the Anti-Atlas Orogen deposited before initial basin closure during the Pan-African Orogeny. The oldest rocks of the Anti-Atlas Supergroup (800 to 740 Ma) are related to the rifting and break-up of the northern passive margin of the West African Craton associated with the generation of oceanic crust preserved as metamorphosed ophiolites, and the development of thrust sheets of island-arc calc-alkaline metavolcanic rocks and coeval plutonic rocks. Proximal, shallow- water sediments, were also laid upon the rifted passive margin. More distally, the ocean basin was filled with thick sequences of flysch-like turbiditic sediments and clastic rocks known as the Sarhro Group. The lowermost sections of the Sarhro Group consist of deep-water flysch sediments and island-arc derived volcanic and volcaniclastic rocks . The upper sections are characterized by coarse, immature clastic sediments (conglomerates and arkoses).

In the Anti-Atlas, the Pan African Orogeny is associated with the closure of an ocean basin and subsequent accretion of the island arc segments onto the northern, rifted edge of the West African Craton. The collision probably happened between 660 and 680 Ma (Leblanc and Lancelot, 1980; Thomas et al.,2002). The early collisional processes involved SW-directed thrusting, crustal stacking and folding, cleavage development and greenschist facies metamorphism of the Sarhro Group.

There was a magmatic and sedimentary hiatus during the Pan-African Orogeny that was terminated by the intrusion of post-kinematic, composite high-K calc-alkaline batholiths

38 of gabbro-diorite-granodiorite-granite compositions into deformed Sarhro Group. All volcanosedimentary rocks deposited after the layout of the Anti-Atlas Supergroup have been put together into the Ouarzazate Supergroup (615-550 Ma). Bimodal volcanic rocks (basalt and rhyolite) and coarse-clastic rocks (proto-molasses) were then deposited in fault-bounded grabens that could represent strike-slip, pull-apart basins. These rocks represent the first post-accretion deposits of the Anti-Atlas. The upper part of the Ouarzazate Supergroup is composed of thick and regionally extensive sequences of lavas, volcaniclastic rocks and coarse-grained immature clastic and epiclastic sedimentary rocks. These rocks are associated with alkaline sub-volcanic granite complexes, basic and acid dyke swarms, various rhyolitic plugs, domes, necks and gabbroic bodies.

Overlying unconformably the Ouarzazate Supergroup is a thick sequence of carbonate– siliciclastic shales with locally developed volcanic rocks in a gradually subsiding trans- tensional foreland basin. The Precambrian–Cambrian boundary falls within the lowermost part of the sequence (Landing et al., 1998).

7.3- The Proterozoic Ougnat Window ("Boutonnière")

The Proterozoic Ougnat window ("Boutonnière") encompass an area of 50 x 30 km and displays higher elevation at its southern end (900-1,400 m). The Ougnat window contains a folded and schistose metasedimentary Proterozoic basement cut by late granodioritic plutons (Figure 9). The basement is made of metamorphosed siliciclastic beds, with alternating layers of fine-grained quartz-arenites, feldspathic greywackes, siltstones and pelites. The Neoproterozoic metasedimentary basement is metamorphosed to the greenschist facies (Lécolle et al., 1991). Fold axes are oriented N30°E and are related to the Pan-African orogeny. Granitoid intrusions consist of quartz diorites and garnet- bearing monzogranites (Abia et al ., 1999). These late to post-tectonic plutons left a contact metamorphism imprint in the metasedimentary wallrocks characterized by the crystallization of biotite, andalousite, cordierite and garnet.

39 Mellab

Oued n’ou Karouz

Taoudoudout

0 1 2 km

Bou Madine Au, Ag, Zn, Pb, Cu deposit Bou Madine

Late Neoproterozoic Phanerozoic Garnet granite Tamerzaga-Timrachine Formation Quaternary Quartz diorite Upper ignimbrite Cambrian Sandstone and shale Andesite flow Fault Late Neoproterozoic Lower ignimbrite Village Aoujane-AÏssa-Akchouf Basal ignimbrite Formation Isilf-Ouinou-Oufroukh Formation Source: Abia et al. (2003)

40 Figure 9. Geological map of the Late Proterozoic Ougnat “boutonnière”. Modified from Abia et al. (2003). A Phanerozoic cover overlies the Neoproterozoic or Late Proterozoic assemblages.. Cambrian to Ordovician terrigenous epicontinental fossiliferous sedimentary deposits consist of interlayered beds of conglomerate, sandstones, pelites, dolomites and limestones forming cuestas. The transgressive nature of the Cambrian sediments is expressed by a regional basal conglomeratic unit. The Paleozoic terranes underwent a Hercynian deformation reactivating the Neoproterozoic N30°E structures and developing large open folds.

The basement is unconformably overlain by a Late Proterozoic volcanosedimentary sequence (Figure 10). The basal sequence is made of the Tamerzaga-Timrachine Formation (TTF) which consists of ignimbrite sheets, vitroclastic tuffs, and intercalated andesite flows. The intermediate Isilf-Ouinou-Oufrouh formation (IOF) consists of shallow lacustrine sedimentary rocks (cherts, pelites, dolostones) accompanied by minor volcanic rocks namely andesite flows, dacite-rhyolite tuffs and breccias. The volcanosedimentary rocks were deposited in small basins limited by N30°E structures. The upper Aoujane-Aïssa-Akchouf Formation (AAF) is essentially composed of ignimbrites sheets, also controlled by N30°E-oriented structures, with episodic clastic sedimentary rocks and mafic to intermediate flows on top.

7.4- Geology of the Boumadine Property

7.4.1- The Tamerzaga-Timrachine Formation (TTF)

From the base to the summit, the TTF is composed of:

A basal conglomerate of variable thickness (up to 50 m) is a discontinuous unit cropping out near major faults, mainly N160°E-oriented faults and locally N30°E faults recording a syn-sedimentary tectonic activity (Figure 11). Most pebbles come from local basement metasedimentary rocks and granitoids. Epiclastic tuffs are intercalated within the conglomerates near the top, announcing the beginning of ignimbrite volcanism.

Discontinuous lenses of ignimbrite rocks associated with conglomeratic layers define the Basal Ignimbrite (Figure 12). This unit includes topographically driven flows along pre-

41 PE2959 Late Proterozoic Area of Tamerzaga-Timrachine Formation Fig. 13

Rhyolitic dyke/dome

Trachyandesite sill Boumadine

Ignimbrite (vitroclastic tuff/crystalline tuff) Mine site Andesite flow

Aoujane-Aissa-Akchouf Formation

Ignimbrite Paleozoic

Cambrian sandstone

Major faults

0 1 2 km PR34565 Permit boundary Source: Degallier et al. (1988)

Figure 10. Geologic map of the Boumadine area showing the two permits forming the property.The localization of the permit boundaries are approximate. 42 WE Upper Ignimbrite

Andesitic flow/sill

Lower Ignimbrite

Basal Ignimbrite Basal Conglomerate

Basement Rock

0 15 30 m Source: Abia (2001)

Figure 11. Typical stratigraphic assemblage of the Tamerzaga-Timrachine Formation (TTF) in the Boumadine area.

43 Ougnat Window

Sandstone

Cambrian Paleozoic Conglomerate

Upper basaltic flow Andesitic flow and stratified volcanosedimentary beds Ignimbrite IV Ignimbrite III Ignimbrite II Volcanosedimentary beds Ignimbrite I Dacitic dome and flow Volcanosedimentary bed Ignimbrite 0

Aoujane-Aissa-Akchouf Formation

Conglomerate Limestone, chert, pelite, sandstone, conglomerate Andesite flow

Isilf-Ouinou- Oufroukh Formation Tuff and greenish breccia (ignimbrite fragments)

Upper Ignimbrite

Rhyolite dome (”chonolith”) (553±16 Ma)

Late Neoproterozoic

Andesite flow Intermediate Ignimbrite

Lower ignimbrite Boumaadine polymetallic veins (Au, Ag, Zn, Pb, Cu)

Tamerzaga-Timrachine Formation Tamerzaga-Timrachine

Basal Ignimbrite 0 200 m Breccia Source: Levresse (2001), Abia et al. (2003), Granodiorite (547±26 Ma)

Schist, sandstone, pelite, greywacke

Neproterozoic

44 Figure 12. Lithostratigraphic succession in the Ougnat Proterozoic window. existing channels. The ignimbrite is a massive porphyritic rhyolite, rich in quartz and feldspars phenocrysts, with a fiamme texture.

The Lower Ignimbrite unit exposes massive greenish rocks with a fiammed texture. It is an assemblage of superposed welded sheets defined by alternating phenocryst-rich and phenocryst-poor layers. Two facies are recognized: a vitroclastic tuff and a crystalline tuff facies . Vitroclastic tuffs contain up to 85% of devitrified and altered vitreous felsic fragments combined with scant crystalline and lithic clasts. The vitroclasts contain a large quantity of welded shards, “fiammes”, pumices (often < 1 mm) which commonly recrystallize into axiolitic quartz. These vitroclasts are altered into quartz, albite, chlorite, epidote, calcite, Fe-Ti-oxyde and sulfides. The crystalline tuffs contain 60% of oligoclase-andesine, quartz and apatite crystals with rare altered pyroxene and amphibole and acicular biotite. The microcrystalline matrix is made of fine-grained recrystallized quartz, chlorite, calcite, albite, epidote and dark minerals.

The Lower Ignimbrite sheets are lithic fragments-rich, whereas the amount of

plagioclase phenocrysts (An30) decreases towards the top and vitreous clasts becoming more abundant than phenocrysts in the upper layers. The ignimbrites manifest a strong propylitic alteration and the ferromagnesian minerals are totally transformed into chlorite.

The Andesite Flow unit is composed of several superposed porphyritic lava flows containing plagioclase and ferromagnesian phenocrysts. The andesitic lavas, which become intrusive locally (sill), comprised plagioclase (15-20 % oligoclase-andesine) and ferromagnesian porphyroblasts in a groundmass of albite microlites and secondary minerals (chlorite, quartz, epidote, calcite). The amphiboles and pyroxenes are altered (propylitization) and show pseudomorphs of chlorite-calcite-epidote-rutile. A trachyandesite is clearly intrusive in the Lower Ignimbrite unit and associated andesite flows. The is made of oligoclase-andesine, orthose and some quartz. The ferromagnesian minerals are altered in chlorite, calcite, epidote and opaque minerals.

45 According to Lécolle et al (2005) most andesite flows referred to by Abia et al. (2003) form a single cartographic unit the top of which at most is at the base of the TTF Upper Ignimbrite. Lécolle et al. (2005) argued that the relationships of this body with the surrounding rocks is more consistent with a large subsurface, locally piercing sill-type intrusion which crosscuts indifferently the TTF, the granodiorites and the metasedimentary basement. There may be local flows with related volcanoclastites suggesting that this was a near surface intrusion which has locally protruded. These volcanic rocks are generally auto-brecciated, porphyritic, with a small amount of mesostasis; the phenocrysts are mainly plagioclase, with minor biotite and quartz, suggesting that these lavas are . One of the "andesitic" sills is referred to as the Bou Isserhi sill by the BRPM (1998). It occurs in the South Zone and near the Tizi Zone (Figure 13). It is described as a fine -grained trachyandesite containing whitish-pinkish feldspars. At the top of the sill, silicic-rich hydrothermal solutions lead to the formation of patches of hypersilicified rocks.

The Upper Ignimbrite unit consists of pink-yellow strongly silicified rocks (up to 80 wt.

% SiO2) forming erosion-resistant benches (Figure 12). The unit, 80 to 130 m-thick, is rich in lithic and crystalline fragments in variable proportion forming brecciated and fiamme-rich, often finely-bedded, vitroclastic facies. The phenocrysts vary in proportion from 1 to 30% and are composed of quartz, potassic feldspar, albite and biotite. Quartz forms sub-automorphic to globular 0.5 to 1 mm crystals. Feldspars constitute angular fragments (0.5- 1 mm) surrounded by vitreous debris. Orthose predominates over albite. Biotite is millimetric, commonly transformed into muscovite or chlorite and elongated. Vitreous fragments form welded and elongated filaments recrystallized into quartz, albite, chlorite and sometimes K-feldspar. The fiammes (0.3 mm -3 cm; sometime reaching 10 cm) consist of an assemblage of quartz, K-feldspar, albite, chlorite, carbonate, epidote and opaque minerals. A brecciated heterolithic facies is found at the base of the ignimbrite.

7.4.2- Late Mafic-felsic Dykes and Rhyolite ("Chonoliths") Intrusions

46 IM-3 Imariren Zone

IM-2 IM-7 IM-6 IM-9 IM-4 IM-1 IM-5

TO-7 BM-55

BM-25 BM-48 BM-56 TO-5 BM-35 BM-37 North BM-52 BM-24 Zone BM-33 BM-7 BM-54 BM-26 BM-47 BM-53

TO-2 BM-50 TO-2 (bis) BM-13 BM-43 BM-42 TO-3 TO-6 BM-41 TO-4 BM-23 BM-30 BM-8 BM-40 Tizi TO-1 Zone BM-19 BM-51 BM-31 TO-8 BM-38 BM-9

BM-32 BM-28 BM-45 BM-29 Central BM-10

Zone BM-6 BM-39 BM-14 BM-3 BM-46

BM-49

Quaternary BM-18

Alluvion, scree Late Proterozoic

Aoujane-Aissa-Akchouf Formation BM-2 Rhyolite BM-27 BM-12 BM-11 BM-21 South Tamerzaga-Timrachine Formation BM-20 Zone Late Neoproterozoic

0 100 200 m Dykes

Diorite dyke BM-16 BM-5 BM-4 BM-34 BM-22 Rhyolitic dyke (chonolith)/ BM-11 Rhyolite dome BM-17 Basalt-andesite dyke

Zn, Pb, Cu, Au, Ag-mineralized Andesite-Dacite flow/sill Veins (Propylitized) Ancient shaft Altered rhyodacite- Fault Rhyolite ignimbrite Source: BRPM (1998) BM-12 Historical DDH Gravel/dirt road Bakkari and Nicot (1985) Mylonite (?)

Figure 13. Geological map of the Boumadine mine area showing the different exploited zones, shafts and approximate localization of historical drillholes. 47 A swarm of andesite dykes was intruded within the TTF (Figure 14a). Most of these dykes are very massive, greenish, porphyritic. They are strongly altered, showing pervasive chloritization of both ferromagnesian phenocrysts and groundmass, and oriented N160°E. Another swarm trending N–S to N30°E, are far less chloritized, and crosscut the former swarm. The andesite swarms are not observed in the TTF Upper Ignimbrite and overlying formations. Lécolle et al. (2005) however have observed, contrary to Abia et al. (2005), a great diversity of dykes: i.e. gabbros, micro-gabbros, micro-diorites, varied dolerites and basalts which display more than two orientations. Also, most dikes cut the Lower Ignimbrite rocks and are unaffected by the alteration related to the mineralizing events. Therefore some dyke swarms are evidently post- TTF.

Rhyolite dykes show a NS to N20°E orientation and protrude relatively to their encasing rocks. This is a porphyritic rock with globular quartz, white/pink feldspar and rare biotite. Late rhyolitic intrusions form ovoid domes and dykes oriented N160°E to N-S. These felsic flows are composed of quartz and feldspar phenocrysts (0.5 à 1 mm) enclosed in a microlitic and microcrystalline matrix formed by albite, orthose and a quartz-chlorite±zircon±opaque minerals paste. Albite phenocrysts are rare and subordinate to orthose and rare biotite constitute the only ferromagnesian mineral. Most rhyolite intrusions, termed "chonoliths" by Abia et al. (2003, ) are restricted to the mineralized Boumadine area and exposed as lenses a few tens of meters long and a few meters wide. Abia et al. (2003) interpret these "chonoliths" as the upper part of finger- like intrusions, possibly coalescing at depth. The "chonoliths" are intrusive in the Lower Ignimbrite and they crosscut some of the andesite swarms. They may or may not be affected by the strong leaching related to the phyllic alteration associated with the Boumadine vein mineralization. These rhyolitic domes show a vertical flowing along the contact. Lécolle et al. (2005) alleged that that the "chonolithic" shape attributed to these rhyolitic intrusions mainly results from photo-interpretation rather than field work; the limits of the bodies including the true intrusions (dykes), and the related actual screes. Nonetheless, in the South Zone the rhyolitic intrusions appear to represent highly- silicified subvolcanic flow/ domes of considerable extension (e.g.: 600 x 180 m; this

48 TTF ignimbrites

Gabbroic/Dolerite/Andesite Dyke Source: This study

Figure 14a. The Boumadine mine area is characterized by the presence of dyke swarms of gabrroic, doleritic and andesitic compositions,principally N160°E-oriented, injected into the felsic rocks of the TTF.

Sicified Rhyolite Dome

Polymetallic vein (Au, Ag, Zn, Pb, Cu)

Source: This study

Figure 14b. Silicified and Cu-mineralized rhyolite dome/”chonolith” which appears to crosscut the polymetallic veins cropping out in the South Zone. View to the northwest. UTM Coord.; E=545198, N=89256; Nord Maroc, Merchich. 49 study). These silicified rhyolite domes are mineralized with disseminated pyrite and chalcopyrite, and contrary to the other rhyolitic "chonoliths" they appear to slightly post- date the mineralization (Figure 14b) .

7.4.3- Alteration of the Late Proterozoic Volcanosedimentary Formations

7.4.3.1-Propylitization

Most TTF rocks underwent a strong propylitic alteration giving their characteristic greenish-yellowish tinge. The propylitization is more intense in the mineralized area. This alteration produces a mineral assemblage of quartz-albite-chlorite -calcite-epidote- pyrite-Ti minerals (rutile and titanite) (Freton, 1988). The K-feldspars are little affected, with chlorite being the most abundant mineral, both in the Lower Ignimbrite unit and the andesite flows, either as pseudomorph after earlier ferromagnesian phenocrysts or as replacement in the groundmass. The fiammes within the ignimbrites display a quartzofeldspathic fibro-radiated assemblage with a coarse-grained/spherolitic core. According to Abia et al. (2003), the rhyolite "chonoliths" are much less affected by the propylitization event than the surrounding Lower Ignimbrite rocks.

7.4.3.2-Phyllic Alteration

The intermediate-felsic volcanic hosting the mineralized veins display an alteration halo up to 40 m wide which overprints the pervasive propylitized rocks and confers a bleached aspect to the rocks. Near the mineralized veins, the propylitic paragenesis is progressively replaced by a phyllic assemblage (quartz-sericite-pyrite). In the transition zone, previously propylitized phantom crystals and the mesastasis are changed into quartz and sericite. There is a complete resorption of ancient albite and chlorite. Sericite is pseudomorph to the feldspar crystals and expressed as a diffused mass. Quartz can form polycrystalline assemblages associated with sericite replacing the mesostasis. The silicification and sericitization are associated at the surface and at depth with pyritization. Bleaching is related to the destabilization of sulfides that lead to their dissolution in

50 supergene conditions and the production of very acidic fluids which amplified the hydrothermal silicification (Freton, 1988). The acid leaching also lead to the dissolution of feldspars and ferromagnesian minerals. Away from the bleached zones, carbonate- chlorite is superimposed on the propylitic assemblage, mainly by replacement of epidote (Ait Sasdi, 1992). Sericite also fills microfractures which cut across the propylitized rocks. The mineral is also interstitial between quartz grains in the massive sulfide zones and is also present at the border of sulfide minerals.

7.4.3.3- Late Silicification

The geochemical signature of most altered rocks cropping out in the vicinity of the mineralized veins indicates extensive silicification which was unrecognized or deemed minor by most authors investigating the Boumadine deposit. Least altered rocks of the pyroclastic and volcanic TTF collected at the periphery of the mineralized zones are andesitic to rhyodacitic in composition (Ait Sasdi, 1992; Abia, 2001). However, more

than 65 % of altered rocks display SiO2 content > 72 wt.%, several rocks having Al2O3 concentrations < 10 wt. %, a clear indication of pervasive silicification (see 9.3.1) . As noted by Ait Sasdi (1992), this silicification is not related to the phyllic alteration surrounding the mineralized veins. It is manifested by millimetric to metric quartz veins crosscutting the phyllic and propylitic altered rocks. In the Boumadine sector a massive silicification is also affecting the andesitic "flows" and sills which crosscut the phyllic altered rocks (Ait Sasdi, 1992). In the field, the author has observed the strong and pervasive silicification and quartz veining in late rhyolitic "chonoliths"/domes in the South Zone (Figure 14b). According to Ait Sasdi (1992), epidote is also associated with massive silicification crystallizing at the core of late quartz veins. The author postulates that the silicification affecting the TTF volcanic rocks is coeval with that of the Terminal Ignimbrite unit.

Historical drilling performed in 1956 can provide an insight into the type and degree of alteration that affected the TTF volcanic flows and pyroclastic rocks (see La Fargues, 1957). These ancient drillholes targeted Pb-mineralized Hercynian veins while

51 crosscutting Late Proterozoic volcanic assemblages. The Proterozoic altered rocks show an abundance of quartz veins, veinlets and quartz-filled fractures confirming the intense silicification of the host volcanics. Pyritization is also widely disseminated even in sections devoid of polymetallic sulfides veins. However it is impossible to determine whether it is a separate hydrothermal event or simply to the outward extension of the phyllic alteration.

7.4.3.4- Supergene Alteration

The mantos, "chapeau de fer" or "iron cap" alteration extend from 20 to 50 m depth whilst the oxydized veins reach 1 to 4 m in thickness. The mantos consists principally of goethite, jarosite with scant hematite and no lepidochrosite. This mineralogical assemblage indicates a strong acidity of the oxydation fluids. In this case elements such as Mn, Zn, Cd, Ni, Co, Pb are highly mobile in the acid and sulfur-rich fluids and are commonly leached at surface or at depth. However, Ag, Au, Ba, Sr and Pb are immobile and form stable sulfosalts. The hydroxyde-rich ‘‘mantos’’ was nearly completely mined by artisanal workers for ochre and precious metals (Figure 15a).

7.4.4- Structure

The most important structures are represented by plurikilometric N30°E-oriented faults, limiting several tectonic blocks in the Jbel Ougnat and potentially corresponding to tectonic movement of basement rocks. These faults, associated with tectonic breccias, first manifested normal-senestral movements (striae with a N30°E/ 0–15°S plunge) and were then re-activated as normal faults. The tectonic fractures correspond either to normal faults associated with a NNE-SSW-oriented tension gash or N160°E tension gash controlling the emplacement of the andesite dykes, “chonolith” rhyolites and polymineralized Boumadine veins (Figure 16). These correspond to the shortening direction associated with the early senestral activity on the N30°E faults (Abia et al., 2003). This is shown by the patterns of dykes that are distributed in “en-echelon arrays” of potential conjugate shear-zones along N10°–30°E and N130°–140°E directions. The

52 Source: This study

Figure 15a. Oxydized veins exploited by the ancient miners for ochre and precious metals. Central Zone, Boumadine mine.

Shear zone

Source: This study

Figure 15b. Trace of N150°E-trending shear zones showing dextral movements and developed in corridors already affected by a strong pyrophyllitization. UTM Cood.: E=545635, N=88850; Nord Maroc, Merchich. 53 N R d1 1 N30°E

d3 R2 W T

N160°E

x T z Extension Veins

N30°E Source: Dagallier et al. (1988)

Figure 16. Distrubition of stress in a senestral shear zone. Z=maximum shortening; X=maximum elongation; R1-R2: conjugated Reidel system; T= extension gash;d1= maximum stress during deformation; d 3=minimum stress during deformation.

54 movements along the N30°E senestral faults induces shearing associated with the opening of a collapsing basin and further extension during the emplacement of the TTF.

Some felsic and andesite dykes strike N0°–N30°E, at variance with the N160°E strike of earlier andesite dykes. The emplacement of these dyke swarms is likely related to the reactivation of the early N30°E faults as normal brittle faults (associated with brecciation) that represent tension cracks . In the Boumadine area ductile shear-zones striking N150°E have developed C/S structures with a schistosity trending N135°E. These features are consistent with a dextral movement under N30°–N40°E shortening direction (Abia et al., 2003). These shear zones were developed in corridors already affected by a strong pyrophyllitization and syn- and late-kinematic pyrophyllite veinlets occur within the shear-zones coeval with the shearing (Figure 15b). The shearing overprinted late rhyolite dome and andesite dykes (Ait Sasdi, 1992), whereas the shear-zones are sealed by the upper AAF basalt flows (Freton, 1988). Thus, the return to a compressional regime occurred at the end of the Late Proterozoic.

During the Phanerozoic era (Variscan period), reactivation of some N30°E-oriented faults as reverse faults occurred in relation with doming of the Proterozoic basement and the overlying Paleozoic cover. Quartz-carbonates-Cu–Pb–Zn mineralized veins were emplaced in N75°E fractures in Paleozoic and Proterozoic terrains. The veins correspond to the Imariren-type mineralization of Abia et al. (1999) and fill tension joints associated with N45°E and N105°E conjugate faults. N40°–50°E-oriented brittle faults displace dextrally the ‘‘pyrophyllite shear-zones’’ (up to tens of meters) or the polymetallic ore veins.

7.4.5- Mineralization

7.4.5.1-Description of the Polymetallic Veins

The polymetallic mineralization at Boumadine extends at least for 4 km on the surface. The mineralized zones consist of 1 to 4 m-wide N160°E-oriented lenses/veins dipping

55 sharply (70°-85°) to depths of 350 m and spatially associated with the TTF rhyolite ("chonoliths") intrusions (Saint Gal de Pons, 1975; Paile, 1983, Ait Sasdi, 1992; Abia et al, 2003) (See figures 13 and 17). Individual veins can extend laterally for a few meters up to 600 m. The veins contain massive pyrite, sphalerite, arsenopyrite, and galena with subordinate amounts of chalcopyrite, cassiterite, silver-rich sulfosalts, stannite, enargite, bismuthinite , native copper and bismuth (Figure 18a, b). They are affected by Variscan N40°–50E dextral faults. Pyrite forms the gangue mineral at the core of all lenses/veins, whereas the other sulfides, notably galena and sphalerite surround the core zones. U/Pb single zircons dating on a "chonolithic" rhyolitic intrusion cutting the mineralized veins yielded an age of 553±16 Ma (Levresse, 2001). This is consistent with a late Neoproterozoic maximum age for the mineralization.

According to Freton (1988), two types of sulfide mineralization are present. First, a disseminated mineralization in strongly silicified wallrock manifests two paragenesis: a) An automorphous pyrite surrounding the polymetallic veins and b), A galena and sphalerite assemblage limited to 20 m around the main mineralized veins. Secondly, the vein-type mineralization is subdivided into four sub-types: a) Massive pyrite (nearly 90%) accompanied by subordinate arsenopyrite and pyrrhotite and forming the bulk of the veins, b) A discontinuous extension-type vein mineralization within the massive sulfide zones characterized by sharp layering. In both sub-types we observe the following minerals in decreasing abundance: sphalerite, galena, arsenopyrite, chalcopyrite, pyrite, Ag and Sn-rich minerals within a quartz and carbonate (?) gangue, c) A brecciated mineralization with the crushed pyritic and vein sulfide mineralization cemented by a second generation sulfides and d), A replacement sulfide and native element inclusion- type mineralization in the massive and disseminated pyrite.

Dagallier at al. (1988) locally identified another type of polymetallic mineralization in the wallrocks near transverse fractures affecting the veins at shallow depth. These are late stage concretions of banded pyrite, sphalerite, arsenopyrite and quartz. Furthermore, the quartz-sericite altered vein wallrock does contain up to 5% pyrite with finely disseminated sphalerite that may constitute ore material.

56 North Zone

Imariren Shaft #2 E=545431 Zone (Imariren) N=91516

Tailings Shaft #5

Tizi Shaft Shaft A Zone Oued Shaft #3 Property boundary Shaft B Central Zone Ancient Mining Installations

E=545886 N=89723 Bou Madine Polymetallic (Au, Ag, Zn, Pb, Cu) Deposit Mineralized Zones Shaft #4 South (Exploited) Zone Polymetallic veins Source: This study 0 200 400 m (Au, Ag, Zn, Pb, Cu)

Figure 17. High-resolution Quickbird satellite photo of the Boumadine mine and surrounding area. The principal swarms of polymetallic mineralized veins are shown with the localization of the ancient mining shafts.The five main mineralized zones exploited for base metals: Tizi, Imariren, North, Central and South are outlined in hashed blue. UTM Coord.: E=Easting, N=Northing; Nord Maroc, Merchich.

57 Source: This study

Figure 18a. Typical brecciated and slighlty oxydized pyrite-rich ore with quartz veinlets mined form polymetallic veins and collected from the Central Zone muck pile. UTM Coord.: Merchich, Nord Maroc; E=545017, N=90998.

Source: This study

Figure 18b .Galena-rich ore with pyrite, pyrrhotite, chalcopyrite, sphalerite and second stage quartz veins that contain most of the Au and Ag mineralization. Collected from the Central Zone muck pile.

58

Detailed historical drillcore logs show the complexity of the sulfide mineralization. Figures 19 to 21 depict stratigraphic columns constructed from the logs of six drillholes that intersected base metals and precious metal mineralization (Saint Gal de Pons, 1975). The principal mineralization consists of massive sulfide veins but there are several networks and/or stockworks of secondary monomineralic and polymineralic sulfide veins/veinlets surrounding the principal veins or crosscutting the zones of massive sulfides. Numerous quartz veins, with or without sulfides, are observed and disseminations of galena, sphalerite and chalcopyrite are widespread. Pyritization affects most of the described core sections and there are many massive pyrite zones. Unfortunately, historical assaying was concentrated in the massive sulfide horizons and it is therefore impossible to verify if the precious metal mineralization extends outside these layers. Finally, the historical drillhole logs reveal significant Zn, Pb, Ag and Au mineralization present at depths exceeding 200 to 500 m thus expanding considerably the zone of exploration which up until now barely reached 150 m.

7.4.5.2-Mineral Paragenesis

Abia et al. (2003) found evidence of two principal mineralizing stages which they believed are controlled by the strain applied to the TTF volcanosedimentary assemblage (Table 8). The first stage is a Fe–As–(Sn) mineralizing event divided into two sub- stages involving: a) The deposition of massive pyrite which occasionally presents a banded appearance (Stage Ia). Banding was related to fine-grained deposition that was mostly obliterated by pyrite recrystallization into sub-millimetric euhedral cubes. It is now defined by microvugs linings likely resulting from dissolution during subsequent stages of ore deposition. Pyrite contains numerous micro-inclusions recording brecciation, corrosion and cementing by the second stage sulfides. Crystallization of pyrrhotite and cassiterite inclusions is apparently coeval with pyrite and does not occur in Stage II assemblages. During sub-stage Ib, arsenopyrite deposition occurs as parallel veinlets in the first stage pyrite. The grains are commonly zoned, brecciated and corroded

59 Intermediate-felsic agglomerate BMF-22 BMF-13 /ignimbrite, andesite Plunge: 0° Plunge: 0° Dolerite/andesite dyke Azimuth: 270° Azimuth: 320° Massive sulfide (pyrite, Depth: 30.4 m arsenopyrite, galena, Depth: 31.8 m sphalerite±chalcopyrite 20 Massive pyrite 20 Veins

Pyrite

Sphalerite

Galena

Quartz From (m) To (m) Int. (m) Pb (wt.%) Zn (wt.%) Ag (g/t) Au (g/t) Calcite/dolomite 21.4 21.9 0.5 0.5 1.3 403

21.9 22.3 0.4 3.3 1.8 257

22.3 22.8 0.5 3.4 5.6 560 3.8 Fault

22.8 23.4 0.6 2.4 3.1 545

From (m) To (m) Int. (m) Pb (wt.%) Zn (wt.%) Ag (g/t) Au (g/t)

23.3 23.7 0.4 0.7 2.3 26 2.50

23.7 24.9 1.2 0.5 1.4 262 2.50

24.9 25.2 0.3 0.5 0.6 203 2.50

25.2 25.4 0.2 0.2 0.4 9 2.50

25.4 26.0 0.6 1.0 1.4 151 2.50

26.0 26.3 0.3 3.7 4.7 135 2.50

5 m

30 30

Source: Saint-Gal de Pons (1975)

Figure 19. Stratigraphic column built from historical drillhole log decriptions for holes BMF-13 and 22 given in Saint Gal de Pons (1975). The stratigraphic column are straighten up to the vertica . 60 BM-43 Plunge: -55° Intermediate-felsic agglomerate 80 /ignimbrite, andesite Azimuth: 275° Depth: 506 m BM-46 370 Dolerite/andesite dyke Plunge: -50° Azimuth: 245° Massive sulfide (pyrite, Depth: 350 m arsenopyrite, galena, sphalerite±chalcopyrite

Massive pyrite Veins

Pyrite

Sphalerite

Galena

Quartz

Calcite/dolomite

Fault

From (m) To (m) Int. (m) Pb (wt.%) Zn (wt.%) Ag (g/t) Au (g/t)

383.4 384.3 0.9 0.3 2.0 95 2.50

390

1 m 10 m Source: Saint-Gal de Pons (1975) 290 Figure 20. Stratigraphic column built from historical drillhole log descriptions for holes BM-46 and 43 given in Saint61 Gal de Pons (1975). The stratigraphic column are straighten up to the vertica . 235

Intermediate-felsic agglomerate BM-41 /ignimbrite, andesite Plunge: -55° Dolerite/andesite dyke Azimuth: 240° Depth: 451.8 m Massive sulfide (pyrite, arsenopyrite, galena, BM-49 sphalerite±chalcopyrite Plunge: -55° Massive pyrite Azimuth: 240° Veins Depth: 184 m 95 Pyrite

Sphalerite

Galena

Quartz

Calcite/dolomite

5m

Fault

From (m) To (m) Int. (m) Pb (wt.%) Zn (wt.%) Ag (g/t) Au (g/t)

100.3 102.4 2.1 0.2 0.4 21 0.30 From(m) To(m)Int.(m)Pb(wt.%)Zn(wt.%)Ag(g/t)Au(g/t)

102.4 103.4 1.0 0.5 1.6 8 0.40 247.2 247.7 0.5 0.8 1.1 20 <0.1

103.4 107.7 4.3 0.1 0.5 9 0.60 247.7 248.2 0.5 0.7 0.8 8 <0.1

105 248.2 248.9 0.7 0.3 0.6 7 <0.1

248.9 251.2 2.3 0.5 0.7 107 5.30

251.2 253.0 1.8 0.3 0.7 5 0.20

Source: Saint-Gal de Pons (1975) 255

Figure 21. Stratigraphic columnbuilt from historical drillhole log descriptions for holes BM-49 and 41 given in Saint62 Gal de Pons (1975). The stratigraphic column are straighten up to the vertical. in the same way as pyrite1 particularly by late galena. Temperature formation during Stage I was estimated at 295°-360° (Ait Sasdi, 1992; Abia et al., 2003).

Table 8. Summary of the paragenetic succession of ore veins at Boumadine.

The second stage of mineralization is subdivided in into three sub-stages, the first two associated with base metal deposition, the third corresponding to precious metal distribution. Sub-stage IIa involves sphalerite crystallization with minor chalcopyrite and stannite. Sphalerite is cementing Stage I brecciated pyrite and/or arsenopyrite or banded ore as vein filling material. Stage I pyrite is largely dissolved and chalcopyrite blebs and stringers commonly crystallize in the crystallographic planes of the host sphalerite. Arsenopyrite 1 remains stable and stannite is equally restricted to sphalerite, as minute rounded blebs (<30 µm), generally associated with chalcopyrite. Galena deposition is characteristic of stage IIb; the mineral acting as a cement of the earlier brecciated sulfides. Galena is also “corroding” and dissolving the arsenopyrite, pyrite, sphalerite and chalcopyrite. Sub-stage IIc started with the deposition of quartz in dissolution cavities within all pre-existing sulfides (including galena) and as cross-cutting veinlets. Quartz is associated with small euhedral arsenopyrite crystals. There is a complex paragenesis of trace minerals deposited either as minute inclusions (a few tens of µm) in all the major sulfides of stages I and II, and especially in galena and quartz microcracks. The textural relationships invariably suggest a very late stage of deposition. Sub-stage IIc involves the crystallization by decreasing abundance of: grey copper, argentopyrite,

63 schapbachite, pyrargyrite, polybasite, native antimony, native bismuth and bismuthinite. Native gold is also present. Early mineralogical studies of the Boumadine also identified hexastannite, enargite, digenite and covellite (Saint Gal de Pons, 1975). This author also mentioned that galena contains several inclusions of tetrahedrite, freibergite and native silver (up until 1 wt. %). Studies of fluid inclusions associated with Stage II mineralization revealed salinities of 1 wt. % eq. weight NaCl and homogenization temperatures between 150°C et 200°C at 0.4 kb.

Freton (1988) brings a slightly different model based on the mineral paragenesis and degree of deformation. First, there was a progressive deposition of massive pyrite± arsernopyrite±sphalerite which formed large polycrystalline assemblages in the core of "en échelon" tension gash. This episode was followed by multiple stages of massive sulfide fracturation creating discrete cataclasis and intense crushed zones injected by sulfide-rich veins/veinlets. Successive episodes of veins opening and sealing ("crack and seal") lead to structural layering. Strong shearing is coeval with the deposition of sphalerite, galena, chalcopyrite, Ag and Sn-rich sulfides and another generation of pyrite. The veins (Stages I and II) are variably breccified. Four sub-stages are revealed within the "brecciated mineralization": a) Microfracturation of massive pyrite. The fissures are mineralized in chalcopyrite and sphalerite and oriented parallel to the wallrock, b) Bands of massive pyrite cemented by second-stage sulfides are deformed upon intensification of brecciation. The more intense the crushing the thicker the bands, c) Intense and widespread crushing applied to all mineralized zones created heterogeneous sulfide-rich masses, d) The last stage involved extreme crushing leading to mineralization in "shadow pressure" zones.

7.4.5.3-Tectonic Control of the Mineralization

According to Abia et al (2003), the principal polymetallic veins were emplaced during coexisting conjugate dextral (N120°E) and senestral (N20°–N30°E) ‘‘en échelon’’ tectonism generating arrays of smaller ore veins. Freton (1988) described N160°E ore veins that were dextrally re-activated after pyrite deposition which implies a N15°–35°E

64 shortening direction. Stage I and II minerals were deposited under distinct strain fields. Massive stage I pyrite vein patterns are consistent an emplacement under a N160°E shortening direction, whereas stage II veins are consistent with a N20–30°E shortening direction. Textures revealed during stage II deposition, (banded fillings, breccias and veinlets) suggest injection synchronous with this dextral re-activation. Breccia ores are either developed in dilatant zones or the result of dissolution process. The banded ores correspond either to swarms of tension cracks or to openings along the shear joints often with micro-banding indicating a crack-seal process.

The age of mineralization is circumscribed by stratigraphic and structural evidences. The mineralization post-date most of the late-rhyolitic "chonolithic/dome" which are the latest magmatic manifestation of the TTF. The mineralization is affected by a supergene oxyde alteration reaching 20-50 m in depth and these "iron caps" are sealed by the ignimbrites units of the AAF. Indeed, fragments of altered rocks are present in the basal units of the AAF.

ITEM 8 DEPOSIT TYPE

8.1- Description of Epithermal-Type Deposits

Epithermal Au and Ag deposits are broadly grouped into high-, intermediate-, and low- sulfidation types based on the sulfur oxydation state in the ore-forming fluids and their hypogene sulfide assemblages (White and Hedenquist ,1990, 1995; Hedenquist, 1987). In general, low sulfidation refers to a style of epithermal system developed in a geothermal or hot springs environment versus high sulfidation epithermal systems which develop in the volcanic hydrothermal environment (Figure 22) . There can be significant overlap between these two end-members.

Most high-sulfidation deposits are generated in calc-alkaline andesitic-dacitic arcs characterized by near neutral stress states or mild extension. Highly acidic fluids produced the advanced argillic lithocaps that presage high-sulfidation mineralization,

65 Rocks Rocks Intermediate Volcanic Felsic Volcanic Chloride Waters

Boiling Springs, Silica Sinter 200°C 250°C Magma 400°C 300°C Acid Sulfate Steam-Heated Water Mud Pools and Fumaroles Water 2 km Figure 22. Petrogenetic model describing the formation of low-sulfidation epithermal deposits. 2 CO -Rich Steam Heated Waters 0 Recharge Source: Cook and Simmons (2000) Cold Groundwaters 66 which itself is due to higher pH, moderate- to low-salinity fluids. Intermediate-sulfidation epithermal deposits occur in a broadly similar spectrum of andesitic-dacitic arcs but commonly do not show such a close connection with porphyry Cu deposits as do many of the high-sulfidation deposits. However, igneous rocks as silicic as rhyolite are related to a few intermediate-sulfidation deposits. These deposits form from fluids spanning broadly the same salinity range as those responsible for the high-sulfidation type.

8.2-Description of Low Sulfidation Epithermal Deposits

Low sulfidation epithermal deposits are distinguished from high sulfidation deposits primarily by their sulfide mineralogy that consists of pyrite, sphalerite, galena, chalcopyrite within quartz veins. Containing local carbonate the low sulfidation epithermal veins are associated with near neutral wall rock alteration (illite clays), deposited from dilute hydrothermal fluids (Corbett and Leach, 1998). Most low- sulfidation deposits, including nearly 60 percent of the world’s bonanza veins, are associated with bimodal (basalt-rhyolite) volcanic suites in a broad spectrum of extensional tectonic settings, including intra-, near-, and back-arc, as well as post- collisional rifts. Some low-sulfidation deposits, however, accompany extension-related alkaline magmatism, which, unlike the bimodal suites, is capable of generating porphyry Cu deposits.

Different types of low sulfidation deposits are recognized by Corbett and Leach (1998), and Corbett (2002, 2004, 2005): a) Quartz-sulfide Au ± Cu mineralization is characterized by quartz and pyrite as the main sulfide, although lower temperature marcasite, and higher temperature pyrrhotite and chalcopyrite are also recognized, b) Carbonate-base metal Au deposits overprint quartz-sulfide Au, display higher Au contents, increased Ag:Au ratios, with additional sphalerite greater than galena, and an important carbonate component, c) Fissure vein Ag-Au-rich base metal deposits emplaced in dilatational structural settings, d) Epithermal quartz Au-Ag deposits characterized as Ag-poor often bonanza Au grades and developed at the greatest distances from magmatic source and f), Chalcedony-ginguro epithermal Au-Ag deposits

67 commonly displaying bonanza Au grades and occurring generally as Ag-rich banded veins comprising chalcedony, adularia, quartz pseudomorphing platy calcite and ginguro black sulfidic material.

The Boumadine mine belongs to the polymetallic Ag-Au deposits class (type c). This deposit style was recognized by Sillitoe (1993). Examples include the Fresnillo, Pachuca and Guanajuato districts (Mexico), Cikotok (Indonesia), El Bronce (Chile), Toyoha (Japan), Zgid (Russia) and Comstock and Creede (USA). They show many of the textural and alteration characteristics of gold-silver deposits, but are usually dominated by silver and lead-zinc mineralization. Gold and silver mineralization occurs dominantly as veins and stockworks with minor disseminations. Distinctive minerals present include: pyrite, sphalerite, galena, arsenopyrite and sulfosalts (complex Ag, Pb and Cu species with As and Sb as well as sulfur). Gangue minerals are dominated by quartz, adularia (hydrothermal potassium feldspar) and calcite with some illite development (Hedenquist et al., 1996). Fluids in this regime generally do not significantly alter surrounding wall rocks at the depth of mineralization, but do effect increasingly widespread silicification, Advanced argillic alteration (including kaolinite, alunite and/or buddingtonite) and propylitic alteration (chlorite, calcite, epidote and/or pyrite) occur above the mineralized levels.

Many low sulfidation veins are well banded, each band representing a separate episode of hydrothermal mineral deposition. Structures are the most fundamental control on location of vein development by providing major ore fluid ingress channels to the open spaces for ore deposition. Low sulfidation epithermal mineralization is controlled by competent or brittle host rocks which develop fractures as vein hosts, although permeability is locally important. On a district and individual vein scale, the local structural regime controls which portions of which structures are opened by rupturing, and subsequently filled by mineralization. Ore shoots typically form within “dilatant” zones developed along inflections of vein strike or dip where geometry permits maximum opening at the time of mineralization. In a vertical sense, many vein structures show a gradual splitting or “horsetailing” towards the surface. This reflects the shallow seated structural

68 environment of vein fields in general and the tendency for vein openings to be best developed in areas of local extension.

8.3- Model of Low Sulfidation Ore Deposits

Ore metals and gangue ingredients are dissolved in the epithermal ore fluids, which rise from depth along structural pathways at high temperatures (>200°C) under enough pressure to preclude boiling. Different types of hydrothermal fluids are involved: a) Meteoric dominated waters which have not come in contact with buried intrusion and coming from shallow circulating cells. The fluids usually deposit barren quartz , b) Magmatic-meteoric waters produced when meteoric waters circulate to sufficiently deep crustal levels to come in contact with magmatic sources for metals and so contain low grade mineralization generating disseminated sulfides and c), Magmatic dominant waters from intrusion at depth containing the highest precious and base metal values associated with sulfides.

Mineralization occurs when the pressure drops abruptly (through faulting or other rupture), which instantly triggers boiling (“flashing”) and causes the ore fluids to depose their mineral load into any available open space. Metals bearing species are deposited first (and very quickly) followed by quartz, calcite and adularia gangue which grow more gradually until all open spaces are filled. When the system is again sealed, pressure begins building again until the next rupturing event occurs and the mineralizing process recurs. This vigorous episodic process rips up vein fillings deposited in previous stages and covers them with new fillings and gives epithermal veins their characteristic repeated banding and breccia textures.

The metals component of the vein filling is zoned with respect to the boiling level. Base metals (Pb, Zn, Cu) tend to be deposited below it, while silver and gold are dominantly deposited above the boiling level (Figure 23). Boiling may occur at different elevations for different mineralizing episodes (in response to the degree of pressure buildup before rupture), so a broad transition zone often exists between the precious metals rich upper

69 LOW-SULFIDATION EPITHERMAL POLYMETALLIC DEPOSIT

Silicic alteration

Alunite-kaolinite-pyrite

Illite-smectite -celadonite

Sericite

Propylitic Propylitic Gold in pyrite Ag-sulfosalt

Crustiform Pyrargerite -Colloform Proustite texture Argentite Boumadine Precious Metal Electrum Polymetallic Horizon Deposit (Zn, Pb, Cu, Au, Ag) (Au, Ag)

Argentite Electrum Boiling level

Crystalline Propylitic Base Metal texture Galena Epithermal Horizon Sphalerite (Cu, Pb, Zn) Chalcopyrite Argentite Vein Pyrite

Source: Buchanan (1981); Morrison et al. (1990)

Figure 23. Petrogenetic model of a low-sulfidation epithermal deposit depicting the possible paleolocation at depth of the Boumadine polymetallic veins.70 The model suggests that the base-metal rich veins are found at root of an epithermal systems probably above an intrusive mass. part of the vein and the more base metal rich root zone. Alteration is also zoned with respect to the boiling level and the paleosurface. Overall, the combined alteration zones tend to spread out laterally and upwards (Figure 23), reflecting a combination of the near surface horse-tailing of the structural framework and progressive fluid migration away from the principal fluid conduits. The overall lateral progression is from silicification to propylitic alteration (chlorite, epidote, calcite and pyrite), whereas the vertical progression is from silicification to advanced argillic alteration to siliceous residue.

8.4-Origin of the Boumadine Polymetallic Deposit

Michard (1976) et Paille (1983) have interpreted the Boumadine polymetallic mineralization as a "telescoped" deposit resulting from the superposition of hot and cold mineralizing events associated with Late Proterozoic volcanism. Dagallier et al. (1988), Lécolle and Derré, (2005) and Abia et al. (2003) advocate an epithermal origin. The description of the prevalent alteration (i.e. regional propylitization, local quartz- sericite (illite) combined with the nature of sulfide minerals (pyrite, arsenopyrite, sphalerite, galena) and the temperature/ source of mineralizing fluids (magmatic- meteoritic) place the Boumadine deposit into the category of low-intermediate sulfidation epithermal silver-gold base metal mineralization (Sillitoe and Hedenquist, 2003).

Stage I mineralization evolved from a magmatic-controlled , high temperature geothermal system depositing base metals toward a meteoric-dominated hydrothermalism stage (IIc and precious metal deposition). Abia et al. (2003) argued that the Boumadine mineralized veins were emplaced at the end of the TTF volcanic cycle. They postulated that the mineralization was preceded by the development of a large high temperature geothermal field resulting in early regional propylitization affecting the lower ignimbrite pile which acted as an aquifer. During this hydrothermal event, mean temperatures of 260 °C were attained at a depth of 400–500 m suggesting the presence of an intrusive body at depth and providing the necessary heat source for driving the hydrothermal circulation. Possibly, this mass was related to felsic volcanism and subvolcanic activity in a caldera

71 environment. It is likely that major senestral N30°E-oriented faults locally controlled the emplacement of the ignimbrites and series of N160°E tension gash and provided the conduits for the rhyolite chonoliths and for deep circulation of fluids of high temperature . Mineralizing fluid temperatures between 295° and 360°C are known from the pyrrhotite and arsenopyrite compositions and are consistent with the estimates for the quartz-sericite haloes (Abia et al., 2003). These fluids were responsible for the acid leaching of wallrocks and the deposition of Stage 1 massive sulfides. Iron leached from the altered ignimbrites and rhyolites was trapped by the sulfur, and was precipitated as massive pyrite (and/or arsenopyrite) in the early veins. A change toward a N30°E shortening direction resulted in the reactivation of the early veins and sulfide deposition (Stage II) in breccias and banded veins. During sub-stage IIa the temperatures were determined through the composition of illites associated to sphalerite in ore veins and estimated at 260°C. Primary fluid inclusions distributed along growth zones in sub-stage IIc record a mixing between a hydrothermal fluid and nearly pure water and a trapping temperature of 150°C. During stage II, the upper ignimbrite unit was pervasively silicified, indicating that it could have been a self-sealed cap-rock for the geothermal system.

A different point of view is proposed by Lécolle and Derré (2005) who argue that the mineralization and alteration clearly affect all dacitic-rhyolitic host rocks intruding the TTF formation, concluding that it is post-TTF. Hydrothermalism and related alteration and mineralization would better be related to late subvolcanic activity after the resurgence of a caldera concealed first by the dacitic then by rhyolitic intrusions.

Abia et al (2003) have also difficulties reconciling the characteristics of the Boumadine deposit with that of Phanerozoic epithermal deposits. They argued that stage II mineralization is more typical of low-sulfidation type, but lacks the typical alteration assemblage or manganese-rich minerals (Sillitoe, 1993). They also surmised that Stage I mineralization was characterized by magmatic-derived acid fluids, rich in sulfur and arsenic that could be attributed to the high-sulfidation type, but lacking the typical alteration minerals (e.g., alunite, enargite) usually found in such deposits .

72

ITEM 9 EXPLORATION

9.1-Ore Mineralogy at the Boumadine Mine

In 2012, Maya Gold and Silver commanded a mineralogical study of the Boumadine ore from the Luminx laboratory situated at Lakehead University, Thunder Bay, Canada.

9.1.1-Analytical Methods

Polished (22 x 44 mm) thin sections of Boumadine ore material were examined through an Olympus BX2M transmitted-reflected light microscope. Further XRD analysis was conducted with a Pananalytical Xpert Pro x-ray diffractometer, using Cu Kα radiation at an operating voltage and current of 45 kV and 40 mA, respectively, scanning in continuous mode from a 28 of 50 to 1000 with a step size of 0.026028 and a rate of 200 seconds per step. Diffraction patters were processes using Panalytical Highscore Plus search/match software and the ICDD PDF-2 database.

9.1.2-Rock Description

Samples BOU2012-1 and BOU2012-2 are highly similar since they were collected from the Central Zone tailings near Shaft A (UTM Coord.: Easting: 316965, Northing: 3476823; WGS84, Zone 30N). The rocks consist of massive sulfides (pyrite dominant) cut by veins and veinlets of quartz ± sphalerite. Macroscopically, pyrite in BOU2012-2 presents a partial colloform texture (Figure 24a, b). A small portion of a large quartz vein (?) is also present along one edge of BOU2012-2. BOU2012-1 is largely featureless on uncut surfaces, with some fine veining best observed on cut surfaces. Veins in BOU2012- 2 sample are wider (3-5 mm), display no preferred orientation and are weakly zoned (quartz-sphalerite along the edges, with core of discontinuous pyrite) (Conly, 2013a). These samples are typical representatives of the polymetallic vein mineralization occuring throughout the Boumadine property. Initially each samples weigh over 2 kg and were cut in smaller pieces to perform thin sections.

9.1.3-X-ray Diffraction Results and Discussion

The results of x-ray diffraction analysis enable the identification of mineral phases that account for greater than 2 modal % of the rock. Although the two samples are largely 73 BOU2012-01

Source: This study

Figure 24a. Ore sample BOU2012-01 collected from the muck pile near Shaft A of the Central Zone, Boumadine mine. UTM Coord.: Easting: 316965, Northing: 3476823; WGS84, Zone 30N

BOU2012-02

Source: This study

Figure 24b. Ore sample BOU2012-02 collected from the muck pile near Shaft A of the Central Zone, Boumadine mine. UTM Coord.: Easting: 316965, Northing: 3476823; WGS84, Zone 30N

74 similar, some key mineralogical differences do appear: 1) Sphalerite is substantially more abundant in BOU2012-2 than BOU2012-1, 2) In BOU2012-2 sphalerite primarily occurs as quartz-sphalerite veins, although crystals interspersed within the pyrite-quartz matrix is common in areas proximal to the veins. On the other hand, sphalerite in BOU2012-1 only occurs as isolated crystals enclosed by pyrite, 3) BOU2012-2 displays more veins also mineralized (sphalerite + galena); whereas fine, barren quartz veins characterize BOU2012-1 and 4), Quartz largely occurs as small veins in BOU2012-1 and as veins and interstitial crystals to pyrite in BOU2012-02.

In both samples, quartz varies from anhedral to subhedral equant crystals typically ranging between 100 to 500 μm. Sub-grains and ribbon grains are common and several show undulatory extinction indicating dynamic recrystallization in response to deformation events with temperatures on the order to 250 to 500°C. The occurrence of quartz sub-grains and ribbons is consistent with temperature estimates of Abia et al. (2003) for the two stages of hydrothermal activity.

Pyrite is the dominant mineral in all samples. In BOU2012-01 it produces a relatively uniform crystal mosaic of anhedral to euhedral crystals, which typically range in size between 10 and 500 μm. Recrystallization is prevalent with subhedral crystal forms being the most common. In general, larger grains are more euhedral. While pyrite in BOU2012-02 is largely similar, it does have a high proportion of euhedral crystals ranging from fine to coarse crystals. Portions of sample BOU2012-02 show pyrite forming a semi-massive to net texture which is reflected in the development of an interspersed crystal mosaic of pyrite and quartz.

In BOU2012-01, sphalerite only occurs as rare crystals that are entirely enclosed by recrystallized pyrite. Sphalerite in BOU2012-02 primary forms weakly comb-textured veins with quartz ± pyrite. Vein textures are highly variable, ranging from sphalerite rims to quartz + euhedral pyrite cores to quartz rims with sphalerite cores. Sphalerite also forms a minor phase in the pyrite-quartz matrix, where it is commonly associated with

75 galena. The yellow to yellow-brown color of sphalerite is consistent with low Fe- contents.

Galena is the least abundant sulfide and is only observed in BOU2012-02 (Figure 25a). It is largely restricted to the pyrite matrix, where it occurs interstitially to pyrite and sphalerite. It is generally not associated with sphalerite-quartz veining, however. Figure 25b shows galena at the terminus of a sphalerite vein in pyrite. Also illustrated is the development of galena-filled micro-fractures in pyrite.

Figure 26a, b best illustrates sulfide paragenesis. Matrix pyrite (ranging from anhedral to subhedral crystals) and quartz represent the initial stage of hydrothermal activity. This is consistent with the observations of Abia et al. (2003), who proposed a two-stage hydrothermal model. Sphalerite and galena correspond to a second mineralizing event, resulting in the development of sphalerite-quartz veins that cut the pyrite-quartz matrix. This two-stage model is supported by the observation of anhedral to subhedral matrix pyrite being embayed by sphalerite. Multiple veining events associated with this second stage have resulted in the observed petrogenetic complexity associated in large part with incongruent recrystallization of pyrite.

Euhedral pyrite generally overprints galena; however, the occurrence of galena in microfractures within recrystallized pyrite is interpreted to reflect fracture filling in first generation pyrite by galena with subsequent recrystallization of pyrite in response to continued hydrothermal activity during Stage II. The limited amount of galena within sphalerite veins suggests that it precipitated as a result of changing physicochemical conditions due to interaction with the pyrite-quartz matrix. The irregular and weakly developed comb texture of the sphalerite-quartz veins likely reflects multiple crack and seal events. While sphalerite is seen to replace anhedral to sub-euhedral pyrite, the latter on the other hand also overprints sphalerite. This overprint texture is the result of incongruent recrystallization of pyrite that was deposited in response to the first mineralization event, but also pyrite that formed during the second hydrothermal stage and possibly later epithermal stages (see Abia et al, 2003). This is consistent with the

76 Sphalerite Pyrite

Sphalerite

Pyrite Pyrite Galena

Galena Source: Conly (2013a)

Figure 25a. Reflected light microphotograph showing the paragenetic relationship between pyrite, galena and sphalerite. Sample BOU2012-02

Pyrite

Sphalerite

Quartz Pyrite

Galena Source: Conly (2013a)

Figure 25b. Reflected light microphotograph showing the paragenetic relationship between pyrite, galena and sphalerite. Sample BOU2012-02 77 Quartz Sphalerite Pyrite Sphalerite Pyrite Quartz

Source: Conly (2013a)

Figure 26a. Transmitted light photomicrograph showing mineralogical and textural variations in sphalerite+quartz veins in sample BOU2012-02. Low Fe-bearing sphalerite (yellow-brown) occurs in the core of a diverging quartz vein that is cutting recrystallized coarse-grained massive pyrite.

Pyrite

Sphalerite

Sphalerite Quartz

Pyrite

Source: Conly (2013a)

Figure 26b. Transmitted light microphotograph of a quartz-sphalerite vein. Sphalerite is found at the contact with massive pyrite and shows a quartz core with coarse-grained disseminated pyrite.

78 slight increase in the frequency of recrystallized pyrite within, adjacent and proximal to the sphalerite-quartz veins. A low-temperature epithermal stage is consistent with the development of quartz-pyrite cores in the sphalerite-quartz veins.

9.2-FE-SEM-EDS Analyses

9.2.1-Analytical Method

A polished thin section of sample BOU2012-02 was cleaned and submitted to semi- quantitative (non-calibrated to reference standards) EDS spectra analyses using a Hitachi Su-70 Schotty Field Emission scanning electron microscope (FE-SEM) equipped with an Oxford Aztec 80mm/124ev energy dispersive x-ray analyzer (EDS). EDS spectra were acquired over a 60 second count time at 20 kV and 0.8 nA. Semi-quantitative mineral compositions are acquired without standards by using peak-height ratio and mathematical corrections based on the analysis parameters and the sample composition. This analysis method was deemed suitable owing to the wide array of mineral types and grain size issues. Semi-quantitative methods often result in elemental or oxyde totals that are less or more than expected. If analysis total is within 2% of the idealized total, the semi- quantitative analysis is of exceptional quality on par with quantitative methods. Assessing data quality is relatively simple for anhydrous phases whose elemental composition should total to 100%. To ensure the quality of the semi-quantitative SEM data, specifically to ensure that the relative concentrations between elemental constituents is precise, stoichiometric calculations were performed for some analyses in order to ensure that elemental ratios and site occupancy were within acceptable ranges.

Semi-quantitative compositions are non-standardized and have been normalized to 100%. Compositions of major to minor sulfide phases (pyrite, sphalerite, galena and arsenopyrite) are within expected elemental ranges and yield accurate atomic ratios. Therefore, it is possible to calculate end-member compositions of the major sulfides. Trace Ag-Sn-base metal sulfides-sulfosalts solely occur as micronuggets in pyrite and do not yield stochiometrically quantifiable results. Analytical inaccuracies are primarily the

79 result of grain size limitations. As the micron to sub-micron diameter of the micronuggets is less than the diameter of the incident electron beam, micronugget compositions inherently include elemental contributions from the host sulfide. Thus it is not possible to precisely calculate mineral compositions of micronugget phases (Conly, 2013b).

9.2.2-Mineral Compositions

Figures 27 through 30 include high-resolution and low-resolution back-scatter electron (BSE) images depicting position of EDS spot analyses of analyzed regions of sample BOU2012-02. The regions/sites are numbered providing a summary of the phases identified by FE-SEM-EDS analysis. FE-SEM-EDS analysis confirms previous petrographic and XRD findings, and has enabled the identification of minor and trace sulfide, sulfosalt and metal oxyde phases.

9.2.2.1-Fe-As Sulfides

They consist mainly of pyrite with subordinate amounts of As-bearing pyrite. Minor to trace arsenopyrite occurs as 10-100 μm euhedral crystals recrystallized from pyrite (± galena) (Figures 27 and 28).

Pyrite and As-bearing pyrite

Normalized elemental concentrations for pyrite (As-free) are between 46 to 47 wt. % Fe and 52 to 53wt. % S, and correspond to an idealized composition of pyrite (46.5wt. % Fe and 53.5wt. % S)(Figure 27c). As-pyrite also yield acceptable compositions, with BOU2012-02 As-pyrite contains 46-47wt. % Fe, 1.1-3.2wt. % As and 50-52wt. % S (Figure 28a). The As-enrichment in pyrite is not attributed to the presence of micronuggets of arsenopyrite within pyrite, as seen in the BSE images that show homogenous nature of pyrite in the area of the point analysis. Rather As occurs as substitution for S, indicated by the corresponding decrease in S concentrations with increasing As abundances.

80 a)

Spectrum 1

Arsenopyrite

b)

Spectrum 3

Galena

Figure 27. High resolution Back Scattered c) Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) Arsenopyrite, b) Galena and c), Pyrite.

Spectrum 5

Pyrite

Source: Conly (2013b)

81 a)

Spectrum 6 As-rich pyrite

b)

Spectrum 11

Sphalerite

Figure 28. High resolution Back Scattered c) Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) As-rich pyrite, b) Sphalerite and c), Sphalerite.

Spectrum 12

Sphalerite Source: Conly (2013b)

82

Arsenopyrite:

Three compositional varieties of arsenopyrite were identified: a) Trace metal-free arsenopyrite containing 21-23.2wt. % S, 36-36.5wt. % Fe and 40.4-43.4wt. % S (Figure 27a), b) Sb-bearing arsenopyrite containing 19.7-21 wt. % S, 35.2-36.4wt. % Fe, 42.3- 44wt. % S and 0.38-0.8wt. % Sb and c), Zn±Sb-bearing arsenopyrite containing 19.5- 20.2wt. % S, 34.9-35.9wt. % Fe, 43.1-44.3wt. % S and 0.46-1.25wt. % Zn; with the highest Zn-bearing sample also containing 0.9wt. % Sb.

The idealized composition of arsenopyrite is 34.3wt. % Fe, 46.0wt. % As and 19.7wt. % S. BOU2012-02 arsenopyrite (all composition types) is generally more enriched in S and depleted in As with respect to the idealized composition, which reflect S substitution for As in the arsenopyrite solid solution series. Minor decreases in As abundance also coincide with Sb substituting for As. Iron abundances are within anticipated ranges. Zinc enrichment in BOU2012-02 arsenopyrite is due to elemental inputs from the host sphalerite.

9.2.2-Cu-bearing Phases

Chalcopyrite micronuggets in pyrite are the only copper-rich (> 10%) phase identified, and are associated with native Ag and other base metal sulfides (i.e. sphalerite). Rare sphalerite shows slightly elevated contents of Cu (<1%).

9.2.3-Zn-bearing Phases

Sphalerite is the primary Zn-bearing phase in BOU2012-02 (Figures 28b, c, 29a). Some Ag-Sn micronuggets in pyrite show slightly elevated Zn and Cu contents, and likely correspond to fine intergrowths of Ag-Sn phases and micron-sized sphalerite and chalcopyrite. All sphalerite present in BOU2012-02 displays Fe and Cd substitution of Zn, with compositions ranging from 59.6-64.4wt. % Zn, 2.7-5.9wt. % Fe, 31.8-32.5wt. %

83 S and 0.07-0.75wt. % Cd. Iron contents are typically on the order of 3wt. %, with only three point analyses yielding concentrations above 4wt. % Fe. Measured compositions are within anticipated ranges for moderate Fe-bearing (3wt. % Fe) sphalerite (64wt. % Zn, 3wt. % Fe and 33wt. % S). Cadmium contents are typically in the range of 0.5 to 0.7wt. %. Two point analyses show trace amounts of Sn (0.57 and 0.76wt. %), with one Cd-Sn-bearing crystal also containing trace amounts of Cu (0.87wt. %). Tin substitution for Zn is common in sphalerite. The one analysis yielding Cu reflects Cu substitution of Zn and not Cu exsolution (chalcopyrite disease).

9.2.4-Pb-bearing Phases

Galena is the only Pb-bearing phase observed in additional details (Figure 30b,c). Precise results were obtained for coarse crystalline galena, with average compositions of 86.3wt. % Pb and 13.2wt. % S. They are within the ideal compositional range (86.6wt. % Pb and 13.4wt. % S). However, galena typically occurs as small crystals to micronuggets associated with pyrite, which results in contributions of Fe and S, thus lower Pb, from the pyrite host.

9.2.5-Ag-Sn-base Metal Micronuggets

These occur as Ag-Sn (± other base metals + S) micronuggets (<5 μm and typically <1 μm) in pyrite (Figure 29b, c, 30a). Discrete crystals of native tin (>10 μm) occur in sphalerite. Compositions range from 94.8-97.2wt. % Sn, 1.8-2.9wt. % Zn, 0.5-0.9wt. % Fe and 0.3-0.8wt. % S, with Zn, Fe and S being contributed by the sphalerite host. Tin- bearing phases occur as micron-sized inclusions (nuggets) in pyrite, which are also commonly enriched in Ag. Precise identification of these Sn-bearing phases is challenging due to their small crystal size that results in contamination from the host sulfide. Native Sn occurs as small (1-5 μm), discrete, euhedral crystals contained within Sn-Cd-Fe-bearing sphalerite. The cassiterite in BOU2012-02 is likely the result of Sn- exsolution due to recrystallization of Sn-rich sphalerite. Normalized elemental concentrations Ag-Sn-base metal micronuggets do not yield mineral compositions that

84 a)

Spectrum 13 Sphalerite

b)

Spectrum 42

Ag-Sn nuggets in pyrite

Figure 29. High resolution Back Scattered c) Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) Sphalerite, b) Ag-Sn nuggets in pyrite and c), Ag-Sn nuggets in pyrite.

Spectrum 40

Ag-Sn nuggets in pyrite Source: Conly (2013b)

85 a)

Spectrum 46

Cassiterite/Native Sn

b)

Galena Spectrum 56

Figure 30. High resolution Back Scattered c) Electron (BSE) depicting the position of Energy Dispersion System spot analysis for ore-bearing minerals contained in sample BOU2012-02; a) Cassiterite/ Native Sn b), Galena and c), Galena.

Spectrum 69 Galena

Source: Conly (2013b)

86 readily can be assigned to specified sulfide and/or sulfosalt phases; this largely due to elemental contributions from the host sulfide phase. As-pyrite is the most common host phase, Ag-Sn-base metal micronuggets have elevated Fe and S contents.

It is most likely that Ag occurs as native silver. Native Ag is favored over Ag-sulfide phases due to the decrease in S intensity in areas of high Ag intensity on the elemental maps. The common association of Ag with less, but variable, amounts of Sn could be used to infer the occurrence of Ag-Sn sulfides or sulfosalts. Possible Ag-Sn sulfides

include canfieldite (Ag8SnS6) and hocartite (Ag2FeSnS4), and Ag-bearing sulfosalts of the tetrahedrite-tennantite group phases (i.e. argentotennantite

(Ag,Cu)10(Zn,Fe)2(As,Sb)4S13 or freibergite (Ag,Cu,Fe)12(Sb,As)4S13)). However, it is unlikely that the distribution of Ag and Sn are controlled by any of these phases in sample BOU2012-02. This is based on the following lines of evidence: a) Even though elemental contributions from the host sulfide phase cannot be accurately constrained, corresponding elemental abundances and, more importantly, key elemental ratios (Ag: Sn) do not agree with expected values for the aforementioned phases, b) Close inspection of elemental maps shows that Sn and Ag are not always mutually associated. In addition, where they are in association, there is not always a spatially mutual increase in Ag and Sn. The relative distribution of Ag and Sn indicates that Sn occurs as submicron nuggets (nanonuggets) in native Ag and as adjacent micrograins, c) Ag-Sn sulfosalts are not possible phases due to the absence of As and Sb in micronugget compositions. Sn-rich micronuggets in pyrite may correspond to native tin, cassiterite, or Sn-sulfide (i.e.,

hezenbergite, SnS, ottemannite, Sn2S3, or Berndtite, SnS2). As is the case for Ag, Sn- sulfides are unlikely due to the corresponding decrease in S intensity with increasing Sn intensity on the elemental maps. In addition, measured Sn-S ratios are not in agreement with ideal end-member compositions. Therefore, the distribution of Ag and Sn within BOU2012-02 is primarily controlled by the distribution of native Ag in pyrite and native Sn in pyrite and sphalerite. Typically, native Ag and native Sn occur as aggregated micronuggets, with Ag being the more abundant of the two metals.

Base metal sulfides also occur as micronuggests. Copper is inferred to exist as

87 micronuggets of chalcopyrite within pyrite, where it forms micro-aggregates with native Ag and native Sn and, in one case, sphalerite.

9.2.6-Sb-bearing phases

No phases where antimony is a major constituent were identified. The only Sb-bearing phase is arsenopyrite.

9.2.7- Gold

Native or gold alloys have not been detected during the course of these mineralogical studies. However, former scanning electron microscope (SEM) mineralogical studies revealed 1µm inclusions of native gold in chalcopyrite fractures or as nuggets (see Dagallier et al., 1988). Industrial analyses of pyrite concentrates yielded up to 3 g/t Au, although no gold nuggets were recognized within this mineral. More than likely, gold occurs as micro-inclusions in other sulfides within pyrite (Dagallier et al., 1988). According to a study performed by the TSMIGRI institute in 1970 (URSS), gold is foremost distributed in pyrite and arsenopyrite, then with galena and sphalerite (see Saint-Gal de Pons, 1975).

9.3- Geochemistry of the Tamerzaga-Timrachine Formation Altered Volcanic Rocks

In May 2013, Maya Gold and Silver appointed Dr. Abdelkhalek Alansari from the Université Cadi Ayyad, Marrakech to conduct a sampling study of the altered TTF Formation including the polymetallic mineralized veins, wallrocks, muck piles and tailings located within the confines of Permit # 2958. The Lower Ignimbrite unit and andesitic flows of TTF underwent several episodes of hydrothermal alteration which profoundly modified their chemical composition. Early widespread propylitization affected the volcanic rocks to the limits of the property. In intermediate rocks, the amphiboles and pyroxenes were altered into pseudomorphs of chlorite-calcite-epidote-rutile. A local phyllic episode, characterized by a quartz-sericite-pyrite paragenesis affected the volcanic hosts up to 40 m beyond the mineralized veins. This late alteration overprinted the pervasive propylitized rocks and conferred a bleached aspect to the rocks. Finally, a less documented late episode of pervasive silicification probably related to precious metal mineralization affected the host rocks.

88

Major and trace element analyses of altered rocks can document the degree and types of alteration undergone by the TTF volcanic rocks. Some elements (ex: Si, Mg, Ca, Na, K, Sr, Rb, Cs and Ba) are considered "mobile" during hydrothermal process. This implies that aqueous fluids can leach and transport these elements from a rock and/or deposit them at distance in other lithologies causing local enrichment. Other elements (ex: Al, Ti, Zr, Nb, Ta, some rare earth elements) are effectively deemed "immobile" and are not complexed and transported by aqueous solutions and thus remained in the original rock. Immobile and mobile elements are used to classify the TTF rock types and to monitor the chemical effect brought by hydrothermal alteration.

The geochemical database includes 38 new major and trace element analyses accompanied by data selected from past dissertations (Ait Sasdi, 1992; Abia, 2001) and a scientific paper (Abia et al., 2003) (Tables 9 and 10)(see Figures 32 and 33). The sampling sites were not provided in either PhD thesis, but the author believes that most rock specimen were gathered on the periphery of the mineralized and altered zones, outside the bowl shaped-depression where the Boumadine mine is located. In their thesis, Ait Sasdi (1992) and Abia (2001) referred to several sites characterized by moderately steep hills where they described the stratigraphy and collected their samples. Therefore, the author is of the opinion that the historical geochemical data represent the least altered rocks of the TTF. The recent sampling campaign provided an inventory of rock compositions representative of the alteration process affecting the TTF rocks (see Figure 31). As seen in Figure 31, the sampling carried out in 2013 covers most of the exposed areas attributed to the altered TTF Formation and is considered representative in term of spacing and density. Since all principal lithologies were collected, there are no factors that may have resulted in sample bias.

Classification of the TTF intermediate and felsic volcanic rocks using standard major element plots is rejected since even the least altered rocks underwent significant alteration affecting notably the alkali and alkaline elements. We instead employed

immobile elements ratio such the Nb/Y vs. Zr/TiO2 binary plot of Winchester and Floyd (1977). The diagram shows that the TTF rocks exposed at the mine site (i.e. ignimbrite, tuffs, lavas, felsic domes/dykes) are composed principally of rhyolite-rhyodacitic rocks, with some andesite compositions (Figure 34). Since this plot only included the most

89 Table 9. Major and trace element geochemistry of grab rock samples collected from the Tamerzaga-Timrachine Formation during the 2013 exploration campaign.

Sample SiO2 (wt. %) Al2O3 Fe2O3T FeO CaO MgO Na2OK2O TiO2 MnO P2O5 LOI Total Ba (ppm) Cr Cs Ga Hf Nb Rb Sn Sr Ta Th U V Y Zr La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb

Andesite dyke Andesite dyke

2320 65.00 14.45 6.58 5.92 1.28 1.86 4.01 3.66 0.97 0.11 0.26 3.00 101.32 1205 10 0.81 18.2 5.70 10.40 92.3 2.0 70.6 0.70 8.27 4.85 68 37.00 195.00 25.40 54.70 6.60 26.70 5.90 1.31 6.08 0.97 6.92 1.43 4.02 0.61 3.67

Andesite flow

2326 65.30 15.75 4.97 4.47 1.10 0.61 3.40 5.79 0.64 0.05 0.17 2.50 100.41 1015 90 3.39 18.7 4.20 6.80 155.0 2.0 88.8 0.50 7.43 2.69 83 13.70 150.00 24.20 54.80 5.83 20.90 3.90 0.91 2.93 0.41 2.37 0.46 1.39 0.20 1.34 2334 64.80 14.75 4.01 3.61 2.36 1.10 2.87 3.62 0.44 0.07 0.12 3.99 98.24 953 20 3.24 18.6 5.10 10.10 139.5 2.0 103.5 0.80 10.55 4.58 39 24.50 183.00 33.70 66.80 7.34 26.90 5.26 0.79 4.36 0.64 4.30 0.83 2.52 0.38 2.41 4509 67.80 12.95 5.33 4.80 0.18 0.73 0.11 4.56 0.78 0.03 0.16 7.18 99.92 717 60 2.05 21.4 5.10 9.50 191.5 63.0 125.5 0.60 6.47 2.25 96 15.30 194.00 18.90 33.60 4.06 14.50 2.86 0.68 2.51 0.41 2.62 0.56 1.62 0.25 1.79

Ryolite dyke/dome (Chonolith)

2249 74.20 12.60 1.78 1.60 0.31 0.32 1.52 6.51 0.11 0.02 0.01 1.59 99.08 965 20 3.62 16.6 6.30 12.00 181.5 2.0 29.7 0.90 13.30 3.72 33 18.40 215.00 21.80 41.00 4.22 15.60 3.09 0.33 2.78 0.44 3.33 0.73 2.35 0.39 2.85 2305 72.50 13.55 3.11 2.80 0.86 0.86 3.07 3.81 0.34 0.06 0.12 2.26 100.65 1010 20 2.25 16.5 4.80 8.90 130.0 2.0 71.3 0.80 10.75 4.24 27 14.90 170.00 30.50 62.80 6.65 23.40 3.97 0.54 3.06 0.46 2.70 0.54 1.53 0.24 1.68 2321 79.90 11.20 0.78 0.70 0.36 0.16 2.76 4.99 0.07 0.03 0.03 1.37 101.71 546 30 1.42 10.6 4.10 10.00 118.0 1.0 35.8 1.00 12.25 3.24 6 14.00 95.00 9.00 20.70 2.43 9.60 2.24 0.54 2.11 0.38 2.54 0.55 1.65 0.31 2.01 2323 77.40 12.35 1.04 0.94 0.46 0.13 3.00 5.12 0.20 0.03 0.07 1.50 101.39 752 30 1.11 11.2 4.90 10.20 134.0 1.0 72.0 0.70 11.55 3.48 29 18.80 166.00 25.80 53.30 6.06 21.60 3.97 0.87 3.12 0.47 2.97 0.64 1.87 0.30 1.88 2336 62.90 14.10 4.35 3.91 3.92 1.44 4.54 2.26 0.73 0.12 0.19 4.74 99.50 1755 40 1.70 15.5 3.80 6.80 78.8 2.0 191.0 0.50 5.89 2.87 79 28.90 137.00 70.10 136.50 14.40 50.80 8.39 1.63 6.85 0.93 5.25 1.02 2.68 0.39 2.30 4507 77.40 11.15 1.69 1.52 0.13 0.50 1.90 4.66 0.06 0.03 0.02 1.70 99.31 612 20 4.66 13.9 4.20 11.30 144.5 7.0 40.2 1.30 15.25 4.38 11 16.60 84.00 7.30 14.00 2.05 7.50 1.99 0.35 1.77 0.34 2.55 0.62 1.93 0.34 2.41 4412 84.20 7.21 1.11 1.00 0.19 0.07 1.23 3.81 0.04 0.03 0.02 1.36 99.36 757 30 0.68 8.4 4.10 9.10 103.0 2.0 32.6 0.70 9.55 2.09 10 15.50 103.00 4.80 10.60 1.27 4.70 1.19 0.16 1.50 0.27 2.16 0.51 1.87 0.28 1.96 4413 78.20 9.66 1.03 0.93 0.75 0.18 1.50 4.78 0.05 0.05 0.05 1.63 97.99 912 30 0.97 15.5 5.60 9.60 135.5 3.0 42.3 0.80 13.10 3.07 35 23.40 136.00 39.00 79.10 9.17 32.30 5.65 0.61 4.33 0.61 3.85 0.83 2.75 0.44 2.94 4414 78.00 10.60 1.80 1.62 0.65 0.20 1.74 5.38 0.15 0.04 0.03 1.59 100.27 759 30 1.56 11.9 5.80 8.30 137.0 1.0 26.8 0.60 10.40 3.61 29 15.30 198.00 52.70 101.00 10.40 34.50 5.04 1.24 3.50 0.42 2.57 0.51 1.61 0.26 1.99 4415 93.00 2.37 0.87 0.78 0.67 0.10 0.02 1.22 0.03 0.02 0.01 0.96 99.30 209 30 0.48 4.5 1.40 3.60 38.3 1.0 7.9 0.10 2.93 1.31 17 6.40 38.00 9.00 16.40 1.89 6.10 0.94 0.21 0.87 0.11 0.85 0.17 0.57 0.09 0.61

Rhyolite, ignimbrite, tuff (moderately to strongly altered)

2239 80.40 9.69 1.98 1.78 0.34 0.51 0.02 3.24 0.14 0.05 0.06 2.87 99.42 1050 10 1.86 15.0 4.90 9.00 153.0 7.0 55.8 0.70 10.55 3.75 12 26.80 150.00 28.90 60.60 6.70 24.50 5.15 0.59 4.78 0.75 4.78 0.97 2.54 0.38 2.40 2240 81.20 10.10 2.11 1.90 0.22 0.33 1.74 2.95 0.14 0.02 0.02 2.20 101.28 2220 20 2.23 13.4 4.80 8.20 117.5 2.0 79.2 0.60 9.02 4.19 6 21.10 177.00 37.40 72.50 8.19 29.30 5.68 0.66 4.24 0.61 3.70 0.78 2.39 0.36 2.13 2241 57.50 7.85 12.15 10.93 0.51 0.35 0.08 4.28 0.21 0.02 0.08 15.50 98.56 269 30 0.91 30.6 5.50 11.70 133.5 18.0 29.6 0.80 10.30 4.30 19 25.20 177.00 21.00 44.00 4.93 19.00 4.14 0.55 3.70 0.65 4.28 0.89 2.67 0.42 2.51 2243 80.80 9.81 2.12 1.91 0.43 0.42 0.03 3.14 0.16 0.02 0.02 3.77 100.75 268 10 0.97 15.8 6.30 11.10 125.5 29.0 16.1 0.90 12.70 7.76 9 24.50 196.00 19.40 39.90 4.35 15.50 3.40 0.49 2.98 0.52 4.03 0.91 2.73 0.42 2.70 2244 82.40 9.12 1.02 0.92 0.33 0.58 0.02 2.94 0.16 0.02 0.02 3.23 99.87 328 10 1.40 14.8 5.50 11.50 134.0 11.0 16.1 0.90 13.05 4.23 8 28.40 178.00 34.70 72.20 8.27 30.50 6.30 0.76 5.49 0.79 5.13 1.04 3.13 0.44 2.81 2245 77.90 10.65 1.20 1.08 0.25 0.16 0.08 7.16 0.08 0.01 0.03 1.57 99.20 997 10 1.51 10.0 5.70 15.70 220.0 1.0 54.6 1.50 19.55 6.06 8 27.60 148.00 27.70 57.80 6.34 21.80 4.10 0.27 3.44 0.62 4.51 1.04 3.22 0.52 3.46 2246 76.60 13.20 1.22 1.10 0.17 0.73 0.03 4.31 0.35 0.03 0.05 3.40 100.12 324 30 1.69 18.6 5.60 11.40 200.0 3.0 15.9 0.80 11.70 4.91 33 23.00 186.00 28.70 58.40 6.51 23.50 4.55 0.67 3.63 0.56 3.82 0.83 2.57 0.39 2.58 2248 71.90 12.60 2.63 2.37 1.22 0.64 3.12 2.86 0.31 0.04 0.09 2.55 98.05 727 20 1.93 15.3 4.40 8.00 107.5 1.0 98.5 0.60 9.38 4.04 23 16.20 163.00 25.20 49.80 5.26 19.60 3.87 0.58 3.16 0.43 2.97 0.61 1.88 0.27 1.63 2311 90.30 3.73 2.43 2.19 0.28 0.23 0.02 0.98 0.17 0.01 0.03 2.04 100.24 133 20 2.15 6.7 2.80 9.10 47.0 21.0 46.6 0.60 10.85 3.18 11 13.80 87.00 20.90 42.10 4.67 15.50 2.85 0.63 2.18 0.35 2.26 0.50 1.42 0.25 1.59 2317 79.40 4.25 6.27 5.64 0.40 0.36 0.01 2.09 0.07 0.03 0.03 5.98 98.94 511 10 0.70 10.2 4.10 7.00 78.7 18.0 22.3 0.70 9.82 4.30 8 17.90 120.00 21.10 45.10 4.87 18.00 3.30 0.47 2.60 0.45 2.91 0.68 2.09 0.32 2.07 2319 68.30 12.55 3.73 3.36 4.00 0.97 2.83 3.32 0.31 0.10 0.12 4.36 100.71 924 20 2.27 14.9 4.10 7.40 106.5 2.0 117.0 0.60 8.61 3.25 28 22.90 142.00 33.20 65.70 7.15 25.40 4.74 0.68 4.10 0.59 3.86 0.83 2.45 0.35 2.58 2324 77.90 11.35 1.14 1.03 0.43 0.19 2.69 5.09 0.09 0.03 0.03 1.52 100.58 1100 30 1.19 11.3 4.10 8.60 131.5 2.0 51.1 0.80 11.85 7.14 9 17.30 128.00 10.10 22.30 2.85 10.80 2.38 0.46 2.57 0.40 2.84 0.60 1.66 0.28 1.93 2325 83.10 6.42 2.56 2.30 0.21 0.48 0.01 2.37 0.17 0.02 0.04 3.14 98.57 429 30 3.23 10.1 3.90 6.70 113.5 5.0 28.3 0.50 7.48 2.81 17 13.40 127.00 17.90 38.00 4.28 15.30 3.20 0.36 2.51 0.35 2.34 0.51 1.49 0.24 1.52 2327 71.00 10.25 6.21 5.59 0.25 0.10 1.18 5.57 0.38 0.01 0.09 5.71 100.86 871 20 1.29 12.3 4.10 10.70 152.5 21.0 115.0 0.90 10.70 6.38 19 15.70 125.00 19.70 35.70 3.85 14.30 2.64 0.47 2.22 0.37 2.47 0.61 1.78 0.32 2.02 2328 61.40 16.20 5.75 5.17 1.77 2.33 4.78 3.33 0.67 0.12 0.25 3.28 100.06 1305 50 2.02 18.3 5.00 9.00 96.8 1.0 232.0 0.60 7.84 2.92 80 21.00 192.00 29.00 58.90 6.73 24.90 4.96 1.17 4.26 0.65 3.91 0.80 2.19 0.39 2.10 2330 78.70 9.78 2.10 1.89 1.36 1.02 0.07 3.35 0.13 0.16 0.03 3.39 100.36 2310 10 4.62 11.7 3.90 7.80 121.0 1.0 42.2 0.60 9.48 3.02 14 25.30 118.00 28.10 58.10 7.14 27.50 5.63 0.65 5.18 0.77 4.74 0.94 2.63 0.36 2.24 2331 55.40 12.60 19.30 17.37 0.36 0.65 0.02 3.69 0.35 0.04 0.10 5.52 98.10 588 20 3.24 19.0 3.80 7.20 183.0 26.0 51.2 0.60 8.25 4.14 61 15.40 134.00 12.10 24.10 2.99 11.10 2.52 0.65 2.42 0.37 2.35 0.51 1.56 0.26 1.64 2332 83.40 7.50 1.38 1.24 0.46 0.29 0.08 5.00 0.03 0.02 0.01 1.57 99.80 477 50 2.58 8.9 2.80 7.10 132.0 2.0 24.5 0.80 9.67 1.98 13 8.90 59.00 5.80 10.90 1.73 6.30 1.45 0.26 1.30 0.27 1.58 0.36 1.06 0.20 1.47 2333 60.40 12.10 7.89 7.10 3.27 3.39 2.01 3.30 1.00 0.21 0.28 5.70 99.73 1405 100 1.37 16.2 4.40 8.10 93.6 2.0 119.5 0.50 7.00 4.43 165 26.40 157.00 42.00 87.50 9.88 37.30 6.93 1.99 5.74 0.79 4.93 1.00 2.83 0.42 2.64 2337 69.40 14.00 3.39 3.05 0.67 1.02 3.75 3.59 0.36 0.07 0.11 2.01 98.49 1025 20 1.85 17.4 4.80 9.50 113.0 3.0 129.5 0.80 10.85 4.14 32 16.60 174.00 29.70 57.60 6.43 22.90 4.39 0.53 3.67 0.48 3.16 0.66 1.83 0.28 1.77 2338 72.80 13.75 2.24 2.02 0.15 1.16 1.62 4.00 0.22 0.11 0.04 2.88 99.06 785 20 3.29 19.5 5.90 11.60 160.5 5.0 40.8 0.90 13.25 4.01 17 31.90 186.00 34.90 71.20 8.50 31.70 6.69 0.93 5.91 0.90 5.91 1.21 3.45 0.48 3.28 2338 79.40 10.45 1.66 1.49 0.38 0.20 0.08 6.56 0.10 0.01 0.02 1.72 100.74 1425 20 3.57 9.7 5.40 9.80 186.0 2.0 57.8 0.70 11.25 3.80 8 22.90 169.00 28.30 59.90 6.10 22.00 4.68 0.49 3.79 0.62 3.96 0.89 2.51 0.38 2.43 2339 52.80 6.23 25.70 23.12 2.62 0.31 0.71 2.49 0.17 0.03 0.15 8.28 99.55 434 20 4.40 12.2 2.50 7.00 93.9 20.0 124.5 0.70 7.46 6.08 51 12.80 91.00 14.00 25.50 2.57 8.60 1.99 0.40 1.86 0.34 2.17 0.45 1.34 0.21 1.27 2340 81.10 9.03 1.30 1.17 0.13 0.33 0.04 4.35 0.08 0.01 0.02 1.71 98.37 2520 20 2.52 10.9 4.30 12.60 165.0 6.0 63.6 1.10 17.25 7.44 7 21.90 122.00 34.80 72.20 7.82 27.40 5.34 0.26 4.06 0.56 3.76 0.79 2.59 0.41 2.77 4403 91.90 1.88 3.39 3.05 0.17 0.06 0.02 0.77 0.14 0.01 0.03 3.14 101.53 185 10 0.22 10.1 5.10 8.50 22.4 38.0 30.7 0.70 10.00 4.67 -5 21.30 146.00 23.20 43.50 4.92 17.10 3.39 1.06 3.10 0.50 3.36 0.71 2.38 0.35 2.43 4404 79.80 4.56 5.13 4.62 1.20 0.23 0.01 1.26 0.13 0.02 0.04 2.91 98.80 10000 10 0.49 15.4 4.90 8.10 48.5 35.0 392.0 0.90 9.42 2.87 9 20.30 145.00 15.10 30.10 3.53 13.00 2.73 0.33 2.79 0.43 3.10 0.68 2.32 0.36 2.46 4405 79.10 8.18 6.26 5.63 0.16 0.32 0.04 2.42 0.22 0.03 0.04 2.97 99.84 788 20 0.70 12.9 4.10 7.90 96.0 31.0 28.6 0.50 8.15 2.80 24 17.40 126.00 12.40 24.70 2.83 10.00 2.15 0.32 2.25 0.40 2.96 0.60 1.84 0.28 1.91 4406 87.20 7.86 0.59 0.53 0.12 0.28 0.04 2.34 0.06 0.02 -0.01 2.31 100.89 597 20 1.00 14.2 3.60 7.30 90.3 3.0 14.3 0.50 7.87 0.73 6 14.50 106.00 19.50 39.40 4.52 16.20 3.07 0.28 2.67 0.38 2.31 0.48 1.53 0.24 1.60 4409 86.90 4.91 3.47 3.12 0.09 0.23 0.03 1.73 0.24 0.01 0.09 3.29 101.07 550 50 0.79 12.0 1.60 3.10 70.9 13.0 56.2 0.10 3.80 3.15 33 12.80 57.00 79.60 155.50 16.75 54.10 7.33 2.11 4.56 0.52 2.47 0.41 1.11 0.13 0.83 4410 68.20 0.68 14.15 12.73 0.21 0.05 0.03 2.36 0.52 0.01 0.05 12.70 99.02 499 30 0.28 9.2 4.00 6.50 53.2 26.0 25.4 0.50 5.45 3.34 10 10.10 137.00 8.50 17.10 1.93 7.00 1.25 0.54 1.30 0.22 1.49 0.33 1.09 0.16 1.20 4505 61.80 14.55 7.08 6.37 1.47 1.78 3.72 4.18 1.20 0.13 0.34 3.18 99.56 1045 10 1.09 20.0 6.90 11.60 114.5 2.0 81.8 0.80 9.93 5.92 143 39.40 243.00 25.20 46.10 7.44 30.30 7.65 2.11 7.22 1.14 6.99 1.42 3.85 0.60 3.57

Felsic-Intermediate intrusive rock Felsic-Intermediate intrusive rock

2250 64.80 14.90 4.07 3.66 2.30 1.15 3.86 3.26 0.43 0.06 0.14 3.68 98.78 1010 20 2.59 19.5 5.60 10.00 111.5 2.0 158.0 0.70 10.55 4.49 41 22.70 198.00 34.00 67.70 7.36 25.90 5.16 1.02 4.30 0.65 3.99 0.83 2.58 0.38 2.43 2329 69.30 14.85 3.03 2.73 1.22 0.70 3.33 3.78 0.34 0.07 0.09 2.77 99.65 1410 20 2.92 19.2 5.70 10.80 146.0 2.0 113.5 0.80 12.40 5.62 25 24.50 203.00 41.10 71.70 8.30 29.60 5.68 0.87 4.32 0.68 4.15 0.89 2.74 0.40 2.56

90 E=542390 mE PE2959 N=92602 mN Imariren Zone TTF Formation (Upper Proterozoic 553±16 Ma) “Least altered” Ignimbrite, rhyolite, North Dacite-rhyodacite tuff, andesite Shaft #2 (Imariren) Zone Late rhyolite dome/dyke (Chonolith) Tailings Intermediate-felsic Shaft A Shaft #5 Intrusive rock Tizi Shaft #3 Zone Central Zone Central Shaft B Zone

Ancient Mining Installations

Pyrophyllite

Shaft #4 Mine

Shaft #4 Source: This study Southern Zone Polymetallic veins (Au, Ag, Zn, Pb, Cu) 0 200 500 m PR34565 E=546390 mE N=88602 mN

Figure 31. Localization of grab rock samples of the Timrachine-Tamerzaga Formation (TTF) analyzed for their major and trace element contents. Projected coord.; Merchich, Nord Maroc.

91 Source: Dr. Alansari, Morocco

Figure 32a.M oderately-oxydized/silicifiedlayered rhyolitic tuff exposed within the TTF. UTM Coord.: Merchich, Nord Maroc; Easting=544351, Northing=91131.

Source: Dr. Alansari, Morocco

Figure 32b. Strongly oxydized intermediate-felsic volcanic rock of the TTF invaded by numerous sub-parallel quartz veinlets. UTM Coord.: Merchich, Nord Maroc; Easting=543571, Northing=90470.

92 Source: This study Source: This study

Figure33 a. Silicified and pyritized rhyolite of the TTF cut by Figure33 b. Slightly oxydized and silicified felsic volcanic rock collected a shallow-dipping west-verging shear zone. UTM Coord.: from the TTF. UTM Coord.: Merchich, Nord Maroc; E=544690, N=91485. Merchich, Nord Maroc;E= 545144 , N =91091.

93 recent geochemical analyses, the overall rock composition is biased toward a felsic component. These reflect the superposed phenocryst-rich and phenocryst-poor welded sheets of the Lower Ignimbrite. The historical data provided by Ait Sasdi, (1992) and Abia (2001) indicate several rocks of andesitic composition related to the injection of porphyritic sills or flows. Other high felsic rocks comprise late rhyolitic intrusions (ovoid domes/ dykes oriented N160°E to N-S) termed "chonolith" by Abia et al. (2003) and Ait Sasdi (1992).

The geochemical composition of the altered TTF rocks reflect the modification brought by several episodes of hydrothermal alteration and it is somewhat difficult to distinguish between each chemical gains or loss attributed to one event. Two key binary plots portraying the alteration in volcanic rocks i.e. 2Ca+Na+K/Al (Molar) vs. K/Al (Molar) (Figure 35) and Alteration Index vs. CCP Index (Figure 36) clearly show the altered nature of most rhyolitic-rhyodacitic samples collected in the vicinity of the zones of polymetallic vein mineralization. The first plot using molar constituents illustrates the strong Na and Ca loss experimented by the rocks accompanied by potassium enrichment. The rock compositions trend toward the Kaolinite-Illite (Sericite)-K-Feldspar line, principally toward the illite (sericite) segment attesting the strong sericitization. However,

Figure 37 (Alteration Index vs. K2O wt. %) suggests that this type of hydrothermal alteration is mostly related to loss of Na and Ca. The Alteration Index

(100*(K2O+MgO))/(K2O+MgO+Na2O+CaO) vs. CCP Index

100*(MgO+FeO)/(MgO+FeO+Na2O+K2O) plot includes MgO and FeO and helps define the degree of pyrite and chlorite alteration. In the case of the TTF rocks, the diagram expresses principally the intensity of pyrite-sericite alteration, although chlorite may be present in the propylitized altered rocks. Note that most of the samples collected by Abia (2001) and Ait Sasdi (1992) fall in the "least altered felsic rocks" box.

Late silicification was also pervasive. The geochemical data contains 27 rocks (57%)

with SiO2 values > 72 wt. % some reaching 93 wt. % (72.8-93.0 wt. %; Table 9).

Unaltered "high-silica" rhyolites commonly contain a maximum of 75-77 wt. % SiO2 and show different trace element characteristics relative to the calc-alkaline Boumadine

94 Table 10. Major and trace element geochemistry of least altered grab rock samples collected from the Tamerzaga-Timrachine Formation. Data from Saidi (1992) and Abia (2001).

* Sample SiO2 (wt. %) Al2O3 Fe2O3 FeO MnO MgO CaO Na2OK2O TiO2 P2O5 H2O Total La (ppm) Ce Nd Sm Eu Gd Dy Er Yb Lu Ba V Rb Ni Th Sr Cr Zn Y Nb Zr

BM600 72.79 13.76 2.07 1.86 0.06 0.62 0.92 3.60 4.28 0.20 0.02 1.71 100.18 BM152 67.31 14.44 3.18 2.86 0.06 0.77 2.43 3.75 4.10 0.32 0.20 3.55 99.42 22.52 49.25 17.98 3.99 0.66 3.54 2.77 1.68 1.73 0.24 BM30 65.45 15.57 3.90 3.51 0.05 1.18 1.89 4.17 4.15 0.45 0.26 2.46 100.58 29.79 60.07 23.89 5.13 1.07 4.37 3.93 2.28 2.22 0.34 BM182 59.91 15.32 6.16 5.54 0.09 0.78 4.36 3.20 2.74 0.76 0.08 5.81 98.94 BM183 61.05 16.45 6.58 5.92 0.01 1.35 2.33 4.74 2.64 0.72 0.17 3.72 101.96 BM187 72.73 11.83 2.32 2.09 0.06 0.40 2.79 3.30 3.03 0.19 0.00 3.19 98.74 BM264 69.63 13.24 3.13 2.82 0.12 0.86 3.09 3.65 2.05 0.32 0.00 4.41 98.91 BM143 78.23 11.60 2.01 1.81 0.07 0.47 0.36 3.25 2.58 0.20 0.00 1.49 100.58 BM184 74.61 11.30 2.59 2.33 0.05 0.41 2.06 2.67 2.83 0.16 0.00 3.27 99.01 BM192 55.14 18.40 6.15 5.53 0.13 3.67 3.75 6.70 0.06 0.80 0.08 5.33 100.41 BM56 61.43 15.74 6.81 6.13 0.13 2.68 2.08 6.16 0.00 0.76 0.23 3.71 102.15 BM193 64.39 14.42 4.55 4.09 0.13 1.56 3.49 5.92 0.49 0.63 0.13 4.05 99.80 BM55 50.01 12.56 9.63 8.67 0.18 4.07 7.71 2.05 1.34 0.98 0.23 9.94 97.43 BM67 50.76 17.30 9.48 8.53 0.23 3.86 6.77 2.90 1.68 1.07 0.25 5.51 102.83 23.50 51.65 20.98 4.39 1.10 3.80 3.39 1.80 1.72 0.17 BM10 57.93 16.44 6.52 5.87 0.29 3.05 2.25 2.03 4.93 0.85 0.19 4.52 100.35 BM9 59.92 16.28 6.20 5.58 0.10 2.59 4.02 3.19 2.69 0.84 0.23 4.01 101.64 BM700 59.23 15.92 6.14 5.52 0.21 3.48 3.19 3.65 2.60 0.73 0.20 5.00 100.87 BM146 57.92 16.37 6.27 5.64 0.15 2.34 2.94 4.00 3.33 0.76 0.11 4.32 99.83 BM406 62.88 14.41 6.93 6.24 0.10 0.87 1.94 4.20 3.90 1.06 0.38 2.84 102.91 33.57 77.49 34.52 7.60 1.48 7.10 5.99 3.35 3.23 0.47 BM151 60.25 16.58 6.30 5.67 0.09 2.32 1.22 4.45 4.05 0.76 0.12 2.97 101.81 22.57 51.70 19.72 4.41 0.87 4.02 3.91 2.22 1.89 0.27 BM174 62.07 16.22 6.81 6.13 0.07 0.89 0.87 5.07 5.05 0.66 0.20 1.89 104.04 12.61 26.23 11.61 2.68 0.64 2.14 2.05 1.35 1.33 0.21 BM144 63.33 16.12 4.21 3.79 0.08 0.54 1.83 5.00 4.64 0.57 0.11 2.31 100.22 BM190 78.39 11.09 1.27 1.14 0.03 0.35 0.42 2.64 3.19 0.10 0.00 1.13 98.62 BM198 73.76 13.01 2.39 2.15 0.04 0.23 0.00 4.01 5.07 0.14 0.00 0.91 100.80 BM81 76.44 11.96 0.72 0.65 0.03 0.28 0.00 2.33 6.44 0.14 0.00 0.95 98.99 10.71 28.26 9.38 2.73 0.50 2.61 3.30 2.21 2.46 0.36 BM175 77.25 11.55 1.04 0.94 0.02 0.21 0.02 2.55 5.84 0.11 0.04 0.96 99.57 12.36 31.58 12.94 3.56 0.44 2.53 2.80 1.87 2.24 0.26 BM176 77.08 12.70 1.01 0.91 0.03 0.10 0.00 3.42 4.81 0.10 0.00 1.09 100.16 113 65.55 15.43 3.87 3.48 0.05 1.13 2.01 4.18 4.15 0.35 0.26 2.86 100.46 26.16 54.66 20.93 4.56 0.86 3.95 3.35 1.98 1.97 0.29 848 21 111 59 10 98 17 44 23 16 181 1151 66.20 15.27 4.27 3.84 0.07 1.53 2.87 4.13 3.81 0.49 0.15 1.72 102.63 118 67.14 15.18 3.73 3.36 0.06 1.46 2.06 4.24 3.93 0.23 0.26 2.35 101.65 21.78 59.12 18.33 4.96 1.07 2.98 2.98 2.09 1.87 0.31 1020 70 81 26 12 140 18 29 15 10 101 1116 63.96 17.47 6.26 5.63 0.18 2.16 0.18 0.06 4.32 0.96 0.22 4.44 101.40 925 25 123 31 7 96 26 43 19 5 181 IT4 79.19 9.86 2.35 2.11 0.37 0.68 0.37 2.50 6.54 0.05 0.00 0.37 104.02 IT6 80.12 10.60 2.34 2.11 0.12 0.74 0.12 2.48 2.68 0.12 0.02 1.86 101.45 AN36 56.12 16.38 7.16 6.44 4.76 3.67 4.76 3.71 2.06 0.79 0.09 4.59 105.94 770 120 77 25 7 253 22 97 29 7 153 An2 58.91 16.30 6.52 5.87 4.16 2.42 4.16 3.78 3.77 0.35 0.21 3.79 106.45 26.55 60.28 25.07 5.47 1.15 4.97 4.43 2.46 2.28 0.30 713 164 68 39 9 194 43 46 21 8 114 AN67 60.55 15.64 5.67 5.10 5.32 3.84 5.32 3.31 2.66 0.72 0.15 2.31 108.28 VF7 74.06 12.19 2.01 1.81 1.31 0.76 1.31 3.07 5.32 0.12 0.16 1.45 102.12 716 6 105 31 15 41 24 22 13 12 93 VF1 71.62 12.82 3.13 2.82 0.68 0.83 0.68 2.45 6.20 0.26 0.17 1.47 101.66 24.67 44.71 19.52 4.57 0.70 5.70 2.83 1.74 1.69 0.39 995 26 159 22 5 48 19 36 14 10 102 VF11 71.10 13.30 3.07 2.76 0.92 1.48 0.92 2.29 5.92 0.31 0.05 1.42 102.12 RC9 76.44 11.96 0.72 0.65 0.00 0.28 0.00 2.33 6.44 0.14 0.00 0.95 98.96 1395 9 138 51 34 21 5 112 RC13 77.25 11.55 1.04 0.94 0.02 0.21 0.02 2.55 5.84 0.11 0.04 0.96 99.57 1220 5 173 53 53 15 5 76 BMA 81.74 8.60 2.06 1.85 0.04 0.61 0.00 0.01 3.02 0.13 0.01 3.87 98.07 BMB 82.22 9.50 0.34 0.31 0.02 0.37 0.01 0.56 3.98 0.12 0.00 1.67 97.43 BM244 74.48 14.98 1.43 1.29 0.03 0.47 0.00 0.07 4.47 0.29 0.00 3.58 97.51 BMS9 80.28 9.64 3.40 3.06 0.02 0.16 0.00 0.05 2.85 0.18 0.00 3.40 99.64 BMC7 75.72 10.93 4.05 3.64 0.13 0.29 0.00 0.07 3.86 0.15 0.01 4.10 98.85 BMC6 63.96 17.47 6.26 5.63 0.18 2.16 0.18 0.06 4.32 0.96 0.22 4.44 101.40 BM259 80.29 10.95 0.89 0.80 0.02 0.38 0.00 0.06 6.31 0.05 0.00 1.34 99.75 BM78 68.34 11.34 1.47 1.32 0.02 0.14 0.00 1.93 5.19 0.07 0.00 1.34 89.82 BM403 43.68 17.52 12.25 11.02 0.18 1.59 18.27 0.05 0.49 1.25 0.36 1.07 106.66 BM402 58.25 16.36 7.34 6.60 0.10 3.29 1.77 4.83 3.84 0.86 0.23 2.24 103.47 * Anhydrous

95 1

TTF Formation (Upper Proterozoic 553±16 Ma)

“Altered” ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite

Late rhyolite dome/dyke Rhyolite (Chonolith), terminal ignimbrite

Intermediate-felsic 0.1 Intrusive rock Trachyte Rhyodacite-

2 Dacite Trachyandesite

Zr/TiO Andesite

0.01 Andesite- Basalt Alkali basalt

Source: Winchester and Floyd (1977) and this study. 0.001 0.01 0.1 1 10 Nb/Y

Figure 34. Nb/Y vs. Zr/TiO2 classification plot for volcanic rocks using immobile trace element ratios. This plot provides the closest approximation of the true rock nomenclature for the Tarmazaga-Timrachine altered volcanic rocks which are located within the fields of andesite, rhyodacite-dacite and rhyolite compositions. Data from Table 9.

96 K-Feldspar- Biotite 1.0 TTF Formation (Upper Proterozoic 553±16 Ma)

“Least altered” Ignimbrite, rhyolite, 0.8 Dacite-rhyodacite tuff, andesite “Altered” ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite

Late rhyolite dome/dyke (Chonolith), terminal ignimbrite

0.6 Intermediate-felsic Intrusive rock

0.4 Least altered

K/Al (Molar) rhyolitic rock K gain, Na, Ca lost

0.2 Illite K, Na, Ca lost

Source: This study Least altered andesitic rock 0.0 0.0 0.2 0.4 0.6 0.8 1.0Albite- 1.2 1.4 Kaolinite- Plagioclase Chlorite 2Ca+Na+K/Al (Molar) Figure 35. 2Ca+Na+K/Al (Molar) vs. K/Al (Molar) plot showing the strong alteration of volcanic rocks of the TTF surrounding the Boumadine mineralization. The altered rocks principally express strong Ca and Na loss and K gain associated with the phyllic alteration. Boxes enclosing the least altered rhyolitic and andesitic rocks are reported on the diagram as well as the composition of alteration minerals. Data from tables97 9 and 10. rhyolitic-rhyodacitic rocks. Part of the silica enrichment affecting the Boumadine rocks must be related to alteration processes. It is however difficult to distinguish between silicification associated with the quartz-sericite-pyrite hydrothermal event and a late event perhaps correlated to the precious metal mineralization (see Abia et al. 2003). The

imprint of silicification is clearly detected in the Al2O3 (wt. %) vs. Zr (ppm) binary plot (Figure 38). Aluminum and zirconium are considered immobile during alteration and

few unaltered intermediate to felsic rocks carry Al2O3 concentrations < 10 wt. %. The

trend toward very low Al2O3 and Zr values must be ascribed to dilution caused by the

introduction of silica during a hydrothermal event. A similar trend portrayed in the Al2O3

(wt. %) vs. K2O (wt. %) suggests that the decrease in potassium could be generated by a late silicification process overprinting the quartz-sericite-pyrite event (Figure 39).

Widespread wallrock late silicification may constitute a largely unrecognized alteration event at Boumadine. Mineralogical and fluid inclusions studies on the Boumadine ore carried out by Abia et al. (2003) have shown the precious metals (Ag and Au) and Sn, Bi mineralization to be a low temperature process (~ 150°) characterized by the deposition of quartz in dissolution cavities within all pre-existing sulfides (including galena) and as cross-cutting veinlets. The question arises whether the precious metal mineralization is confined to the polymetallic veins or extends outside in the wallrocks within a late silicification halo.

9.4- Geochemistry of the Boumadine Tailing Material, Polymetallic Veins, Mineralized Muck Piles and Wallrocks

Table 11 provides the assay data on mineralized material found at the Boumadine site, whereas Figure 40 show their localization. New and historical assays from the two dry- stacked tailings present at the site (Figure 40) indicate that most of the gold and silver in the Boumadine ore still rest in the tailings. Average concentrations of Au (2.80 g/t) and Ag (178 g/t) are similar to that reported in 1998 by the BRMP (i.e. 3.50 g/t Au and 200 g/t Ag; Table 11). Average arsenic (1.26 wt. %), iron (23.0 wt. %) and sulfur (21.2 wt. %) concentrations further imply that a large proportion of pyrite, pyrrothite and

98 Table 11. Compilation of precious and base metal assay values from samples of: a) tailings, b) muck piles, c) oxydized surface veins, d) Hercynuan veins, e) altered TTF rocks, Boumadine property.

Sample Au (g/t) Ag (g/t) S (wt.%) Fe (wt.%) Pb (wt.%) Zn (wt. %) Cu (wt.%) As (wt.%) Sb (wt. %) Bi (wt. %) Cd (wt. %) Sn (wt.%)

Tailings

BOUM_TAILINGS_1 2.73 224 21.50 23.70 0.20 0.62 0.05 1.20 0.03 <0.01 0.01 ---* BOUM_TAILINGS_2* 4.01 180 ------BOUM_TAILINGS_3* 2.70 171 ------BMF 1.85 133 16.00 19.40 0.07 1.15 0.09 1.04 0.03 <0.01 0.01 0.04 BMS 2.71 180 26.00 26.00 0.12 1.36 0.09 1.53 0.03 <0.01 0.03 0.04

Ore samples from muck piles

BOUM_ORE_1 2.41 539 40.40 --- 3.57 6.55 0.08 0.75 0.01 <0.01 0.06 <0.01 BOUM_ORE_2 2.63 174 33.00 29.90 0.61 2.37 0.08 1.37 0.03 <0.01 0.02 0.05 BOUM_ORE_BRPM* 3.50 200 35.00 29.00 1.50 3.80 0.20 2.00 --- <0.01 0.10 0.09 4408 0.60 45 >10.00 37.60 0.11 1.29 0.01 1.93 0.04 <0.01 0.01 0.01 4411 1.54 119 >10.00 23.90 1.69 4.04 0.07 0.83 0.02 <0.01 0.02 <0.01 2213 2.52 1130 >10.00 40.00 0.15 0.23 0.23 2.34 0.02 <0.01 --- <0.01 2313 3.14 267 >10.0 25.10 11.30 1.81 0.20 0.49 <0.01 <0.01 0.01 0.01 2314 1.63 53 >10.0 25.40 0.22 0.41 0.04 0.55 0.01 <0.01 0.00 0.00 2316 5.99 237 >10.0 25.20 0.49 3.29 0.25 1.95 0.03 <0.01 0.04 0.04 2335 1.79 99 >10.0 28.50 0.90 1.94 0.02 3.34 0.05 <0.01 0.01 <0.01 4503 3.70 69 >10.0 25.80 0.64 0.98 0.01 7.79 0.06 <0.01 0.00 <0.01 4515 7.01 339 >10.0 26.50 2.25 0.20 0.14 0.96 0.02 <0.01 0.00 0.02

Oxydized veins (iron cap)

2226 2.08 131 2.96 8.48 0.35 <0.01 <0.01 0.16 <0.01 <0.01 <0.01 0.01 2233 2.93 29 2.23 19.20 2.44 0.09 0.02 0.93 0.01 <0.01 <0.01 0.01 2235 1.17 21 3.05 22.80 0.62 0.08 0.02 8.15 0.02 0.02 <0.01 <0.01 2308 13.95 19 1.10 22.10 0.46 0.04 0.01 0.79 0.01 <0.01 <0.01 <0.01 2247 0.82 64 1.15 5.00 0.76 0.01 <0.01 0.00 0.19 <0.01 <0.01 <0.01 4512 9.76 86 0.52 13.90 0.46 0.29 0.01 0.72 0.01 0.01 <0.01 0.02 4513 1.03 33 0.84 27.90 0.05 0.10 0.01 1.59 0.01 <0.01 <0.01 <0.01 4514 1.35 58 1.00 5.40 0.63 0.05 0.01 0.12 0.01 0.46 <0.01 <0.01 4517 3.67 83 0.54 3.31 0.28 <0.01 0.01 0.24 0.02 <0.01 <0.01 <0.01

Alteration zone near mineralized veins (2-70 m)

99 Table 11. Compilation of precious and base metal assay values from samples of: a) tailings, b) muck piles, c) oxydized surface veins, d) Hercynuan veins, e) altered TTF rocks, Boumadine property.

Sample Au (g/t) Ag (g/t) S (wt.%) Fe (wt.%) Pb (wt.%) Zn (wt. %) Cu (wt.%) As (wt.%) Sb (wt. %) Bi (wt. %) Cd (wt. %) Sn (wt.%) 2311 (24 m) 0.24 8 0.07 1.61 0.02 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 2327 (?) 0.11 21 1.04 4.38 0.25 <0.01 <0.01 0.15 <0.01 <0.01 <0.01 <0.01 2339 (39 m) 0.36 8 0.90 17.35 0.13 0.01 <0.01 0.14 <0.01 <0.01 <0.01 <0.01 4504 (38 m) 0.31 10 0.09 1.25 0.02 <0.01 <0.01 0.03 <0.01 <0.01 <0.01 <0.01 4506 (70 m) 0.29 2 0.08 2.45 0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 4403 (2 m) 0.69 72 0.44 1.74 0.07 <0.01 0.01 0.04 0.01 <0.01 <0.01 <0.01 4404 (25 m) 0.37 27 0.73 3.28 0.15 0.01 <0.01 0.04 0.01 <0.01 <0.01 <0.01 4405 (48 m) 0.20 18 0.21 3.95 0.16 0.01 0.01 0.03 <0.01 <0.01 <0.01 <0.01 4406 (68 m) <0.01 3 0.00 0.34 0.00 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

ENE-oriented Pb-Cu-rich veins (Hercynian)

2223 <0.01 3 0.06 1.70 0.22 <0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 2224 0.01 58 0.35 0.84 9.10 0.01 0.09 <0.01 0.01 <0.01 <0.01 <0.01 2227 <0.01 19 0.16 0.42 2.59 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 2229 0.02 98 1.75 2.51 10.70 0.39 1.02 0.01 0.01 <0.01 <0.01 <0.01 2230 0.01 232 1.26 0.49 10.50 0.01 0.23 <0.01 0.02 <0.01 <0.01 <0.01 2231 0.01 37 1.00 1.48 7.48 <0.01 0.20 0.05 0.02 <0.01 <0.01 <0.01 2232 <0.01 1 0.03 0.27 0.05 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 2234 <0.01 <1 0.03 1.41 0.03 0.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 2236 <0.01 6 0.20 0.18 1.31 0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 2237 <0.01 22 0.64 0.35 4.40 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 2242 <0.01 0 0.01 0.39 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 2306 0.02 3 0.04 1.14 0.00 0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 2309 0.02 20 0.42 0.69 4.02 3.22 0.11 <0.01 <0.01 <0.01 <0.01 <0.01 2310 <0.01 15 0.43 1.03 2.90 0.00 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 4501 0.01 101 0.71 0.56 11.90 0.04 0.01 0.01 0.01 <0.01 <0.01 <0.01 4502 0.09 1 0.11 1.21 0.02 0.00 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 4508 0.01 3360 2.05 0.72 13.35 0.14 2.20 0.16 0.85 <0.01 <0.01 <0.01 4510 <0.01 4 0.09 0.09 0.02 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 4511 0.04 308 0.28 3.59 11.50 0.03 10.65 0.01 0.01 <0.01 <0.01 <0.01 4516 0.02 <1 0.17 0.71 0.00 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 4518 0.01 0 0.21 1.93 0.00 0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 4519 0.03 1 0.09 28.60 0.01 0.01 0.15 0.04 <0.01 <0.01 <0.01 <0.01

100 Table 11. Compilation of precious and base metal assay values from samples of: a) tailings, b) muck piles, c) oxydized surface veins, d) Hercynuan veins, e) altered TTF rocks, Boumadine property.

Sample Au (g/t) Ag (g/t) S (wt.%) Fe (wt.%) Pb (ppm) Zn (ppm) Cu (ppm) As (ppm) Sb (ppm) Bi (ppm) Cd (ppm) Sn (ppm)

Altered TTF volcanic rocks

Andesite dyke

2320 <0.01 <1 0.03 4.49 16 61 15 2 <1 <1 <1 1

Andesite flow

2326 <0.01 <1 0020.02 3163.16 5 39 3 16 <1 <1 <1 <1 2334 <0.01 <1 0.02 2.36 12 55 4 29 1 <1 <1 <1 4509 0.04 30 1.20 3.37 2520 25 8 528 3 <1 <1 20

Ryolite dyke/dome (Chonolith)

2249 <0.01 <1 0.01 0.70 20 8 2 1 1 <1 <1 1 2305 <0.01 1 0.03 1.88 38 498 663 6<1<130 2321 <0.01 <1 0.03 4.49 16 61 15 2 <1 <1 <1 1 2323 <0.01 <1 0.06 0.50 22 24 17 7 1 <1 <1 <1 2336 <0.01 2 0.05 2.82 22 63 534 19 1 <1 <1 <1 4507 <0.01 0 0.02 1.05 8 24 4 3 1 <1 <1 1 4412 0.01 3 0.23 0.60 90 250 2590 60 <1 <1 1 1 4413 0.10 6 0.08 0.60 140 230 770 <1 <1 1 1 1 4414 --- 3 --- 1.06 20 50 2610 <1 <1 1 1 1 4415 0.02 1 --- 0.61 50 30 910 <1 <1 1 1 1

Rhyolite,Rhyolite, ignimbrite ignimbrite,, tuff (moderately to strongly altered)

2239 0.02 4 0.16 1.11 334 25 13 463 6 <1 <1 1 2240 <0.01 1 0.10 1.26 294 26 8 34 2 <1 <1 <1 2241 0.03 14 3.37 8.20 4450 49 28 375 10 <1 2 9 2243 0.06 26 0.43 1.27 500 23 87 185 4 <1 1 9 2244 0010.01 8 0230.23 0540.54 196 9 4 73 2 <1<1 <1<1 3 2245 0.03 <1 0.05 0.77 103 10 5 110 2 <1 <1 <1 2246 0.02 10 0.10 0.35 422 13 5 46 1 <1 <1 1 2248 0.00 <1 0.03 1.64 19 42 178 4 0 <1 <1 <1 2317 0.07 6 1.38 4.27 205 10 2 314 12 <1 <1 8 2319 <0.01 2 0.03 2.42 1665 750 34 10 2 <1 6 <1

101 Table 11. Compilation of precious and base metal assay values from samples of: a) tailings, b) muck piles, c) oxydized surface veins, d) Hercynuan veins, e) altered TTF rocks, Boumadine property.

2324 <0.01 1 0.06 0.76 80 39 90 8 1 <1 <1 <1 2325 0.05 3 0.51 1.71 573 18 18 177 4 <1 3 1 2328 0.00 <1 0.03 4.00 13 98 29 7 0 <1 <1 <1 2330 0.01 <1 0.07 1.43 44 91 9 61 2 <1 4 <1 2331 0.09 1 0.10 12.70 1690 925 203 748 10 <1 4 1 2332 <0.01 <1 0.02 0.91 6 52 14 5 2 <1 <1 <1 2333 <0.01 <1 0.02 5.44 239 145 301 35 3 <1 <1 <1 2337 <0.01 1 0.04 2.19 1160 457 155 56 1 <1 5 1 2338 <0.01 1 0.02 1.25 370 489 7 35 4 <1 1 <1 2340 0.01 1 0.06 0.78 152 17 12 68 3 <1 <1 1 4409 0.03 12 0.82 2.18 930 170 90 180 <1 <1 <1 <1 4410 0020.0228 355 3.55 9169.16 4640 100 10 710 <1 <1 <1 20 4505 <0.01 <1 0.02 4.83 4 137 15 6 1 <1 <1 1

Felsic-intermediate intrusive rock

2250 <0.01 <1 0.02 2.57 17 67 4 5 <1 <1 <1 1 2329 <0.01001 <11 0.03003 1.69169 73 2300 4 4 1 0 10 <1 1 * Historical analysis, --- Not determined

102 Epidote- Chlorite- Calcite Pyrite 100 TTF Formation (Upper Proterozoic 553±16 Ma)

“Least altered” Ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite

“Altered” ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite 80 Late rhyolite dome/dyke (Chonolith), terminal ignimbrite

Intermediate-felsic Intrusive rock

60 “Least altered” Chlorite+sericite+pyrite alt. Felsic rocks

Intense sericite+pyrite alt.

CCP Index 40

Weak sericite alt.

20

Source: Large et al. (2001) and this study K-feldspar 0 0Albite 20406080100 Alteration Index

Figure 36. Binary plot, Alteration Index (100*(K222 O+MgO))/(K O+MgO+Na O+CaO) vs. CCP Index (100*(MgO+FeO)/(MgO+FeO+Na22 O+K O), illustrating, in part, the type of alteration experienced by the Tamerzaga-Timrachine Formation (TTF) volcanic rocks surrounding the polymetallic veins at the Boumadine site. This diagram reveals the superposition of weak and strong sericite alteration (i.e loss of Ca and Ca) with addition of pyrite. It does not however reflect the process of silicification. The blue box corresponds to the area of “least altered” felsic rocks. Data from tables 9 and 10. 103 12 TTF Formation (Upper Proterozoic 553±16 Ma)

“Least altered” Ignimbrite, rhyolite, Sericite 10 Dacite-rhyodacite tuff, andesite

“Altered” ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite

Late rhyolite dome/dyke 8 (Chonolith), terminal ignimbrite

Intermediate-felsic Intrusive rock

6

2

K O (wt. %)

4

2

Source: Large et al. (2001) and this study 0 Chlorite 0Albite- 20406080100 Calcite Alteration Index

Figure 37. Binary plot, Alteration Index (100*(K222 O+MgO))/(K O+MgO+Na O+CaO) vs. K 2 O (wt. %), illustrating in part, the type of alteration experienced by the Tamerzaga-Timrachine Formation (TTF) volcanic rocks surrounding the polymetallic veins at the Boumadine site. This diagram reveals the superposition of Na, Ca loss, increase in K and strong silicification.

104 arsenopyrite were rejected in the tailings and that these minerals are likely to contain Au and Ag as inclusions or in their mineral structure. Indeed, past metallurgical testing of the Boumadine ore via a selective flotation process conducted between 1986 and 1992, produced concentrates of galena and sphalerite with high values of Pb (41.6 wt. %) and Zn (41.4 wt. %)(BRPM, 1998). Whereas, 69% and 77% of Pb and Zn were recuperated by the flotation process, it yielded only 18-23% of Ag and 10-14% Ag. Samples taken from the top and bottom of the tailing pile (BMS and BMF) hint at variable gold and silver assays correlated to the stratigraphy of the tailing pile (Table 11). However, we do not have a sufficient number of samples from different layers to confirm this hypothesis.

We have calculated the volume of the southern and northern tailing piles using a truncated cone solid with estimated heights for each tailing pile (see Figure 49). Calculations yield between 67,123 to 71,064m3 for the southern and 71,836 to 78,257m3 for the northern tailing mounts. Applying a tailing density of 1,730 kg/m3 provided by Nichromet (Lalancette et al., 2013), we generate a total tonnage 240,400 to 250,700 t for both tailings. From 1986 to 1992, 261,485 t of ore was extracted and processed from the Boumadine mine (BRPM, 1998). This leaves 10,000 to 20,000 t of mineral concentrate or 4 to 8 % of the total tonnage. Assuming a recuperation of 77% for Zn and 69 % for Pb during the selective flotation process and using the known Zn and Pb concentrations of the extracted ore, we estimated that ~ 10,000 t of Zn and Pb was taken out of the deposit. It is thus estimated that the two tailing piles contain ~240,000 t of material @ 2.80 g/t Au and 178 g/t Ag.

Grab samples from the muck piles left near the mining shafts sunk in the Tizi, Imariren, Central and South zones show comparable average concentration values of Au and Ag (3.00 g/t and 279 g/t respectively) to that of the BRMP average ore (i.e. 3.50 g/t Au and 200 g/t Ag; Table 11). Average assay values for base metals; Pb (1.99 wt. %), Zn (2.10 wt. %) and Cu (0.10 wt.%) are slightly different whereas As (2.03 wt. %) and Fe (28.79 wt.%) contents are similar. The new samples represent largely unoxydized massive sulfide vein material extracted from the shafts and galleries during the period of 1986 and

105 300 TTF Formation (Upper Proterozoic 553±16 Ma)

“Least altered” Ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite

“Altered” ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite

200 Late rhyolite dome/dyke (Chonolith), terminal ignimbrite

Intermediate-felsic Intrusive rock

Zr (ppm)

100 Silicification

Source: This study

0 0 5 10 15 20

Al23 O (wt. %)

Figure 38. Al23 O (wt. %) vs. Zr (ppm) binary plot showing the trend of silicification experienced by several volcanic rocks of the Tamerzaga- Timrachine Formation (TTF) surrounding the polymetallic veins of the Boumadine deposit. The correlation does not reflect the loss of Al but a dilution by introduction of silica. Data from tables 9 and 10.

106 10 TTF Formation (Upper Proterozoic 553±16 Ma)

“Least altered” Ignimbrite, rhyolite, 8 Dacite-rhyodacite tuff, andesite “Altered” ignimbrite, rhyolite, Dacite-rhyodacite tuff, andesite

Late rhyolite dome/dyke (Chonolith), terminal ignimbrite 6 Intermediate-felsic Intrusive rock

2

K O (wt.%) 4

Silicification

2

Source: This study 0 0 5 10 15 20

Al23 O (wt.%)

Figure 39. Al23 O (wt. %) vs. K2 O (wt.%) binary plot showing the trend of silicification experienced by several volcanic rocks of the Tamerzaga- Timrachine Formation (TTF) surrounding the polymetallic veins of the Boumadine deposit. The correlation does not reflect the loss of Al but a dilution by introduction of silica. Data from tables 9 and 10. 107 E=542390 mE PE2959 N=92602 mN Tailing samples Imariren Zone Ore samples (Muck pile)

ENE-oriented Cu-Pb-rich veins

Wallrock samples North Shaft #2 Zone Oxydized veins (”Iron cap”) (Imariren)

Tailings Shaft A Shaft #5

Tizi Shaft #3 Zone Central Zone Central Shaft B Zone

Ancient Mining Installations

Pyrophyllite

Shaft #4 Mine

Shaft #4 Source: This study South Zone Polymetallic veins (Au, Ag, Zn, Pb, Cu) 0 200 500 m PR34565 E=546390 mE N=88602 mN

Figure 40. Localization of grab rock samples of mineralized rocks of the Timrachine-Tamerzaga Formation (TTF) analyzed for precious and base metals content. Projected coord.; Merchich, Nord Maroc.Source: This study

108 1992. They confirm the validity of the historical concentrations for precious and base metals extracted at Boumadine and summarized by the BRPM.

Surface samples of moderately to strongly oxydized mineralized rocks ("iron cap") were collected from numerous sites, since there are few unaltered sulfide-rich veins exposed. These oxydized caps were the primary targets of the ancient artisanal miners. The data reveal slightly higher gold concentrations (Average of 4.08 g/t) relative to the sulfide ore, but significant depletion in average Ag (58 g/t), Pb (0.67 wt. %), Zn (0.07 wt. %) and Cu (0.01 wt. %). However the average arsenic content is still high (1.41 wt. %). Historical analyses of the oxydized zones ("iron cap") encountered in the drillcore, underground and surface works indicated average Ag and Au concentrations of 250 g/t and 3.5 g/t (Saint Gal de Pons, 1975). The high historical Ag concentrations are inconsistent with our results. Gold enrichment in the hematite-goethite-rich cap of polymetallic veins is common in weathered and oxydized ore deposits (ex: Ruby Hill, Nevada and Bisha MSV, Eritrea; Tucker-Barrie et al., 2007). The process is believed to be related to downward weathering, where the gold is liberated during the breakdown of auriferous sulfides (principally pyrite), by a combination of chemical, residual, and mechanical processes. The high solubility of pyrite in the oxydizing environment frees sulfur into the ground water, which lowers the ground-water pH and leads to the dissolution of chalcopyrite and other base metal sulfides (Guilbert and Park, 1986). Gold can be transported either as chloride or aqueous sulfur complexes at low temperatures and precipitated as native metal with iron oxydes. In these cases, gold can be enriched 2 to 20 X relative to primary sulfide-rich veins. Zinc and copper sulfide are significantly more soluble than lead sulfides in oxydized, low pH ground-water environment (Guilbert and Park, 1986) and are more likely to be removed from the veins by ground-water transport (see Tucker-Barrie, 2007). To our knowledge the potential for gold in the iron caps left unexploited by the ancient miners, was never truly evaluated during the past drilling campaigns. According to St Gal de Pons (1975), there is between 20 to 50 m of oxydized material overlying the sulfide-rich veins. This easily accessible near-surface material could significantly increase the tonnage of the Au-rich ore.

109 Alteration zones surrounding mineralized veins were also investigated and were found to contain moderate amount of gold (Av: 0.28 g/t) and Ag (Av: 19 g/t) up to 70 m from the contact (Table 11). The alteration consists of strong silicification and weak to moderate oxydation. These results reinforce the hypothesis of a more extensive precious metal mineralization than previously thought perhaps related to intense late silicification. Background assay values for precious and base metals is variable (see Table 11). The altered TTF ignimbrites, rhyolites, tuffs and often contain veins and disseminated sulfides (pyrite±galena±sphalerite) and are generally weakly oxydized and silicified. This is reflected in moderate spikes in Pb, Zn and Au concentrations.

Finally, several ancient pits, trenches and digs have exposed nearly 1.25 km of Hercynian ENE-oriented Cu and Pb-rich veins in the Imariren region (Figure 40). Twenty-two grab rock samples were collected from various sites (Table 11). The chemical assays reveal very low gold concentrations, but significant, although scattered, silver contents (0-3360 g/t Ag; Av: 195 g/t). The Ag values are positively correlated with Pb concentrations (0-13.35 wt. %) suggesting that silver is comprised within galena. Copper shows sporadically high contents (ex: 10.65 and 2.20 wt. %) attributed to the presence of chalcopyrite.

Samples collected for assays which results were discussed in this section are deemed representative of the polymetallic vein mineralization, tailing material, mineralized muck piles and wall rocks lithologies. The author is confident that the size and weight (0.4-3.1 kg) of all samples were adequate and the spacing and density acceptable leaving no factors that may have resulted in sample bias.

ITEM 10 DRILLING

No drilling took place during the course of this study.

ITEM 11 SAMPLE PREPARATION, ANALYSES AND SECURITY

Chip and grab rock samples were carefully collected by two Moroccan geology students under the supervision of Dr. Abdelkhalek Alansari from the Université Cadi Ayyad, Marrakech, Morocco. The sampling campaign was conducted during the month of May 2013 within the confines of permit # 2958 (4 x 4 km). Two categories of samples were gathered. Grab rock samples representing the altered host lithologies were extracted from the principal mineralized sites, notably from the Imariren, Tizi, South, Central and North

110 zones (Figure 31). The other category includes garb mineralized taken from muck piles left at each principal mineralized sites/zones and from other minor sites exploited by artisanal miners. Samples of oxydized surface exposures of polymetallic mineralized veins (“iron cap”) were also taken. Several mineralized wallrock samples were gathered to verify their precious metal concentrations. ESE-oriented Cu and Pb-rich veins extensively exploited by artisanal miners in the Imariren area were sampled from various pits and trenches (Figure 40). Finally, the dry-stacked tailing piles left from the mining operations were sampled in order to conduct metallurgical tests for precious metals extraction and sulfuric acid production. The author is confident that the size and weight (0.4-3.1 kg) of all samples were adequate and that the sampling procedures covered a representative part of the exposed polymetallic mineralization and different rock types exposed within the Boumadine property.

For the rock samples, the measurement of UTM coordinates was determined by portable GPS with a resolution of ± 2m. The rock fragments or chips were then placed into a sturdy plastic sample bag and a unique sample tag was inserted (See figures 32 and 33). No splitting or further manipulation was performed in the field. The samples bags were placed into large canvas sacks containing generally 10 to 20 plastic sample bags. These sacks were secured and then transported by truck to Marrakech, Morocco. The samples were then shipped by air to the Blainville office of Maya Gold and Silver in Canada. There, each sample bag was inspected by Michel Boily and François Goulet and re- tagged for expedition to the Val d'Or ALS Chemex laboratory by courier.

The Val d'Or ALS Chemex Laboratory facilities in Val d'Or, Québec initially processed all samples. These (<3.5 kg) were dried, crushed to 75% passing 2mm sieve, split to 250 g and pulverized to 85% passing 75 μm sieve. All mineralized samples were analyzed for their Au content by Fire Assay method. Samples with more than 1 g/t Au were submitted to the Fire Assay technique with gravimetric finish. In the Fire Assay method, a 30 grams fraction of a prepared sample is thoroughly mixed with 75-80 grams of a flux containing silica flour, borax anhydrous, sodium carbonate, litharge (lead oxyde) and pure silver that serves as a collector. The sample and flux are transferred into a clay crucible and fused at

111 1050°C. When the content is melted, it is poured into a conical mould. The lead button and slag produced are separated by hammering. The button is placed into a preheated bone ash cupel at a temperature ranging from 820º and 880°C. The lead liquefies and is absorbed into the cupel leaving only a tiny metal which contains gold. Au is separated from the Ag in the doré bead by parting with nitric acid. The resulting gold flake is annealed using a torch. The gold flake remaining is weighed gravimetrically on a microbalance. All samples were also digested for one hour in hot (95ºC) aqua regia (a

mixture HNO3-HCl acids) to be analyzed by ICP-MS and ICP-AES methods for the following elements: Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W and Zn. A subset of 38 samples was analyzed for their major and trace element contents following the

LiBO2/LiBO7 fusion method to be later determined by ICP-MS method. The following

element are provided: major elements: SiO2, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5,

MnO, Cr2O3, BaO, SrO and LOI; trace elements: Ni, Sc, Ba, Be, Co, Cs, Ga, Hf, Nb, Rb, Sn, Sr, Ta, Th, U, V, W, Zr, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Yb, Lu. Samples containing ore grade Cu, Zn and Pb concentrations (> 10000 or 100000 ppm) were reanalyzed by the OG46 method (4 acid near-total digestion and ICP finish). Samples containing ore grade Ag concentrations (> 100 ppm) were re-analyzed by the AG-OG62

method (Ag by HF-HNO3-HClO4 digestion with HCl leach, ICP-AES or AAS finish) and by the AG-OG46 method (aqua regia digestion, ICP-AES or AAS finish). The Certificates of Analyses are presented in Appendix 2.

The ALS Chemex Laboratories in Vancouver and Val d'Or are accredited to ISO 17025 by Standards Council of Canada for a number of specific test procedures including fire assay Au by AA, ICP and gravimetric finish, multi-element ICP and AA Assays for Ag, Cu, Pb, and Zn. The ALS Chemex laboratories participate in a number of international proficiency tests, such as those managed by CANMET (Proficiency Testing Program- Mineral Analysis Laboratories) and Geostats. ALS Chemex standard operating procedures require the analysis of quality control samples (reference materials, duplicates and blanks) with all sample batches. As part of the assessment of every data set, results from the control samples are evaluated to ensure they meet set standards determined by

112 the precision and accuracy requirements of the method. Both analytical laboratories use barren wash material between sample preparation batches. This cleaning material is tested before use to ensure no contaminants are present and results are retained for reference. The data from the quality control checks did not indicate any significant bias or quality control issues. The author has not visited the ALS Chemex laboratories to see the operation firsthand, nor is he familiar with the general historical performance of the facility. There is no relation between the Val d’Or or Vancouver ALS Chemex laboratories and the issuer. In conclusion, the author is of the opinion that the sample preparation, security and analytical procedures are adequate and satisfy the requirements of the NI-43-101 norms.

ITEM 12 DATA VERIFICATION

A professional geologist was always present during the sample preparation before the shipment to the geochemical laboratory. All samples were assembled under the care of Michel Boily and François Goulet, both registered professional geologists. The localization (UTM coordinates) and lithology of each sample collected in 2013 was verified by the author before the specimen being sent to the analytical laboratory. The author has also verified the geochemical analyzes provided by the ALS Chemex laboratories including their in house standards and blanks. The author is of the opinion that all assay values presented in this report are fully compliant with the NI-43-101 norm. They are a just representation of the mineralization currently present at the Boumadine mine site. The author has not verified the historical major and trace element assays extracted from previous unpublished PhD theses.

ITEM 13 MINERAL PROCESSING AND METALLURGICAL TESTING

13.1- Cyanuration of Unoxydized Material

In 2011, testing of the cyanuration process for extracting precious metals from the dry- stacked Boumadine tailings was conducted by the URSTM laboratory (Unité de Recherche et de Service en Technologie Minérale) located in Rouyn-Noranda, Province of Quebec (Lelièvre, 2011). A split sample of the tailings, submitted to ICP-MS analyses

113 by the Laboratoire Expert de Rouyn-Noranda, revealed assay values of 3.32 g/t Au and 128.4 g/t Ag. This sample is deemed representative of the overall tailing material as the concentrations of precious and base metals are roughly similar to the average content established in section 9.4 of this report.

A 400 g representative sample was crushed to 52 μm, and reduced into pulp (50% solid) within 805 ml of distilled water. A liquid/solid separation was done with a pressure filter. The extracted solution had an initial pH of 2.13. 805 ml of water was then added to the residue, mixed and passed again through the pressure filter. The second solution had a pH of 2.93. 800 ml of distilled water was then poured in the filtrated solid. The initial pH

was 2.93 and changed to 12.1 by adding 2.43 g of Ca(OH)2 and 0.68 g of NaCN. The first filtrated solution contained high values of S (1.49 wt. %), Fe (0.89 wt.%) and Zn (1860 ppm).

The kinetic cyanuration process was achieved over a 44 hrs period with solution extractions at intervals of 2, 4, 8, 19, 30 and 44 hrs. The concentration of NaCN and the pH were adjusted during the period of testing. The recuperation of Au was very low, attaining 27.8 % after 44 hrs of cyanuration. The extraction for silver was much higher reaching 70.1 % after 44 hrs. Table 12 reveals most of the lixiviation occurring during the first two hours. Despite changing the solution, the consumption of NaCN and

Ca(OH)2 was very high, with 2.2 kg/t and 8.9 kg/t for 19 hrs of cyanuration. Force is to conclude that the Boumadine tailings are highly refractory to the direct cyanuration process.

NaCN Ca(OH) Time Au extraction Ag extraction 2 kg/t of kg/t of (hr) (%) (%) ore ore

0.0 0.00 0.00 0.00 0.00 2.0 23.40 64.90 0.70 6.06 4.0 23.50 64.60 0.43 6.67 8.0 24.20 67.20 0.54 6.83 19.3 26.20 69.60 2.22 7.73 30.2 27.70 70.60 1.56 8.25 44.2 27.80 70.10 2.22 8.87

114

Table 12. Rate of extraction for Au and Ag provided by testing of the cyanuration process on Boumadine tailing samples; URSTM laboratory, Rouyn-Noranda, Quebec.

13.2- Oxydation, Lixiviation and Chloration

The refractory nature of the Boumadine minerals in the ore as well as in the tailings (residues) prevents the efficient extraction of gold and silver. To improve the beneficiation process, hydrometallurgical tests were conducted on two samples collected from the bottom (BMF) and top (BMS) of the main dry-stacked tailing located on the mine site of the former Boumadine mine (see Figure 40). The samples were sent to the Nichromet Extraction Inc. laboratories located in Thetford Mines (Black Lake), Province of Quebec (Lalancette et al., 2013). The specimens were crushed to 80 μm (200 mesh) and were sent for geochemical analyses to the SGS Lakefield Laboratory in Sudbury. Results of the assays are presented in Table 13. BMF contains 1.85 g/t Au, 133 g/t Ag and 16 wt.% S-2, whereas sample BMS comprises 2.71 g/t Au, 180 g/t Ag and 25.6 wt.% S-2. These samples are deemed representative of the overall tailing material as the concentrations of precious and base metals are roughly similar to the average content established in section 9.4 of this report.

115

Element BMS BMF

Si (wt.%) 13.60 9.52 Fe (wt.%) 19.40 26.00 Mg (wt.%) 0.16 0.11 Ca (wt.%) 0.19 0.15 K (wt.%) 0.78 0.62 Mn (wt.%) 0.01 0.01 Pb (wt.%) 0.07 0.12 Zn (wt.%) 1.15 2.36 Cu (wt.%) 0.09 0.09 Ni (wt.%) 0.01 0.01 Co (wt.%) 0.01 0.01 As (wt.%) 1.04 1.53 Sb (wt.%) 0.030 0.026 Sn (wt.%) 0.040 0.040 Au (g/t) 1.85 2.71 Ag (g/t) 133 180 S-2 (wt. %) 16.00 26.00 Hg (g/t) 1.4 2.2 Bi (wt.%) 0.002 0.002 Cd (wt.%) 0.01 0.03 Se (g/t) 20 20 Te (g/t) 50 50

Table 13. Geochemical analyses of Boumadine tailing samples BMF and BMS performed by the SGS Laboratories.

The first step in the hydrometallurgical test is the oxydation of the sulfide-rich ore in a roaster bed at 750°C to get rid of sulfide minerals (mainly pyrite, pyrrothite, arsenopyrite and chalcopyrite) that would prevent the precious metal extraction through cyanidation or chloration. Results from the standard oxydation (non sulfate) process allows nearly 99% of the sulfides present in the tailing samples to be removed with 84% of As and 14% Sn. A water-rich lixiviation has shown a low grade of sulfatation (21 % Zn, 35% Cd and 0 % Ag). Following these poor results, an oxydizing sulfatation process was tested with again

116 low yields for Zn (51%) and none for Ag. The solid oxydized ore contained between 0.2

and 0.5 % of sulfide. It was digested in sulfuric acid (H2SO4) yielding the following low dissolution rate (Table 14):

H SO 20 % H SO 40 H SO 60 Element 2 4 2 4 2 4 (%) % (%) % (%)

Zn 67.4 74.6 80.0 Cu 50.6 53.0 57.4 Cd 74.1 83.0 89.5 Pb 0.4 0.4 1.6 As 9.4 17.5 16.2 Fe 9.8 11.0 39.5 Ag 0.0 16.0 25.0

Table 14. Solubilization of base and precious metal in various grade of sulfuric acid.

The second step involves the chloration of the oxydized residues. These are mixed in an aqueous agitated solution of 2% NaOCl, 300 g NaCl/l and 30 g NaBr/l for 4 hrs at 25°C. Table 15 shows poor extraction of gold (31.94-31.51%) and silver (11.48-25.59%).

Au Ag Sample extraction extraction (%) (%)

BMF 31.94 11.48

BMS 31.51 25.59

Table 15. Rates of Au and Ag extraction after chloration of the oxydized residues; samples BMF and BMS.

The third step involves acid washing through a 0.5N HNO3/H2SO4 solution at atmospheric pressure with 20% of solid material. The main purpose of acid washing is to

117 break the Sn-Ag alloys, presumably present in the samples, either through dissolution or by bringing only Sn in solution. This provides soluble silver by chloration. Acid washing also solubilizes minerals that can contain gold such as arsenopyrite. Testing took place on the oxydized chlorate sample BM-02 (5 % NaCl). Test results given in Table 16 show gold and silver extraction of 56% and 65% respectively. Note that nearly 11% of Ag was insoluble during lixiviation.

Lixiviation Oxydation NaCl Element HNO /H SO Chloration (%) 3 2 4 (%) (%)

Au 8.9 16.96 56.54

Ag 0.0 10.68 64.69

Table 16. Cumulative rates of Au and Ag extraction after NaCl oxydation, lixiviation

HNO3/H2SO4 and chloration 300/30, 2% NaOCl.

The next step involved acid washing using 50 g of oxydized BMF sample with a mixture

of 2 g HNO3 (69%) and 10 g H2SO4 (98%) with a small amount of water to produce an agitated mud during 4 hrs at 90°C. Filtration of the residue is followed by chloration. Results show that 60 % of Au and 52% of Ag was extracted (Table 17). Nearly 50% of Ag was put in solution during lixiviation and only 3% found in the chloration brine. 10% of Sn was extracted during lixiviation.

Lixiviation Chloration Element Oxydation HNO3/H2SO4 (%) (%) (%)

Au 6.24 7.59 59.55

Ag 9.28 48.87 52.26

Sn 10.78 19.73 ---

118 Table 17. Cumulative rates of Au, Ag and Sn (BMF: after NaCl oxydation, lixiviation

2g HNO3 and 10 g H2SO4, chloration 300/30, 2% NaOCl.

To improve the lixiviation treatment, 50 g of BMS and BMF samples were mixed in a 2g

HNO3 (69%) and 10 g H2SO4 (98%) solution without adding water. Strong mixing produced a homogeneous mud which was heated at 160°C during1½ hr. Tables 18 and 19 show a 49% extraction for silver which is less than what was obtained adding water to the solution. However, an extraction of 69 % of gold was achieved for sample BMS and only 18% for sample BMF.

Lixiviation Chloration Element Oxydation HNO /H SO 3 2 4 (%) (%) (%)

Au 6.05 --- 17.81

Ag 0.86 9.24 40.18

Sn 4.17 8.51 ---

Table 18. Cumulative rates of Au, Ag and Sn extraction (BMF: oxydation, oxydation

with 2g HNO3 and 10 g H2SO4, chloration 300/30, 2% NaOCl).

Lixiviation Chloration Element Oxydation HNO /H SO 3 2 4 (%) (%) (%)

Au 1.81 --- 68.69

Ag 3.18 25.90 41.26

Sn 8.45 12.04 ---

Table 19. Cumulative rates of Au, Ag and Sn extraction (BMS: oxydation, oxydation

with 2g HNO3 and 10 g H2SO4, chloration 300/30, 2% NaOCl).

119

The duration of oxydation and addition of O2 were also studied for the two tailing samples. The results demonstrate that an amount of 0.084 % S-2 is found in the BMF residue after a 2 hrs period of oxydation. 0.067% and 0.66% S-2 occur after 3 hrs for

samples BMF and BMS respectively. Adding O2 during the last hour of oxydation results in 0.057% and 0.066% S-2for samples BMF and BMS respectively. These results show that a period of 2 hours leads to the removal of 99.9 % of S-2 from the residue.

In conclusion, the best extraction method for gold and silver seems to be a lixiviation

process using a 1N HNO3/ 2.5N H2SO4 solution. Doubling the amount of acid (see Table 20) produces an extraction of 62% and 68% of gold for samples BMF and BMS after chloration. These are comparable to the former results using less acid. For silver, the extraction is 49% and 48% for samples BMF and BMS which is a significant improvement from the earlier process.

Sample Au extraction Ag extraction (%) (%)

BMF 61.98 48.76

BMS 67.63 47.74

Table 20. Rate of extraction for Au and Ag for re-crushed samples BMF and BMS

(lixiviation with 1N HNO3 / 2.5N H2SO4 solution; chloration 300/30- 2% NaOCl).

70% of gold can be removed from samples BMF and BMS provided a moderate period of

oxydation is employed (2 hrs; Table 21). A longer oxydation rate with injection of O2 at higher temperature is counterproductive leading to the formation of more refractory components.

120

Process BMF BMS

Extraction (%) Extraction (%)

Au Ag Au Ag

Oxydation 3 hrs + O2 + Chloration 300/30 32 25 32 12 Oxydation 2 hrs + Lixiviation HNO3/H2SO4 + 68 49 62 48 Chloration 300/30

Table 21. Au and Ag extraction rate for samples BMS and BMF according to the duration of oxydation.

The production of sulfuric acid after sulfide roasting permits the recuperation of heat produced by their combustion. Electric power could be then generated through a cogeneration plant. In case of high value electric power generated from highly pressurized high temperature vapor, it is expected that 250 kWh per ton of sulfuric acid will be produced (Table 22). Note that the recuperation of energy stemming from the production of sulfuric acid does not take into account the presence of As in the gas during sulfide roasting. Arsenic oxyde will be deposited on the heat exchange tubes reducing the energy transfer. The tubes will need periodic scrubbing

Income H SO generated High Value Energy Sample S2-(wt. %) 2 4 ($CAD/t of (t/t of rock) (kW/h) rock)

BMS 16.00 0.53 132.5 26.50

BMF 25.60 0.84 210.0 42.00

Table 22. Generation of high-value energy during the production of sulfuric acid.

121 13.3- Cyanuration of Oxydized Material

Preliminary metallurgical testing by cyanuration on crushed and oxydized tailing material was conducted recently (Lelièvre, 2013). A 132 g oxydized sample was reduced into pulp (50% solid) in distilled water. The initial gold and silver concentrations are estimated at 3.64 g/t and 118 g/t respectively. A liquid/solid separation was done with a pressure

filter. The initial pH was increased to 10.6 by adding 9.71 g of Ca (OH) 2 and 0.93 g of NaCN. The kinetic cyanuration process was carried out over a 24 hrs period with solution extractions at intervals of 2 min, 25 min, 55 min, 2h25, 11h12 and 9h01. The concentration of NaCN and the pH (10.4-12.2) were adjusted during the period of testing. At the end of the cyanuration test proceedings, the recuperation of Au was very moderate, reaching 66.2 %, whereas the recuperation for Ag was 61.9 %. The consumption of

NaCN and Ca (OH) 2 was very high, with 3.4 kg/t and 72.2 kg/t. If the silver recuperation is roughly similar with or without oxydation of the tailing residues (see 13.1), there is significant increase in gold recuperation when cyanuration is applied on oxydized material (66.2 vs. 27.8 %).

13.4- Conclusions

Maya Gold and Silver will submit tailings and ore material to further metallurgical testing. Nonetheless, previous testing have shown: 1) the recuperation of gold to be significantly higher during the cyanuration of oxydized pulverized tailing material vs. the unoxydized equivalent (66.2 % vs. 27.8 %), 2) Cyanuration of oxydized and unoxydized pulverized tailings generate similar recuperation rates for Ag (66 to 70%), 3) the

metallurgical processing using a combination of oxydation, lixiviation (HNO3/H2SO4) and chloration is woefully inadequate, highly complicated and uses a large amount of reacting agent to extract a moderate amount of Ag and Au (49% and 68% respectively).

The author concludes that gold and silver are still refractory to the standard cyanuration method even after oxydation of the pulverized tailing material. The tailings sulfide mineralogy is in large part constituted of pyrite and arsenopyrite with minor amounts of

122 sphalerite and galena. Sphalerite and galena contain ~ 11 % of the total gold within the ore material, whereas ~ 25 % of all silver is found in these two sulfides (BRPM, 1998). This is confirmed by historic and recent analyses of Au and Ag concentrations in the Boumadine tailings which are similar to the precious metals content of the ore. Therefore, it is likely that the bulk of Au and Ag resides in micronuggets within the pyrite and the arsenopyrite , probably in the former since industrial analyses of the Boumadine pyrite concentrates yielded up to 3 g/t Au (Dagallier et al., 1988). Mineralogical studies of the Boumadine ore completed by Conly (2013a, b) confirmed that Ag, Sn ± other base metals occur as micronuggets (<5 μm and typically <1 μm) in pyrite. Dagallier et al. (1988) cites a former scanning electron microscope (SEM) mineralogical study revealing 1µm inclusions of native gold in chalcopyrite fractures or as nuggets. Therefore, the next step to the metallurgical processing of the Boumadine ore has to take into account the methodology that is used in the extraction of μm-size gold in Carlin-type deposits (Cline et al., 2005).

ITEM 14 MINERAL RESOURCES ESTIMATE

There is no current resources estimate

ITEM 23 ADJACENT PROPERTY

There is no adjacent property

ITEM 24 OTHER RELEVANT DATA AND INFORMATION

There is no other relevant information.

ITEM 25 INTERPRETATIONS AND CONCLUSIONS

25.1- A Petrogenetic Model for Polymetallic Mineralization at the Boumadine Mine

123 The eruption of the TTF intermediate to felsic pyroclastic and volcanic flows probably took place in a continental back-arc tectonic environment involving substantial crustal thinning (Dagallier et al., 1988). In a NNW-SSE compressive regime, N30°E and N120°E shears controlled the emplacement of the ignimbrite sheets of the TTF (Figure 41). The deposition of pyroclastic sheets of the Lower Ignimbrite unit and andesitic lava flows and sills induced degassing and partial depletion of a shallow intermediate-felsic magma chamber. The intrusion of mafic-intermediate volatile-rich magmas at the base of the magma chamber caused a resurgence in magmatic activity and the injection of mafic dykes along 160°E-oriented tensional fractures that constituted preferential paths for andesitic dyke swarms (Figure 42). The magma chamber was replenished in volatile components which migrated to the chamber apex with batches of differentiated magma. A large geothermal system generating a regional propylitization affected the lower units of the TTF which acted as aquifers. Average temperatures of 260°C were reached at depth < 500 m.

Increasing hydrothermal magmatic-driven circulation focused by preferential 160°E tension gash slightly proceeded or immediately followed the intrusions of late-rhyolite "chonolith” dykes or domes (Figure 43). The P and T conditions of mineralizing fluids were favorable to the deposition of Stage I pyrite and arsenopyrite leading to self-sealing of the conduits. A strong phyllic alteration was developed around the mineralized tensional fractures, overprinting the regional propylitic alteration.

The hydrothermal system was probably disrupted by the change in the stress orientation generating N15°-N35°E-shortening. But the prolonged and intense hydrothermal activity created an augmentation of pressure; reopening the sealed fractures and caused continuous brecciation of Stage I sulfide minerals accompanied by dissolution and recrystallization along N160°E shear zones (Figure 44). Late stage mineralization involves the deposition of sphalerite-pyrite-galena-chalcopyrite at relatively high temperature (Stage II; ≥ 260°C) with a strong activity of sulfur buffered by the presence of Stage I pyrite. Toward the end of the mineralizing process, the fluid temperature (< 150°C) and sulfur fugacity decreased substantially and the source of the fluids changes

124 E Conjugate 30° and 120°shears 160° tension joints

120° 30° 160°

Approx. 2 km T NNW-SSE Shortening (~ 553 Ma) Boumadine Caldera Late Neoproterozoic Source: This study W Figure 41. Formation of the Late Proterozoic Boumadine Caldera. Emplacement pyroclastic flows (ignimbrites), porphyritic and esitic sills flows of the Legend in Figure 47. TTF. 125 W E

T 30° Conjugate 30° and 120°shears NNW-SSE Shortening 120° 160° 160° tension joints

Meteoric Water

Magmatic Hydrothermal fluids

Source: This study Approx. 2 km Figure 42. Injection of mantle-derived, volatile-rich basic magma at the base of the felsic magma chamber. Formation of a mixing/differentiation zone at the interface. Migration of volatile and differentiated magma to the apex of the felsic magma chamber. Establishment of a strong geothermal system126 in the TTF resulting in pervasive regional propylitic alteration. Legend in Figure 47 E Conjugate 30° and 120°shears 160° tension joints

120°

30° 160°

Approx. 2 km T NNW-SSE Shortening Water Meteoric Magmatic Hydrothermal fluids Source: This study W 127 Figure 43. Massive injection of gabbroic to andesitic dyke swarms along 160° tension gash within the in the felsic Continuous differentiation TTF. Maintenance of the high magma chamber accompanied by concentration of volatile-rich intermediate-felsic at the apex chamber. geothermal gradient in the TTF (aquifer) and percolation of magmatic-derived hydrothermal fluids resulting in regional propylitic alteration. Legend in Figure 47. W E

T 30° Conjugate 30° and 120°shears NNW-SSE Shortening 120° 160° 160° tension joints

Meteoric Water

Magmatic Hydrothermal fluids

Source: This study

Approx. 2 km

Figure 44. Early mineralizing event (Stage 1). Focused circulation of magmatically±meteoric- derived mineralizing fluids in 160° tension gash. Deposition of pyrite and arsenopyrite veins. Intense phyllic (quartz-sericite-pyrite) surrounding the polymetallic veins overprinting the propylitic alteration. Legend in Figure 47.

128 progressively toward a shallow meteoritic source mixed with a lesser deep magmatic component. The later stage is characterized by the deposition of precious metals and associated with little magmatism but probably involved the formation of sinter, phreatic breccias and acid sulfate steamed-heated pools or fumaroles at or near surface (Figure 45). Crustiform banded ore, bands of carbonate replacement, coarse-banded chalcedonic quartz vein with bladed carbonate and related with Au-Ag mineralization may have been formed near a paleosurface but eroded away. A late pulse of felsic magmatism generated the pyroclastic flows of the Terminal Ignimbrite (TI). This was followed by low temperature widespread silicification of the TTF units and TI, the latter acting as an aquitard or “cap rock” (Figure 46). It is difficult to assess if the late silicification event is associated with mineralization. Some highly silicified rhyolitic domes exposed in the South Zone apparently crosscutting the polymetallic veins contain disseminated pyrite and chalcopyrite. A string of exposed rhyolitic domes are roughly oriented N35°E and limited by shear zones.

25.2- Conclusions

The Boumadine polymetallic deposit assuredly represents one of the most prospective mining terrane within the Kingdom of Morocco. Historical exploitation focused on Pb, Zn and Cu sulfide-rich veins, in restricted areas of the property, with limited metallurgical testing for Au and Ag beneficiation. The low price of gold and silver hovering at $US360/oz and $US5/oz. during the early 1990's did not bring a strong incentive to do so. However, at the actual price of gold and silver (~$US1330 and ~$US20), concentrations of 3.0 g/t Au and 200 g/t Ag typical of the Boumadine ore generate a strong enticement to put forward exploration and exploitation programs aiming at reopening the former mine. Other considerations strengthen the precious metal potential of the deposit: 1) There was no evaluation of the gold potential of shallow-depth oxydized zones present over the sulfide-rich polymetallic veins. Recent assay values of these "iron caps" confirm their gold enrichment reaching 13 g/t Au. These oxyde-rich zones, which can reach 50 m in depth, were not assayed during the historical drilling campaigns, 2) It is possible that sub-economic gold mineralization extends up to 60-70 m

129 W E

NE-SW Shortening 160° dextral shear

160°

Acid sulfate Steam-heated Pools and fumaroles

Meteoric Water

Magmatic Hydrothermal fluids

Source: This study

Approx. 2 km

Figure 45. New orientation of tectonic stress. Stage II mineralization involving the deposition of sphalerite, galena, chalcopyrite ± pyrite ± arsenopyrite in 160°-oriented shears . Intense brecciation/recrystallization of Stage I sulfides The end-stage of mineralization involves the deposition of native Ag, Au, Bi, Sn and Ag-rich sulfides and sulfates. The composition of hydrothermal fluids gradually evolves from pure magmatic to dominantly meteoric with decreasing temperatures reaching ~ 150°C. Formation of acid sulfate steam heated pools and fumaroles at the surface. Intrusion of felsic dykes and domes (”chonoliths”). Legend in Figure 47. 130 W E

NE-SW Shortening 160° dextral shear

160°

Aquitard

Meteoric Water

Magmatic Hydrothermal fluids

Source: This study

Approx. 2 km

Figure 46. Emission of the Terminal Ignimbrite of the TTF along 15°-35°-oriented shear zones followed by an intense episode of widespread low-temperature silicification. The Terminal Ignimbrite acted as an aquitard (”cap rock”). Coeval injection of late rhyolitic domes crosscutting the mineralized veins and containing disseminated Cu mineralization. Legend in Figure 47.

131 Tamerzaga-Timrachine Formation Alteration

(TTF) Felsic magma Silicification Feeder to the Terminal Terminal Ignimbrite (TI) Ignimbrite

Rhyolite dyke and dome Acid-sulfate (?) (Quartz, Calcedony Differentiated felsic magma (”Chonolite”) Adularia, Pyrite, carbonate± Au-Ag Feeder to rhyolitic dyke and dome ± Base metals) Gabbroic to andesitic dyke swarm Volatile-rich apical Andesite flow and Stage II mineralization, intense brecciation Zone of a felsic magma subvolcanic equivalent (Galena, sphalerite, chalcopyrite, Chamber Au and Ag sulfide, sulfosalt, native) Intermediate Ignimbrite Gabbroic to basaltic Phyllic Dyke swram feeder Porphyritic andesite sill (Sericite-quartz-pyrite) (subvolcanic) Stage 1 mineralization Felsic magma

L a t e N e o p r o t o z o I c Xenolith-rich vitroclastic tuff Chamber Lower Propylitic (chlorite-epidote-albite) Crystalline felsic tuff Ignimbrite } (LI) Mixing zone Vitroclastic tuff Direction of hydrothermal Flow Mantle-derived Basalt Ignimbrite (BI) Volatile-rich mafic Percolating Magma Hydrothermal Basal conglomerate Fluid

Lower crust Focused hydrothermal Flow (Fault, fracture, Basement (Schist, sandstone, Shear) Pelite, greywacke) Subcontinental upper mantle

Neoprotozoic

Fracture, normal fault, Shear

Figure 47. Lithological legend for figures 41 to 46.

132 outside the polymetallic veins within the highly silicified wallrocks, 3) The author noted the absence of past geophysical surveys on the property. A simple exploratory walk on the property reveals several uninvestigated bleached and/or oxydized zones, principally in the southern part of permit #2959. A ground-base EM or IP survey would certainly unearth new potentially sulfide- rich veins and 4), Late rhyolitic flow domes emplaced along a NNE-SSW lineament on the eastern part of the permit # 2959, show disseminated to stockwork Cu mineralization (~0.2-0.4 wt. %). These strongly silicified rocks may hint at a porphyry-type mineralization.

The Boumadine polymetallic veins probably constitute the root of a low to intermediate- sulfidation Ag-Au-rich deposit type. This deposit type is usually dominated by silver and lead-zinc with gold and silver mineralization occurring dominantly as veins and stockworks with minor disseminations. Distinctive minerals present include: pyrite, sphalerite, galena, arsenopyrite and sulfosalts (complex Ag, Pb and Cu species with As and Sb as well as sulfur). Hydrothermal circulation does produce silicification, propylitization, quartz-illite-pyrite (phyllic) and at high level advanced argillic alteration.

The Boumadine polymetallic deposit is exposed within the Ougnat Proterozoic window ("boutonnière") in the Errachidia province of southwestern Morocco approximately 295 km east of the major city of Ouarzazate. Easily accessible from a sturdy gravel road, the 2 Boumadine property consists of two permits covering an area of 32 km . The Proterozoic Ougnat window contains a folded and schistose metasedimentary Proterozoic basement cut by late granodioritic plutons. The basement is unconformable overlain by a Late Proterozoic volcanosedimentary sequence. The basal sequence is made by the Tamerzaga-Timrachine formation (TTF) which consists of ignimbrite sheets, vitroclastic tuffs, and intercalation of andesite flows/sills. A swarm N160°E-oriented andesitic, gabbroic to dolerite dykes was intruded within the TTF. Late rhyolitic intrusions form ovoid domes and dykes ("chonoliths") oriented N160°E to N-S. The TTF is strongly altered and contain all polymetallic veins (Au-Ag-Pb-Zn-Cu) forming the Boumadine deposit.

133 Most TTF rocks underwent a strong propylitic alteration giving their characteristic greenish-yellowish tinge especially near the mineralized areas. This alteration produces a mineral assemblage composed of quartz-albite-chlorite -calcite-epidote-pyrite-Ti-oxyde minerals. Felsic volcanic hosts display a wide alteration halo up to 40 m wide which overprints the pervasive propylitized rocks and confers a bleached aspect to the rock. This phyllic alteration zone contains an assemblage of quartz-sericite-pyrite with pyrite decreasing away from the veins. Late silicification is pervasive and may be related to a precious metal mineralization hydrothermal event.

The polymetallic mineralization at Boumadine extends at least for 4 km on the surface. The mineralized zones consist of 1 to 4 m-wide, N160°E-oriented lenses/veins dipping sharply (> 70°) to depths of 350 m and injected within the TTF. The veins contain massive pyrite, sphalerite, arsenopyrite, and galena with subordinate amounts of chalcopyrite, cassiterite, silver-rich sulfosalts, stannite, enargite, bismuthinite, native silver, tin, copper and bismuth. The upper 20 to 50 m are affected by supergene alteration (Fe-hydroxyde-rich ‘‘iron caps’’) that were partially mined by artisanal workers. There are two principal mineralizing stages controlled by the strain applied to the TTF volcanosedimentary assemblage. The first mineralizing event involved the deposition of massive pyrite, occasionally banded, succeeded by the injection of parallel veinlets of arsenopyrite in the first stage pyrite. These veins were formed under a N160°E shortening strain. The second stage of mineralization first involved crystallization of sphalerite and galena cementing the first stage sulfides or occurring as vein filling material forming banded ore. The latest mineralization stage started with the deposition of quartz in dissolution cavities and as crosscutting veinlets, followed by crystallization in decreasing abundance of: grey copper, argentopyrite, schapbachite, pyrargyrite, polybasite and native antimony-silver-bismuth. Emplacement of polymetallic and precious metal veins is consistent with a N30°E shortening direction.

Exploitation at the Boumadine Mine has a long history starting with Portuguese (?) artisans mining the oxydized upper section of the polymetallic veins for ochre and precious metals during the XV and XVI centuries. Followed a long period of dormancy

134 until the late 1950's when the ENE-oriented Pb-Cu-rich Hercynian veins were drilled and exploration adits were sunk. From1963 to 1975, the Central and North sectors were explored through surface and underground drilling (30,156 m), shafts (387 m) and galleries/drifts/raises/stopes (2,095 m). Level -150 m of the Central Zone was particularly submitted to extensive chip sampling and historical resources estimates were produced. New exploration initiated in 1975 and ending in 1984 was conducted on the Central, South and Tizi zones increasing the total historical resources. Overall, 1,030m of surface and underground drilling completed by 140 m of shafts and 1,885 m of galleries/drifts/raises/stopes were generated. New historical resources were estimated. From 1985 to 1992, metallurgical testing was conducted on 261,485 t of Boumadine ore extracted from the Central and South sectors. Differential flotation process yielded ~ 10,000 t of sphalerite, galena and pyrite concentrates but left a poor recuperation rate for Au and Ag. 1,570 m of surface and underground drilling were collared, 111 m of shafts with 1,243 m of galleries/drifts/raises/stopes were bored. The latest and probably most accurate mineral resources estimates was produced by the BRPM in 1998 with a tonnage of 3,838,970 t @ 0.86 wt. % Pb, 3.9 wt. % Zn, 203 g/t Ag and 3.60 g/t Au*.

*The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuer is in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

135 A recent mineralogical study of the Boumadine ore material was implemented followed by a sampling program of the mineralized zones and altered wallrocks. Two rock samples from a muck pile located in the Central zone were analyzed under the microscope, by X- ray diffraction and by SEM. Minerals recognized and analyzed by SEM are: pyrite, As- bearing pyrite, arsenopyrite, sphalerite, galena and Ag-Sn-base metal micronuggets. The latter occur as Ag-Sn (± other base metals + S) micronuggets ( <5 μm and typically <1 μm) in pyrite. Discrete crystals of native tin (>10 μm) occur in sphalerite. It is most likely that Ag occurs as native silver. The relative distribution of Ag and Sn indicates that Sn occurs as submicron nuggets (nanonuggets) in native Ag and as adjacent micrograins.

Major and trace element analyses of TTF altered rocks documented the degree and types of alteration and were used for rock classification. A binary plot featuring immobile

elements ratio (Nb/Y vs. Zr/TiO2 ) shows that the TTF rocks exposed near the mine area are composed principally of rhyolite-rhyodacitic rocks, with some andesite compositions. The 2Ca+Na+K/Al (Molar) vs. K/Al (Molar) and alteration Index vs. CCP Index binary plots illustrate : 1) Strong Na and Ca loss experimented by the rocks accompanied by potassium enrichment and 2), intense pyrite-sericite alteration, although chlorite may be present in the propylitized altered rocks. The imprint of silicification is clearly detected in

the Al2O3 (wt. %) vs. Zr (ppm) plot with a trend toward very low Al2O3 and Zr values attributed to dilution caused by the introduction of silica during a late hydrothermal event.

Rock samples of tailing material, polymetallic veins, mineralized muck piles and wallrocks were assayed for precious and base metals and other strategic metals. Results from dry-stacked tailing samples indicate that most of the gold and silver in the Boumadine ore still rest in the tailings. Average concentrations of Au (2.80 g/t) and Ag (178 g/t) are similar to that reported in 1998 by the BRMP. Grab samples from unoxydized sulfide-rich rocks from several muck piles show comparable average concentrations of Au and Ag (3.00 g/t and 279 g/t respectively) to that of the BRMP average ore (i.e. 3.50 g/t Au and 200 g/t Ag). Average assay values for base metals; Pb (1.99 wt. %), Zn (2.10 wt. %) and Cu (0.10 wt.%) are slightly different whereas As (2.03

136 wt. %) and Fe (28.79 wt.%) contents are similar. They confirm the validity of the historical concentrations for precious and base metals extracted at Boumadine and summarized by the BRMP. Surface samples of moderately to strongly oxydized mineralized rocks ("iron cap") yielded slightly higher gold concentrations (average: 4.08 g/t) relative to the sulfide ore, but significant depletion in average Ag (58 g/t), Pb (0.67 wt. %), Zn (0.07 wt. %) and Cu (0.01 wt. %). Wallrock samples were found to contain moderate amount of gold (Average: 0.31 g/t) and Ag (Av: 22 g/t) up to 70 m from the contact with the mineralized polymetallic veins. These results reinforce the hypothesis of a more extensive precious metal mineralization than previously thought related to intense late silicification. ENE-oriented Cu and Pb-rich veins in the Imariren region contain very low gold concentrations, but significant, although scattered, silver content s(0-3360 g/t Ag; Average: 195 g/t).

The first phase of a future exploration program involves IP and Mag surveys on the core exposure of the property, compilation of historical data into a GIS platform, rock and soil sampling, geological and structural mapping and tailing sampling. The cost of Phase I is expected to reach $922,787. The second phase is entirely devoted to a comprehensive drilling program (8,000 m of core) which will aim to validate and expand the historical resources and establish Inferred and possibly Indicated Resources. The total estimated cost of drilling is $2,140,208.

ITEM 26 RECOMMENDATIONS

The Boumadine deposit is destined to contain several million tonnes of polymetallic mineralization on top of the established historical mineral resources of 3,837,970 t* @ 0.86 wt. % Pb, 3.9 wt. Zn, 204 g/t Ag, and 3.60 g/t Au (BRMP, 1998). The absence of previous geophysical survey clearly is a major impediment to find more tonnage especially in the northeast and southeast areas of permit no. 2959. The presence of highly conductive massive sulfide veins typical of the Boumadine ore is likely to be strongly reflected in anomalous geophysical readings. Therefore, the first recommendation of the author is to carry ground-based IP/PP and Mag surveys. The Mag survey is expected to cover the 16 km2 area of the first permit

137 (Figure 48). The lines should be oriented EW and spaced in 100 m intervals bringing the total length of gridlines to 160 km. Magnetic readings should be conducted each 50 or 100 m along the lines. The paucity of vegetation and desert conditions preclude line cutting and facilitate the marking of stations on the ground. These can be taken by GPS readings and by laying boundary stones. The author has restricted the proposed area of the IP/PP survey to 8.11 km2 considering their high cost (~$2,000-$3,000/km). The area encompasses the core of the Boumadine deposit. The line spacing is kept at 100 m, bringing the total length of the surveyed lines to 81 km.

*The estimates presented above are treated as historic information and have not been verified or relied upon for economic evaluation by the Issuer or the writer. These historical mineral resources do not refer to any category of sections 1.2 and 1.3 of the NI-43-101 Instrument such as mineral resources or mineral reserves as stated in the 2010 CIM Definition Standards on Mineral Resources and Mineral Reserves. The explanation lies in the inability by the author to verify the data acquired by the various historical drilling campaigns and underground works. The author has read the documents pertaining to the description of the different methods used in the historical evaluation of the reserves. The Issuer has not done sufficient work yet to classify the historical estimates as current mineral resources or mineral reserves. Therefore, the Issuers in the opinion that the above quoted resources for the Boumadine deposit cannot be relied upon.

The second recommendation deals with the compilation of historical and newly produced data followed by their transfer into a 3D GIS software platform (i.e. ARCGis, Target, Leapfrog…). Historical data includes the partial recovery of the log descriptions, localization, precious and base metal assay values associated with more than 32,756 m of drillcore material collected from 1957 to 1992. Plan and sections of the surface and underground works will be integrated to the 3D model with the newly acquired geophysical IP and Mag survey maps. The ultimate goal of this exercise is to produce a 3D picture of the Boumadine deposit that will ultimately help in planning future surface and underground investigations.

138 E=542390 mE N=92602 mN PE2959

Mag survey/rock and soil sampling survey grid IP survey grid

Polymetallic veins Source: This study (Au, Ag, Zn, Pb, Cu)

PR34565 E=546390 mE 0 200 500 m N=88602 mN

Figure 48. Localization of the Mag geophysical and rock/soil survey grid (in pale green). The IP geophysical survey grid covers the core of the deposit and is presented in yellow. Projected Coord.: Merchich, Nord Maroc.

139

The authors also strongly recommend a soil/rock sampling campaign along the established geophysical gridlines. Collection of soil samples at 50 m intervals along each EW-oriented line would yield 3,200 samples to be analyzed for precious and trace metals. Grab rock sampling will be less systematic owing to the large scree distribution and presence of numerous oueds. However, there is a sufficient outcrop density to generate a good database. The sampling campaign has two main objectives: 1) the discovery of anomalous precious/base metals zones and 2), the characterizing of the chemical and mineral alterations affecting the volcanic rocks of the Tamerzaga-Timrachine Formation (TTF). In the latter case, a petrographic study of the altered rocks would allow the correlation of the mineralogical paragenesis to the geochemical variations.

There are no comprehensive georeferenced geological and structural maps of the property. The only geological map can be found in an annex of a BRMP report written in 1998. This map has served as a field guide to the Boumadine site visits by Maya geologists, but the author believes that it contains several inaccuracies. The contacts between different lithological units of the TTF appear to be legitimate at the scale used by the BRMP (1:5,000) but the rock nomenclature is incorrect. This stems from the difficulty of recognizing the primary protholith when the rocks are altered. Therefore, a new structural and geological mapping must be produced. It is strongly recommended by the author to hire specialists in structure, metallogeny and geochemistry to help construct a coherent map of the Boumadine site within the area of permit PE2959. The geology of permit PR34565 is virtually unknown and Maya geologists should devote at least 10 days to complete a preliminary geological survey.

It is estimated that the two dry-stacked Boumadine tailings contain ~ 240,000 t of recoverable material grading 2.80 g/t Au and 178 g/t Ag. This estimation is based on a limited amount of data and does not provide an accurate tonnage or grade. The author proposes a systematic sampling of both tailing piles that include auger penetration to the base of each tailing piles (Figure 49). Using heights of 3 and 9 m for each tailing mound, the author has evaluated a need of 324 samples with the provision of one sample for each

140 Imariren North Zone Shaft #2 Zone (Imariren)

Tailings Shaft #5

Tizi Shaft Shaft A Zone Oued Shaft #3 Central Property boundary Zone Shaft B

Ancient Mining Installations Bou Madine Polymetallic h=3 m (Zn, Pb, Cu, Au, Ag) Deposit Pyrophyllite Mine

Southern Shaft #4 Zone Tailings A Polymetallic veins 0 200 400 m (Zn, Pb, Cu, Au, Ag) 57 x 3= 171 éch.

Espacement: 20 m Total (A+B) Tailings B 324 éch. 17 x 9= 153 éch.

h=8.5 m

0 25 50 m Source: This study

Figure 49. Proposed auger sampling survey of the two tailing mounds left near the Boumadine installation sites. The program involves 324 “soil” samples at one meter depth interval. It is estimated that the two tailing piles contain~ 240,000 t of recoverable material grading 2.80 g/t Au and 178 g/t Ag

141 meter depth. The aggregate samples will be analyzed for their precious and base metal concentrations. The dimensions of each tailing stack should be surveyed in detail.

The results of the metallurgical testing on the Boumadine ore and tailings samples generated a poor to moderate rate of extraction for gold (~70 %) and silver (~49 %) using a complicated process of oxydation, chloration and lixiviation. It is proposed to pursue further metallurgical testing notably by submitting tailing and ore samples through a combined oxydation roaster bed and cyanidation process. Phase I of the exploration program is expected to cost $922,787.

The second phase of exploration is entirely devoted to a comprehensive drilling program on five recognized zones of mineralization (i.e. Tizi, Imariren, North, Central and South) and on new target zones identified from the Phase I geophysical and geochemical surveys. One main objective of the program is the validation and expansion of the historical resources in view of their reclassification into Inferred and possibly Indicated Resources. This extensive drilling program comprises a total of 8,000 m of core distributed in 40 DDH. The total estimated cost of the drilling program is established at $2,140,208.

142 26.1-Budget Breakdown

BOUMADINE DEPOSIT EXPLORATION BUDGET (PHASE I)

COMPILATION OF HISTORICAL DATA/GIS 3D $50,000

GEOLOGICAL MAPPING

Geologist ($650/day x 180 days) $117,000 Assistant geologist (400/day x 60 days) $24,000 Consulting geologist (Structure) ($800/day X 10 days) $8,000 Consulting geologist (Metallogeny/Geochemistry) ($800/day X 10 days) $8,000 Analyses:50 samples @ $50/sample $2,500 Lodging and food $52,000 Transport: airfare $25,000 Transport: truck location, ATV $10,000 Equipment: sampling bags, GPS etc $5,000 Maps and geological reports $50,000 Shipping $2,000

SOIL SAMPLING

3,250 samples x $30/samples (all included) $97,500

ROCK SAMPLING

500 samples X $50/samples (all included) $25,000

TAILING SAMPLING

325 samples X $50/sample (all included) $16,250

GEOPHYSICAL SURVEYS

IP/PP survey : 81 km x $2500/km $202,500 Mag survey: 160 km X $120/km $19,200 Lodging and food $25,000 Transport: airfare and truck locations $20,000

METALLURGICAL TESTING $40,000

Subtotal $798,950 Contingency (10%) $79,895 Total before taxes $878,845 GST (5%) $43,942

Grand Total $922,787

143

26.1-Budget Breakdown (Ctnd.)

BOUMADINE POLYMETALLIC DEPOSIT (PHASE II)

DRILLING

8,000m (NQ) X $150/m $1,200,000 Mobilisation-demobilisation $50,000 Drill moving, water set-up $15,000 Permits $1,000 Core racks $2,000 Core shack $5,000 Analyses: 5600 samples X $50/sample $280,000 Supervision: 1 geologist :$600/day X 160 days $96,000 2 technicians: $80/day X 160 days $25,600 Core splitter, survey instrument, sample bags, etc.. $20,000 Administration/supervision $10,000 Shipping $10,000

LODGING AND MEALS $64,000

EQUIPMENT

Truck location, ATV $50,000

GEOLOGICAL REPORT $25,000

Subtotal $1,853,600 Contingency (10%) $185,360 Total before taxes $2,038,960 GST (5%) $101,948

Grand Total $2,140,908

144 ITEM27 REFERENCES

Abia, E.H., Nachit, H., Ibhi, A., Baroudi, Z. (1999). Les minéralisations filoniennes à Pb, Zn et Cu de la boutonnière de l'Ougnat. Relations avec les déformations et essai de calage chronologique. Chronique Recherche Minière, v. 536; p. 83-95.

Abia, E. A. 2001. Étude des Formations Magmatiques et Crystallophylliennes Néoprotérozoiques de l’Ougnat (Anti-Atlas , Maroc) et des Minéralisations Polymétallliques Associées. Thèse de Doctorat d’État, Université Ibnou Zorh, Facultés des Sciences d’Agadir; 150 pp.

Abia, E.H., Nachit, H., Christian Marignac, C., Abderrahmane,I., Saadi, S.A. 2003. The polymetallic Au–Ag-bearing veins of Bou Madine (Jbel Ougnat, eastern Anti-Atlas, Morocco): tectonic control and evolution of a Neoproterozoic epithermal deposit. Journal of African Earth Sciences, v. 36; p. 251-271.

Aït Malek, H., Gasquet, D., Bertrand, J.M., Leterrier, J. 1998.Géochronologie U/Pb sur zircon de granitoïdes Éburnéens et Panafricains dans les boutonnières protérozoïques d’Igherm, du Kerdous et du Bas Drâa (Anti-Atlas occidental, Maroc). Compte Rendus Académie des Sciences de Paris, no. 327; pp. 819-826.

Bakari, M., Nicot, J.P. 1985. Gisement Polymétallique de Boumadine. Bilan des Réserves au 1/03/1985. BRPM; 165 pp.

Benkhadra, A., Celko, L. 1983. Boumadine. Étude Technico-Économique du Projet Pilote de 150 t/j. BRPM; 203 pp.

BRPM. 1998. Gisement Polymétallique de Boumadine. Géologie et États des Réserves. BRPM; 30 pp.

145 Buchanan, L.J., 1981, Precious metal deposits associated with volcanic environments in the southwest. In Dickson, W.R., Payne, W.D, Relations of Tectonics to Ore Deposits in the Southern Cordillera. Arizona Geological Society Digest, v. 14; p. 237-262.

Chaki, A. 1982. Gisement Filonien Polymetallique de Boumadine. Bilan des Travaux, Campagne 1981-1982. BRPM; 21 pp.

Cline, J.S., Hofstra, A. H., Muntean, J.L., Tosdal, R.M., Hickey, K.A. 2005. Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models. Economic Geology 100th Anniversary Volume; pp. 451–484.

Conly, A.G. 2013a. Independent Mineralogical report, Boumadine Mine, Part I; 17 pp.

Conly, A.G. 2013b. Independent Mineralogical report, Boumadine Mine, Part II; 106 pp.

Cook, D.R., Simmons, S.F. 2000. Characteristics and genesis of epithermal gold deposits. Reviews of Economic Geology, v. 13; p. 221-244.

Corbett, G. J., Leach, T. M. 1998. Southwest Pacific rim gold-copper systems: structure, alteration, and mineralization. Society of Economic Geologists Special Publication, no. 6; 234 pp.

Corbett, G.J. 2002. Epithermal Gold for Explorationists -Australian Institute of Geoscientists Presidents lecture: AIG News, no. 67; 8 pp.

Corbett, G.J., 2004, Epithemal and porphyry gold - Geological models. In Pacrim Congress 2004 , Adelaide, The Australasian lnstitute of Mining and Metallurgy; p. 15-23.

Corbett, G.J., 2005, Epithermal Au-Ag deposit types - implications for exploration: Proexplo Conference Peru , May 2005.

146 Dagallier, G., Freton, R., Saadi, S.A. 1998. Étude Préliminaire du Gîte Polymétallique Épithermal à Ag-Au de Bou Madine (Anti-Atlas, Maroc); 24 pp.

Freton, R. 1988. Contribution à l’Étude Métallogénique ou District de Bou-Madine Anti- Atlas, Maroc, Environnement Tectonique et Concentrations Épithermales B.P.G.C à Ag et Au. Thèse de Doctorat, Institut National Polytechnique de Lorraine de Géologie Appliquée et de Prospection Minière; 63 pp.

Guilbert, J.M., Park, W. 1986. The geology of ore deposits: New York, W. H. Freeman; 985 pp.

Hedenquist, J. W. 1987. Mineralization associated with volcanic-related hydrothermal systems in the circum-Pacific Basin. In Transactions Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore (Ed: M K Horn); p. 513-524.

La Fargues, A. 1957. Gisement de Pb-Zn-Cu de Bou Madine (J. Ougnat). Rapport fin de travaux. BRMP; 17 pp.

Lalancette, J.M., Barbaroux, R., Dubreuil, B. 2013. Rapport final d’essais en Laboratoire sur un Échantillon de Minerai Polymetallique de la Mine Boumadine au Maroc. Nichromet Extraction; 16 pp.

Landing, E., Bowring, S.A., Davidek, K.L., Westrop, S.R., Geyer, G., Heldmaier, W. 1998. Duration of the Early Cambrian: U–Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences, vol. 35; pp. 329–338.

Large, R. R., Gemmell, B.G., Paulig, H., Huston, D. 2001. The Alteration Box Plot: A Simple Approach to Understanding the Relationship Between Alteration, Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Economic Geology, v. 96; p. 957-971.

147 Leblanc, M., Lancelot, J.R. 1980. Interprétation géodynamique du domaine panafricain (Précambrien terminal) de l’Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Canadian Journal of Earth Sciences, vol. 17; pp. 142–155.

Lécolle, M., Derré, C., Rijmati, E.C., Nerci, K., Azza, A.M., Bennani, A. 1991. Les distensions de la tectonique bi-phasée du Panafricain de Anti-Atlas oriental: Dynamique de dépôt et de structuration des Précambriens II et III (Saghro, Maroc). Comptes Rendus Académie Sciences, Paris, v. 313,(2); p. 1563-1568.

Lécolle, M,. Derré, C. 2005. Discussion of ‘‘The polygenetic Au–Ag bearing veins of Bou Madine (Jbel Ougnat, Eastern Anti-Atlas, Morocco): tectonic control and evolution of a Neoproterozoic epithermal deposit’’. Journal of African Earth Sciences, v. 41; p. 151-154.

Lelièvre, J. 2011. Essais Minéralogiques sur les Résidus Miniers du Site Boumadine, Maroc. Unité de recherche et de service en technologie minérale (URSTM), PU-2011-02- 586; 25 pp.

Levresse, A. 2001. Contribution à l'établissement d'un modèle génétique des gisements d'Imiter (Ag-Hg), Bou Madine (Pb-Zn-Cu-Ag-Au) et Bou Azzer (Co-Ni-As-Au-Ag) dans l'Anti-Atlas marocain. Thèse présentée pour l'obtention du titre de Docteur de l'Institut National Polytechnique de Lorraine, France.

Michard, A. 1976. Éléments de géologie marocaine; No 252; Notes et mémoires du Service géologique du Maroc.

Morrison, G.W., Dong, G., Jaireth, S. 1990. Textural zoning in epithermal quartz veins. Amira Project P247, Gold Research Group, James Cook University of North Queensland; 33 pp.

148 Paile, Y. 1983. Etude des séries volcaniques du Précambrien III de l'Ougnat (Anti-Atlas oriental, Maroc) et de ses minéralisations plombo-zincifères complexes associées (Gîte de Bou Madine), Thèse 3ème cycle, Université Paris, Orsay; 290 pp.

Ait Sasdi, S. 1992. Contribution à l’Étude de l’Environnement Paléovolcanqiue du Protérozoïque Supérieur (PIII) et du Mode de Génèse des Concentrations Polymétalliques de Bou-Madine (Ougnat, Anti-Atlas Oriental, Maroc). Doctorat en Ingénérie, Institut National Polytechnique de Lorraine, École Nationale de Géologie Appliquée et de Prospection Minière; 123 pp.

Saint Gal de Pons, A. 1966a. Bou Madine. Bilan des travaux, Estimation des Réserves au 1er Mars 1966. BRPM; 175 pp.

Saint Gal de Pons, A. 1966b. Bou Madine. Note Provisoire sur les Réserves de la Zone Centrale des Vieux Travaux. BRPM; 11 pp.

Saint Gal de Pons, A. 1975. Gisement Polymétallique de Boumadine de l'Ougnat. Troisième Bilan des Travaux. Estimation au 1.6.73. BRPM; 238 pp.

Savary, G. 1964. Boumadine. Estimation des Réserves Probables et Possibles pour l'Ensemble du Gisement. BRPM; 126 pp.

SODECAT. 1993. Gisement Polymétallique de Boumaadine. Bilan des Travaux de Recherches et Réserves (Après l'arrêt de l'exploitation en Août 1992). BRPM; 21 pp.

Thomas, R.J, Fekkak, A., Ennih, N., Errami, E., Loughlin, S.C., Gresse , P.G., Chevallier, L. P., Liégeois, J.P. 2004. A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. Journal of African Earth Sciences, vol. 39; pp. 217–226.

Thomas, R.J., Chevallier, L.P., Gresse, L.P., Harmer, R.E., Eglington, B.M., Armstrong, R.A., de Beer, C.H., Martini, J.E.J., de Kock, G.S., Macey, P.H., Ingram, B.A. 2002.

149 Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Research, vol. 118; pp. 1-57.

Tucker-Barrie, C., Nielsen, F.W., Aussant, C.H. 2007. The Bisha Volcanic-Associated Massive Sulfide Deposit, Western Nakfa Terrane, Eritrea. Economic Geology, v. 102; p. 717–738.

Sillitoe, R.H. 1993. Epithermal models: Genetic types, geometrical controls and shallow features: Geological Association of Canada Special Paper 40; p.403−417.

Sillitoe, R.H., Hedenquist, J. W. 2003. Linkages between Volcanotectonic Settings, Ore- Fluid Compositions and Epithermal Precious Metal Deposits. Society of Economic Geologists Special Publication 10, 2003; p. 315-343.

White, N.C., Hedenquist, J. W. 1990. Epithermal environments and styles of minera1ization: variations and their causes, and guidelines for exploration, Journal of Geochemical Exploration, v. 36; p. 445-474.

White, N.C., Hedenquist, J. W. 1995. Epithermal gold deposits: styles, characteristics and exploration, Society of Economic Geologists Newsletter, no. 23; p. 9-13

Winchester, J.A., Floyd P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, v. 20; p. 325–343.

150

Appendix 1

151 152 153 154 155 156 157

Appendix 2

158 159

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Finalisée date: 25- OCT- 2012 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Compte: MAYOR Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

CERTIFICAT VO12232035 PRÉPARATION ÉCHANTILLONS CODE ALS DESCRIPTION Projet: MOROCCO WEI- 21 Poids échantillon reçu Bon de commande #: 12176899214 LOG- 22 Entrée échantillon - Reçu sans code barre CRU- QC Test concassage QC Ce rapport s'applique aux 22 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 1- OCT- 2012. CRU- 31 Granulation - 70 % < 2 mm PUL- QC Test concassage QC Les résultats sont transmis à: SPL- 21 Échant. fractionné - div. riffles MICHEL BOILY GUY GOULET FRANCOIS GOULET GUY GOULET FRANCOIS GOULET PUL- 31 Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES CODE ALS DESCRIPTION INSTRUMENT Ag- OG62 Teneur marchande Ag - quatre acides VARIABLE ME- OG62Teneur marchande éléments - quatre acides ICP- AES Cu- OG62 Teneur marchande Cu - quatre acides VARIABLE Pb- OG62Teneur marchande Pb - quatre acides VARIABLE Au- AA25 Teneur marchande Au 30 g fini FA AA AAS ME- ICP06Roche entière - ICP- AES ICP- AES OA- GRA05 Perte par calcination à 1 000 C WST- SEQ ME- MS81Fusion 38 éléments ICP- MS ICP- MS TOT- ICP06 ICP- AES ME- ICP41 Aqua regia ICP- AES 35 éléments ICP- AES Ag- OG46 Teneur marchande Ag - Aqua regia VARIABLE ME- OG46Teneur marchandes éléments - Aqua regia ICP- AES À: MAYA GOLD & SILVER INC. Cu- OG46 Teneur marchande Cu - Aqua regia VARIABLE ATTN: MICHEL BOILY Pb- OG46Teneur marchande Pb - Aqua regia VARIABLE 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Zn- OG46 Teneur marchande Zn - Aqua regia VARIABLE BLAINVILLE QC J7C 3V5 Ag- GRA21 Ag 30 g fini FA- GRAV WST- SIM

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. Signature: Nacera Amara, Laboratory Manager, Val d'Or 160

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - A 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - G) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 25- OCT- 2012 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO12232035

Méthode WEI- 21 Ag- GRA21 ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a élément Poids reçu Ag Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe Ga unités kg ppm ppm % ppm ppm ppm ppm % ppm ppm ppm ppm % ppm Description échantillon L.D. 0.02 5 1 0.05 50 50 10 20 0.05 10 10 10 10 0.05 50

0001 0.47 <1 1.58 <50 470 <10 <20 0.07 <10 <10 20 10 0.62 <50 0002 0.94 2 1.55 <50 230 <10 <20 0.12 <10 <10 10 10 0.96 <50 0003 0.96 >200 0.40 110 140 <10 30 0.06 <10 10 10 3350 0.41 <50 0004 0.72 37 1.59 240 50 <10 <20 0.18 <10 10 20 >100000 13.95 <50 0005 0.62 1 4.04 100 50 <10 <20 3.10 <10 <10 10 900 4.34 <50 0006 0.82 <1 5.10 <50 <50 <10 <20 1.86 <10 <10 70 60 4.81 50 0007 0.43 96 8.24 740 970 <10 110 0.36 <10 20 190 41500 7.79 <50 0008 0.76 1 1.64 <50 780 <10 <20 0.06 <10 <10 10 230 1.87 <50 4401 0.60 90 92 2.76 19350 390 <10 <20 0.16 <10 30 <10 580 1.93 <50 4402 0.47 <5 <1 9.68 130 880 <10 <20 0.20 <10 10 100 110 4.71 <50 4403 1.09 84 72 0.73 410 170 <10 <20 0.09 <10 <10 10 70 1.74 <50 4404 1.29 29 27 2.16 400 23500 <10 <20 0.86 <10 <10 10 30 3.28 <50 4405 0.76 20 18 2.58 340 800 <10 <20 0.08 <10 <10 10 50 3.95 <50 4406 0.66 5 3 1.68 <50 570 <10 <20 <0.05 <10 <10 10 20 0.34 <50 4408 1.38 45 58 <0.05 19300 230 <10 <20 <0.05 140 <10 10 130 37.6 <50 4409 1.20 11 12 1.40 180 530 <10 <20 <0.05 <10 <10 20 90 2.18 <50 4410 0.57 29 28 0.34 710 510 <10 <20 0.15 <10 <10 20 10 9.16 <50 4411 2.07 119 138 0.40 8270 <50 <10 <20 <0.05 360 <10 10 740 23.9 <50 4412 0.99 <5 3 1.27 60 680 <10 <20 0.07 <10 <10 20 2590 0.60 <50 4413 0.82 <5 6 2.26 <50 860 <10 <20 0.38 <10 <10 20 770 0.60 <50 4414 1.29 <5 3 2.77 <50 690 <10 <20 0.34 <10 <10 30 2610 1.06 <50 4415 1.19 <5 1 1.19 <50 220 <10 <20 0.54 <10 <10 20 910 0.61 <50 161

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - B 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - G) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 25- OCT- 2012 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO12232035

Méthode ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a élément KLaMgMnMoNaNiPPbSSbScSrThTi unités % ppm % ppm ppm % ppm ppm ppm % ppm ppm ppm ppm % Description échantillon L.D. 0.1 50 0.05 10 10 0.05 10 50 20 0.05 50 10 10 50 0.05

0001 2.2 <50 0.29 40 <10 1.04 10 90 <20 <0.05 <50 <10 20 <50 0.06 0002 1.5 <50 0.23 110 <10 <0.05 <10 140 30 <0.05 <50 <10 10 <50 0.06 0003 0.3 <50 0.11 130 280 <0.05 <10 290 >100000 1.17 200 <10 90 <50 <0.05 0004 0.3 <50 0.97 380 10 0.06 <10 480 680 1.80 <50 10 10 <50 0.10 0005 <0.1 <50 1.73 730 <10 0.64 <10 <50 230 <0.05 <50 10 70 <50 0.16 0006 <0.1 <50 2.05 530 <10 0.70 10 580 350 <0.05 <50 20 140 <50 0.35 0007 4.5 <50 2.22 1160 <10 1.27 60 1260 15750 0.16 <50 20 60 <50 0.57 0008 1.7 <50 0.08 30 <10 4.24 <10 110 140 0.75 <50 <10 30 <50 0.13 4401 2.5 <50 0.24 90 10 5.03 <10 780 3680 0.36 <50 <10 30 <50 0.63 4402 4.2 <50 1.06 840 <10 0.16 30 410 40 <0.05 <50 20 40 <50 0.42 4403 0.5 <50 0.08 30 10 <0.05 <10 70 680 0.44 50 <10 20 <50 0.06 4404 1.0 <50 0.18 120 10 <0.05 <10 130 1470 0.73 90 <10 340 <50 0.07 4405 1.9 <50 0.19 210 <10 <0.05 <10 170 1590 0.21 <50 <10 20 <50 0.12 4406 1.9 <50 0.15 110 <10 <0.05 <10 <50 110 <0.05 <50 <10 10 <50 <0.05 4408 <0.1 <50 <0.05 140 60 <0.05 <10 <50 1100 >10.0 370 <10 <10 <50 <0.05 4409 1.3 50 0.16 50 <10 <0.05 <10 400 930 0.82 <50 <10 30 <50 0.14 4410 1.8 <50 0.07 10 10 <0.05 <10 220 4640 3.55 <50 <10 20 <50 0.28 4411 0.2 <50 0.07 30 20 <0.05 <10 <50 17750 >10.0 250 <10 <10 <50 <0.05 4412 3.1 <50 0.08 150 <10 0.87 <10 100 90 0.23 <50 <10 20 <50 <0.05 4413 3.6 <50 0.11 320 <10 1.07 <10 210 140 0.08 <50 <10 30 <50 <0.05 4414 4.2 <50 0.13 220 <10 1.21 <10 130 20 <0.05 <50 <10 20 <50 0.08 4415 1.0 <50 0.11 170 <10 <0.05 <10 70 50 <0.05 <50 <10 <10 <50 <0.05 162

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - C 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - G) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 25- OCT- 2012 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO12232035

Méthode ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a ME- ICP61a Ag- OG62 Cu- OG62 Pb- OG62 Au- AA25 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Tl U V W Zn Ag Cu Pb Au Ag Ba Ce Co Cr Cs unités ppm ppm ppm ppm ppm ppm % % ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 50 50 10 50 20 1 0.001 0.001 0.01 1 0.5 0.5 0.5 10 0.01

0001 <50 <50 10 <50 30 0002 <50 <50 30 <50 80 0003 <50 <50 70 <50 50 285 18.85 0004 <50 <50 150 <50 320 16.40 0005 <50 <50 50 <50 70 0006 <50 <50 140 <50 50 0007 <50 <50 160 <50 700 0008 <50 <50 10 <50 20 4401 <50 <50 110 <50 90 4402 <50 <50 110 <50 150 4403 <50 <50 <10 <50 20 0.69 4404 <50 <50 10 <50 120 0.37 4405 <50 <50 20 <50 90 0.20 4406 <50 <50 <10 <50 50 <0.01 3 601 41.1 <0.5 20 1.01 4408 <50 <50 <10 70 12800 0.60 4409 <50 <50 20 <50 170 0.03 4410 <50 <50 10 <50 100 0.02 4411 <50 <50 <10 310 42300 1.54 4412 <50 <50 10 <50 250 0.01 4413 <50 <50 20 <50 230 0.10 4414 <50 <50 20 <50 50 <0.01 2 742 100.5 1.6 30 1.46 4415 <50 <50 10 <50 30 0.02 163

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - D 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - G) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 25- OCT- 2012 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO12232035

Méthode ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Cu Dy Er Eu Ga Gd Hf Ho La Lu Mo Nb Nd Ni Pb unités ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 5 0.05 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 2 0.2 0.1 5 5

0001 0002 0003 0004 0005 0006 0007 0008 4401 4402 4403 4404 4405 4406 8 2.61 1.78 0.34 15.2 2.98 3.7 0.56 21.0 0.27 <2 7.5 17.7 <5 108 4408 4409 4410 4411 4412 4413 4414 2390 2.59 1.73 1.23 12.7 3.43 5.4 0.54 55.1 0.31 <2 8.8 35.4 5 9 4415 164

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - E 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - G) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 25- OCT- 2012 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO12232035

Méthode ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Pr Rb Sm Sn Sr Ta Tb Th Tl Tm U V W Y Yb unités ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.03 0.2 0.03 1 0.1 0.1 0.01 0.05 0.5 0.01 0.05 5 1 0.5 0.03

0001 0002 0003 0004 0005 0006 0007 0008 4401 4402 4403 4404 4405 4406 4.85 97.7 3.55 3 13.0 0.6 0.47 8.64 1.1 0.28 1.01 12 <1 16.3 1.61 4408 4409 4410 4411 4412 4413 4414 10.60 145.0 5.24 1 24.2 0.7 0.49 10.85 1.0 0.30 4.18 37 1 16.0 1.85 4415 165

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - F 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - G) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 25- OCT- 2012 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO12232035

Méthode ME- MS81 ME- MS81 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 élément Zn Zr SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO unités ppmppm%%%%%%%%%%%%% Description échantillon L.D. 5 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0001 0002 0003 0004 0005 0006 0007 0008 4401 4402 4403 4404 4405 4406 49 119 88.2 8.08 0.60 0.12 0.27 0.04 2.40 <0.01 0.06 0.02 <0.01 <0.01 0.07 4408 4409 4410 4411 4412 4413 4414 41 211 77.4 10.20 1.79 0.64 0.20 1.67 5.35 <0.01 0.15 0.04 0.02 <0.01 0.09 4415 166

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - G 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - G) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 25- OCT- 2012 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO12232035

Méthode OA- GRA05 TOT- ICP06 Ag- OG46 Cu- OG46 Pb- OG46 Zn- OG46 ME- ICP41 ME- ICP41 élément LOI Total Ag Cu Pb Zn Sn Ni unités % % ppm % % % ppm ppm Description échantillon L.D. 0.01 0.01 1 0.001 0.001 0.001 10 1

0001 <10 13 0002 <10 1 0003 281 18.80 <10 1 0004 16.30 10 6 0005 <10 1 0006 <10 2 0007 3.98 1.555 <10 56 0008 <10 1 4401 <10 8 4402 <10 28 4403 20 <1 4404 20 1 4405 10 <1 4406 1.71 101.57 <10 <1 4408 1.290 60 <1 4409 <10 <1 4410 20 <1 4411 129 1.685 4.04 40 <1 4412 <10 1 4413 <10 2 4414 1.61 99.16 <10 1 4415 <10 1 167

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Finalisée date: 3- AVRIL- 2013 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Compte: MAYOR Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

CERTIFICAT VO13051661 PRÉPARATION ÉCHANTILLONS CODE ALS DESCRIPTION Projet: MOROCCO FND- 02 Local. échantillon pour analyse suppl. Bon de commande #: Ce rapport s'applique aux 10 échantillons de roche soumis à notre laboratoire de Val PROCÉDURES ANALYTIQUES d'Or, QC, Canada le 19- MARS- 2013. CODE ALS DESCRIPTION INSTRUMENT Les résultats sont transmis à: ME- ICP06 Roche entière - ICP- AES ICP- AES MICHEL BOILY ME- MS81 Fusion 38 éléments ICP- MS ICP- MS TOT- ICP06 ICP- AES OA- GRA05 Perte par calcination à 1 000 C WST- SEQ

À: MAYA GOLD & SILVER INC. ATTN: MICHEL BOILY 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 BLAINVILLE QC J7C 3V5

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. Signature: Colin Ramshaw, Vancouver Laboratory Manager 168

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - A 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 3- AVRIL- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO13051661

Méthode ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- MS81 ME- MS81 élément SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO Ba Ce unités %%%%%%%%%%%%%ppmppm Description échantillon L.D. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.5 0.5

4403 91.9 1.88 3.39 0.17 0.06 0.02 0.77 <0.01 0.14 0.01 0.03 <0.01 0.02 185.0 43.5 4404 79.8 4.56 5.13 1.20 0.23 0.01 1.26 <0.01 0.13 0.02 0.04 0.05 3.46 >10000 30.1 4405 79.1 8.18 6.26 0.16 0.32 0.04 2.42 <0.01 0.22 0.03 0.04 <0.01 0.10 788 24.7 4406 87.2 7.86 0.59 0.12 0.28 0.04 2.34 <0.01 0.06 0.02 <0.01 <0.01 0.07 597 39.4 4409 86.9 4.91 3.47 0.09 0.23 0.03 1.73 0.01 0.24 0.01 0.09 0.01 0.06 550 155.5 4410 68.2 0.68 14.15 0.21 0.05 0.03 2.36 <0.01 0.52 0.01 0.05 <0.01 0.06 499 17.1 4412 84.2 7.21 1.11 0.19 0.07 1.23 3.81 <0.01 0.04 0.03 0.02 <0.01 0.09 757 10.6 4413 78.2 9.66 1.03 0.75 0.18 1.50 4.78 <0.01 0.05 0.05 0.05 <0.01 0.11 912 79.1 4414 78.0 10.60 1.80 0.65 0.20 1.74 5.38 <0.01 0.15 0.04 0.03 <0.01 0.09 759 101.0 4415 93.0 2.37 0.87 0.67 0.10 0.02 1.22 <0.01 0.03 0.02 0.01 <0.01 0.03 209 16.4 169

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - B 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 3- AVRIL- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO13051661

Méthode ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Cr Cs Dy Er Eu Ga Gd Hf Ho La Lu Nb Nd Pr Rb unités ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 10 0.01 0.05 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 0.2 0.1 0.03 0.2

4403 10 0.22 3.36 2.38 1.06 10.1 3.10 5.1 0.71 23.2 0.33 8.5 17.1 4.92 22.4 4404 10 0.49 3.10 2.32 0.33 15.4 2.79 4.9 0.68 15.1 0.36 8.1 13.0 3.53 48.5 4405 20 0.70 2.96 1.84 0.32 12.9 2.25 4.1 0.60 12.4 0.27 7.9 10.0 2.83 96.0 4406 20 1.00 2.31 1.53 0.28 14.2 2.67 3.6 0.48 19.5 0.23 7.3 16.2 4.52 90.3 4409 50 0.79 2.47 1.11 2.11 12.0 4.56 1.6 0.41 79.6 0.09 3.1 54.1 16.75 70.9 4410 30 0.28 1.49 1.09 0.54 9.2 1.30 4.0 0.33 8.5 0.15 6.5 7.0 1.93 53.2 4412 30 0.68 2.16 1.87 0.16 8.4 1.50 4.1 0.51 4.8 0.30 9.1 4.7 1.27 103.0 4413 30 0.97 3.85 2.75 0.61 15.5 4.33 5.6 0.83 39.0 0.40 9.6 32.3 9.17 135.5 4414 30 1.56 2.57 1.61 1.24 11.9 3.50 5.8 0.51 52.7 0.28 8.3 34.5 10.40 137.0 4415 30 0.48 0.85 0.57 0.21 4.5 0.87 1.4 0.17 9.0 0.08 3.6 6.1 1.89 38.3 170

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - C 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 3- AVRIL- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO13051661

Méthode ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 TOT- ICP06 élément Sm Sn Sr Ta Tb Th Tl Tm U V W Y Yb Zr Total unités ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm % Description échantillon L.D. 0.03 1 0.1 0.1 0.01 0.05 0.5 0.01 0.05 5 1 0.5 0.03 2 0.01

4403 3.39 38 30.7 0.7 0.50 10.00 <0.5 0.35 4.67 <5 1 21.3 2.43 146 101.53 4404 2.73 35 392 0.9 0.43 9.42 0.6 0.36 2.87 9 1 20.3 2.46 145 98.80 4405 2.15 31 28.6 0.5 0.40 8.15 1.3 0.28 2.80 24 3 17.4 1.91 126 99.84 4406 3.07 3 14.3 0.5 0.38 7.87 1.0 0.24 0.73 6 <1 14.5 1.60 106 100.89 4409 7.33 13 56.2 0.1 0.52 3.80 0.7 0.13 3.15 33 2 12.8 0.83 57 101.07 4410 1.25 26 25.4 0.5 0.22 5.45 1.3 0.16 3.34 10 4 10.1 1.20 137 99.02 4412 1.19 2 32.6 0.7 0.27 9.55 0.6 0.28 2.09 10 <1 15.5 1.96 103 99.36 4413 5.65 3 42.3 0.8 0.61 13.10 0.8 0.44 3.07 35 <1 23.4 2.94 136 97.99 4414 5.04 1 26.8 0.6 0.42 10.40 0.9 0.26 3.61 29 1 15.3 1.99 198 100.27 4415 0.94 1 7.9 0.1 0.11 2.93 <0.5 0.09 1.31 17 <1 6.4 0.61 38 99.30 171

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - D 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 3- AVRIL- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: MOROCCO CERTIFICAT D'ANALYSE VO13051661

Méthode OA- GRA05 élément LOI unités % Description échantillon L.D. 0.01

4403 3.14 4404 2.91 4405 2.97 4406 2.31 4409 3.29 4410 12.70 4412 1.36 4413 1.63 4414 1.59 4415 0.96 172

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Finalisée date: 21- JUIN- 2013 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Cette copie a fait un rapport sur Téléphone: 604 984 0221 Télécopieur: 604 984 0218 5- JUIL- 2013 www.alsglobal.com Compte: MAYOR

CERTIFICAT VO13101629 PRÉPARATION ÉCHANTILLONS CODE ALS DESCRIPTION Projet: BOUMADINE, MAROC WEI- 21 Poids échantillon reçu Bon de commande #: LOG- 22 Entrée échantillon - Reçu sans code barre CRU- 31 Granulation - 70 % < 2 mm Ce rapport s'applique aux 75 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 5- JUIN- 2013. CRU- QC Test concassage QC PUL- QC Test concassage QC Les résultats sont transmis à: SPL- 21 Échant. fractionné - div. riffles MICHEL BOILY FRANCOIS GOULET PUL- 31 Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES CODE ALS DESCRIPTION INSTRUMENT TOT- ICP06 ICP- AES Au- ICP21 Au 30 g FA fini ICP- AES ICP- AES Au- GRA21 Au 30 g fini FA- GRAV WST- SIM ME- MS41L 51 anaux. regia ICPMS d aqua Ag- OG46 Teneur marchande Ag - Aqua regia VARIABLE ME- OG46Teneur marchandes éléments - Aqua regia ICP- AES Cu- OG46 Teneur marchande Cu - Aqua regia VARIABLE Pb- OG46Teneur marchande Pb - Aqua regia VARIABLE Zn- OG46 Teneur marchande Zn - Aqua regia VARIABLE Ag- GRA21 Ag 30 g fini FA- GRAV WST- SIM As- OG46 Teneur marchande As - Aqua regia VARIABLE ME- ICP06Roche entière - ICP- AES ICP- AES À: MAYA GOLD & SILVER INC. OA- GRA05 Perte par calcination à 1 000 C WST- SEQ ATTN: MICHEL BOILY ME- MS81Fusion Lithium Borate ICP- MS ICP- MS 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 BLAINVILLE QC J7C 3V5

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. Signature: ***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** Colin Ramshaw, Vancouver Laboratory Manager 173

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - A 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode WEI- 21 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Poids reçu Ba Ce Cr Cs Dy Er Eu Ga Gd Hf Ho La Lu Nb unités kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.02 0.5 0.5 10 0.01 0.05 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 0.2

02223 2.79 02224 1.94 02225 1.66 02226 1.58 02227 1.64 02228 1.50 02229 1.91 02230 1.64 02231 2.64 02232 1.21 02233 1.79 02234 1.46 02235 1.51 02236 1.54 02237 1.98 02238 2.16 1425 59.9 20 3.57 3.96 2.51 0.49 9.7 3.79 5.4 0.89 28.3 0.40 9.8 02239 2.38 1050 60.6 10 1.86 4.78 2.54 0.59 15.0 4.78 4.9 0.97 28.9 0.35 9.0 02240 1.69 2220 72.5 20 2.23 3.70 2.39 0.66 13.4 4.24 4.8 0.78 37.4 0.35 8.2 02241 2.12 269 44.0 30 0.91 4.28 2.67 0.55 30.6 3.70 5.5 0.89 21.0 0.39 11.7 02242 1.71 02243 2.50 268 39.9 10 0.97 4.03 2.73 0.49 15.8 2.98 6.3 0.91 19.4 0.44 11.1 02244 2.21 328 72.2 10 1.40 5.13 3.13 0.76 14.8 5.49 5.5 1.04 34.7 0.45 11.5 02245 2.24 997 57.8 10 1.51 4.51 3.22 0.27 10.0 3.44 5.7 1.04 27.7 0.61 15.7 02246 2.58 324 58.4 30 1.69 3.82 2.57 0.67 18.6 3.63 5.6 0.83 28.7 0.39 11.4 02247 2.16 02248 2.37 727 49.8 20 1.93 2.97 1.88 0.58 15.3 3.16 4.4 0.61 25.2 0.28 8.0 02249 2.39 965 41.0 20 3.62 3.33 2.35 0.33 16.6 2.78 6.3 0.73 21.8 0.45 12.0 02250 2.44 1010 67.7 20 2.59 3.99 2.58 1.02 19.5 4.30 5.6 0.83 34.0 0.38 10.0 02306 1.82 02307 2.18 02308 1.53 02309 3.07 02310 2.12 02312 1.63 02313 2.67 02314 2.50 02315 2.51 02316 2.70 02318 2.67 02319 2.42 924 65.7 20 2.27 3.86 2.45 0.68 14.9 4.10 4.1 0.83 33.2 0.40 7.4

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 174

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - B 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Nd Pr Rb Sm Sn Sr Ta Tb Th Tl Tm U V W Y unités ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.1 0.03 0.2 0.03 1 0.1 0.1 0.01 0.05 0.5 0.01 0.05 5 1 0.5

02223 02224 02225 02226 02227 02228 02229 02230 02231 02232 02233 02234 02235 02236 02237 02238 22.0 6.10 186.0 4.68 2 57.8 0.7 0.62 11.25 1.5 0.38 3.80 8 1 22.9 02239 24.5 6.70 153.0 5.15 7 55.8 0.7 0.75 10.55 1.9 0.38 3.75 12 2 26.8 02240 29.3 8.19 117.5 5.68 2 79.2 0.6 0.61 9.02 0.7 0.36 4.19 6 2 21.1 02241 19.0 4.93 133.5 4.14 18 29.6 0.8 0.65 10.30 1.8 0.42 4.30 19 1 25.2 02242 02243 15.5 4.35 125.5 3.40 29 16.1 0.9 0.52 12.70 1.3 0.42 7.76 9 1 24.5 02244 30.5 8.27 134.0 6.30 11 16.1 0.9 0.79 13.05 1.3 0.44 4.23 8 3 28.4 02245 21.8 6.34 220 4.10 1 54.6 1.5 0.62 19.55 1.5 0.52 6.06 8 1 27.6 02246 23.5 6.51 200.0 4.55 3 15.9 0.8 0.56 11.70 2.3 0.39 4.91 33 3 23.0 02247 02248 19.6 5.26 107.5 3.87 1 98.5 0.6 0.43 9.38 0.6 0.27 4.04 23 1 16.2 02249 15.6 4.22 181.5 3.09 2 29.7 0.9 0.44 13.30 1.4 0.39 3.72 33 1 18.4 02250 25.9 7.36 111.5 5.16 2 158.0 0.7 0.65 10.55 0.6 0.38 4.49 41 1 22.7 02306 02307 02308 02309 02310 02312 02313 02314 02315 02316 02318 02319 25.4 7.15 106.5 4.74 2 117.0 0.6 0.59 8.61 0.7 0.35 3.25 28 1 22.9

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 175

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - C 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS81 ME- MS81 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 élément Yb Zr SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO unités ppmppm%%%%%%%%%%%%% Description échantillon L.D. 0.03 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

02223 02224 02225 02226 02227 02228 02229 02230 02231 02232 02233 02234 02235 02236 02237 02238 2.43 169 79.4 10.45 1.66 0.38 0.20 0.08 6.56 <0.01 0.10 0.01 0.02 0.01 0.15 02239 2.40 150 80.4 9.69 1.98 0.34 0.51 0.02 3.24 <0.01 0.14 0.05 0.06 0.01 0.11 02240 2.13 177 81.2 10.10 2.11 0.22 0.33 1.74 2.95 <0.01 0.14 0.02 0.02 0.01 0.24 02241 2.51 177 57.5 7.85 12.15 0.51 0.35 0.08 4.28 <0.01 0.21 0.02 0.08 <0.01 0.03 02242 02243 2.70 196 80.8 9.81 2.12 0.43 0.42 0.03 3.14 <0.01 0.16 0.02 0.02 <0.01 0.03 02244 2.81 178 82.4 9.12 1.02 0.33 0.58 0.02 2.94 <0.01 0.16 0.02 0.02 <0.01 0.03 02245 3.46 148 77.9 10.65 1.20 0.25 0.16 0.08 7.16 <0.01 0.08 0.01 0.03 0.01 0.10 02246 2.58 186 76.6 13.20 1.22 0.17 0.73 0.03 4.31 <0.01 0.35 0.03 0.05 <0.01 0.03 02247 02248 1.63 163 71.9 12.60 2.63 1.22 0.64 3.12 2.86 <0.01 0.31 0.04 0.09 0.01 0.08 02249 2.85 215 74.2 12.60 1.78 0.31 0.32 1.52 6.51 <0.01 0.11 0.02 0.01 0.01 0.10 02250 2.43 198 64.8 14.90 4.07 2.30 1.15 3.86 3.26 <0.01 0.43 0.06 0.14 0.02 0.11 02306 02307 02308 02309 02310 02312 02313 02314 02315 02316 02318 02319 2.58 142 68.3 12.55 3.73 4.00 0.97 2.83 3.32 <0.01 0.31 0.10 0.12 0.01 0.11

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 176

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - D 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode OA- GRA05 TOT- ICP06 Au- ICP21 Au- GRA21 ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément LOI Total Au Au Au Ag Al As B Ba Be Bi Ca Cd Ce unités % % ppm ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm Description échantillon L.D. 0.01 0.01 0.001 0.05 0.0002 0.001 0.01 0.01 10 0.5 0.01 0.001 0.01 0.001 0.003

02223 <0.001 0.0013 3.32 0.86 5.34 <10 46.4 0.22 0.238 0.90 0.216 75.2 02224 0.010 0.0102 58.0 0.26 43 <10 47.2 0.14 1.750 12.45 1.145 40.8 02225 0.006 0.0076 1.110 0.31 42.0 <10 132.0 0.09 0.031 0.13 0.744 17.15 02226 2.08 1.835 >100 0.13 1635 <10 133.5 0.05 4.06 0.68 0.336 5.47 02227 0.004 0.0052 18.50 0.13 16.25 <10 37.0 0.21 0.085 0.13 0.344 45.4 02228 0.488 0.388 32.0 0.10 217 <10 284 0.08 0.088 0.51 1.430 9.99 02229 0.017 0.0172 >100 0.03 51.1 <10 170.0 0.43 1.155 4.79 12.05 79.2 02230 0.012 0.0121 >100 0.07 22.0 <10 125.5 0.05 0.053 0.03 3.25 2.04 02231 0.007 0.0057 36.7 0.08 527 <10 71.9 0.70 4.44 7.43 8.97 65.0 02232 0.003 0.0039 0.556 0.06 28 <10 548 0.06 0.021 21.0 0.572 52.6 02233 2.93 2.25 28.8 0.37 9310 <10 192.5 0.26 11.60 1.06 25.5 8.75 02234 0.003 0.0031 0.205 0.50 22 <10 502 0.18 0.035 >25.0 0.188 120.0 02235 1.170 1.005 21.0 0.28 >10000 <10 85.2 0.39 151.5 0.91 34.0 19.00 02236 0.002 0.0027 6.20 0.04 125 <10 68.9 0.04 0.241 >25.0 0.962 121.5 02237 0.004 0.0046 21.9 0.05 20.9 <10 104.0 0.04 0.689 0.16 1.110 18.95 02238 1.72 100.74 02239 2.87 99.42 02240 2.20 101.28 02241 15.50 98.56 02242 <0.001 0.0010 0.245 0.14 24 <10 133.0 0.14 0.022 22.9 0.337 119.0 02243 3.77 100.75 02244 3.23 99.87 02245 1.57 99.20 02246 3.40 100.12 02247 0.824 0.733 64.2 0.21 1930 <10 127.5 0.06 1.970 0.34 1.735 21.6 02248 2.55 98.05 02249 1.59 99.08 02250 3.68 98.78 02306 0.024 0.0214 3.47 0.17 125.0 <10 46.3 0.22 0.105 0.14 0.525 45.6 02307 0.003 0.0035 27.2 0.08 4.28 <10 35.2 0.07 0.089 0.15 1.440 14.40 02308 >10.0 13.95 13.90 18.95 0.32 7930 <10 213 0.18 0.907 0.67 11.95 8.01 02309 0.019 0.0138 19.55 0.10 19.65 <10 216 0.18 0.080 2.62 175.0 20.8 02310 0.002 0.0040 14.70 0.10 18.55 <10 22.5 0.23 0.063 4.13 2.97 166.0 02312 0.014 0.0100 32.0 0.36 17.70 <10 41.9 0.61 2.12 3.36 4.77 45.9 02313 3.14 1.295 >100 0.31 4930 <10 9.8 0.10 72.3 0.20 129.0 3.18 02314 1.625 0.678 52.6 0.11 5510 <10 8.0 0.05 13.30 0.02 41.7 9.01 02315 0.005 0.0055 49.0 0.03 33.0 <10 11.2 0.01 0.604 0.05 2.18 2.01 02316 5.99 0.601 >100 0.02 >10000 <10 4.9 0.01 34.4 0.01 420 0.609 02318 0.002 0.0004 0.091 0.56 29.4 <10 76.6 0.18 0.012 0.34 0.069 20.0 02319 4.36 100.71

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 177

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - E 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Co Cr Cs Cu Fe Ga Ge Hf Hg In K La Li Mg Mn unités ppm ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm % ppm Description échantillon L.D. 0.001 0.01 0.005 0.01 0.001 0.004 0.005 0.002 0.004 0.005 0.01 0.002 0.1 0.01 0.1

02223 4.37 12.35 0.213 310 1.700 5.48 0.093 0.217 0.100 0.031 0.10 45.3 12.7 0.37 466 02224 4.54 6.31 0.251 892 0.840 1.590 0.076 0.057 0.896 0.192 0.03 16.55 5.1 0.10 1910 02225 1.015 11.70 0.135 70.5 0.980 2.04 0.031 0.194 0.127 0.025 0.27 8.98 0.4 0.02 59.0 02226 0.921 13.25 0.093 22.9 8.48 15.50 0.150 0.342 2.06 1.295 1.53 3.29 1.2 0.07 71.3 02227 16.45 11.70 0.305 12.95 0.420 0.429 0.015 0.046 1.730 0.016 0.04 3.18 0.6 0.01 611 02228 0.713 11.20 0.098 73.8 2.60 4.40 0.041 0.127 10.20 2.77 0.28 6.54 0.8 0.08 52.9 02229 15.25 9.67 0.069 >10000 2.51 0.919 0.127 0.011 10.20 0.206 0.01 42.7 0.5 2.37 2930 02230 0.925 14.10 0.114 2310 0.490 0.629 0.014 0.022 4.51 0.057 0.03 1.225 0.4 0.01 40.4 02231 36.7 3.33 0.179 1980 1.480 1.095 0.117 0.032 1.080 0.203 0.05 30.1 0.4 2.30 10500 02232 2.15 4.42 0.108 36.1 0.270 0.683 0.082 0.013 0.089 0.041 0.02 23.5 1.2 0.03 2630 02233 1.795 7.66 0.113 180.5 19.20 9.29 0.160 0.187 1.420 0.342 0.87 5.98 3.1 0.09 115.0 02234 5.07 5.36 0.385 7.33 1.410 2.73 0.167 0.096 0.024 0.064 0.10 58.4 10.0 0.17 2660 02235 2.20 44.4 0.113 187.5 22.8 15.75 0.598 0.182 1.285 50.1 1.64 11.95 1.5 0.04 116.5 02236 0.571 1.38 0.079 4.38 0.180 1.105 0.173 0.029 0.035 0.170 0.02 62.0 1.0 0.02 3300 02237 1.455 17.20 0.085 5.32 0.350 0.295 0.034 0.035 0.067 0.006 0.03 12.00 0.6 0.01 105.5 02238 02239 02240 02241 02242 2.39 1.89 0.309 4.56 0.390 1.340 0.180 0.166 0.035 0.164 0.07 61.9 1.8 0.03 2350 02243 02244 02245 02246 02247 0.281 14.10 0.043 37.8 5.00 20.9 0.080 0.220 43.6 8.81 0.59 12.20 0.8 0.06 32.1 02248 02249 02250 02306 0.449 14.85 0.171 5.39 1.140 0.758 0.054 0.104 0.551 0.020 0.11 26.6 0.7 0.02 52.0 02307 0.908 27.3 0.187 192.5 0.380 0.397 0.023 0.022 0.318 0.024 0.02 4.51 0.9 0.02 386 02308 0.943 13.05 0.086 64.6 22.1 8.66 0.158 0.360 3.67 2.19 0.56 5.13 1.1 0.07 71.2 02309 6.29 17.25 0.173 1085 0.690 0.571 0.042 0.060 2.13 0.040 0.06 10.45 0.6 0.65 1400 02310 7.19 19.10 0.202 97.4 1.030 1.320 0.170 0.074 0.575 0.071 0.08 107.5 0.7 2.15 1715 02312 4.51 13.50 0.954 1545 1.040 1.320 0.079 0.148 2.35 0.270 0.19 23.8 3.6 0.07 712 02313 1.095 23.5 0.249 1985 25.1 3.15 0.407 0.060 8.32 9.12 0.06 1.800 7.2 0.13 220 02314 2.89 5.67 0.159 346 25.4 1.175 0.188 0.109 1.650 2.31 0.09 5.16 0.4 <0.01 58.8 02315 0.860 14.75 0.069 1340 0.420 0.167 0.012 0.013 0.109 0.057 0.02 1.430 0.3 <0.01 35.0 02316 0.701 4.04 0.024 2470 25.2 12.70 0.356 0.008 7.93 68.8 0.01 0.276 0.3 <0.01 57.9 02318 1.595 28.1 0.288 3.03 1.450 3.80 0.044 0.331 0.053 0.023 0.12 12.00 5.8 0.09 347 02319

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 178

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - F 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Mo Na Nb Ni P Pb Pd Pt Rb Re S Sb Sc Se Sn unités ppm % ppm ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm Description échantillon L.D. 0.01 0.001 0.002 0.04 0.001 0.005 0.001 0.002 0.005 0.001 0.01 0.005 0.005 0.1 0.01

02223 0.52 0.046 0.018 2.94 0.048 2210 0.001 <0.002 4.34 <0.001 0.06 2.46 2.28 0.6 0.34 02224 5.97 0.012 0.011 1.81 0.014 >10000 0.003 <0.002 1.505 <0.001 0.35 49.8 2.85 4.2 0.16 02225 3.15 0.008 0.075 1.55 0.016 321 0.001 <0.002 5.64 <0.001 0.57 3.07 0.415 0.3 0.51 02226 60.2 0.075 0.174 1.49 0.044 3500 0.002 <0.002 52.9 <0.001 2.96 42.0 0.431 31.6 52.3 02227 5.52 0.008 0.017 1.32 0.008 >10000 0.001 <0.002 2.05 <0.001 0.16 16.70 0.229 0.5 0.15 02228 15.30 0.010 0.054 1.21 0.024 2190 0.002 <0.002 8.87 <0.001 0.62 17.05 0.366 1.9 37.1 02229 3.02 0.017 0.009 17.10 0.003 >10000 0.002 <0.002 0.403 <0.001 1.75 106.0 0.608 3.2 0.54 02230 4.33 0.009 0.010 1.62 0.007 >10000 0.001 <0.002 1.790 <0.001 1.26 160.0 0.186 1.3 0.15 02231 24.8 0.017 0.005 30.0 0.008 >10000 0.012 <0.002 2.31 <0.001 1.00 173.0 1.300 1.7 0.57 02232 0.32 0.012 0.018 1.40 0.003 541 0.005 <0.002 1.040 <0.001 0.03 1.025 2.83 0.4 0.08 02233 49.3 0.075 0.099 4.01 0.059 >10000 0.003 <0.002 31.0 <0.001 2.23 128.5 1.170 14.7 50.0 02234 0.61 0.011 0.012 5.61 0.053 264 0.008 <0.002 5.67 <0.001 0.03 1.025 3.45 2.3 0.24 02235 53.8 0.103 0.099 1.86 0.520 6220 0.009 <0.002 13.40 <0.001 3.05 182.5 20.8 155.0 30.9 02236 0.80 0.011 0.005 0.52 0.006 >10000 0.003 <0.002 1.305 <0.001 0.20 8.96 4.04 2.9 0.05 02237 2.71 0.009 0.010 1.70 0.009 >10000 0.002 <0.002 1.580 <0.001 0.64 24.6 0.243 1.1 0.06 02238 02239 02240 02241 02242 0.53 0.013 0.012 1.19 0.027 97.5 0.004 <0.002 3.34 <0.001 0.01 1.635 2.38 2.4 0.09 02243 02244 02245 02246 02247 16.50 0.017 0.071 0.82 0.014 7640 <0.001 <0.002 13.35 <0.001 1.15 33.1 0.504 3.8 18.25 02248 02249 02250 02306 3.00 0.005 0.039 1.18 0.008 175.0 <0.001 <0.002 4.27 <0.001 0.04 5.14 0.471 0.4 0.25 02307 3.68 0.010 0.019 1.32 0.004 >10000 <0.001 <0.002 0.814 <0.001 0.74 31.0 0.409 1.4 0.29 02308 30.4 0.028 0.071 2.72 0.042 4640 <0.001 <0.002 15.40 <0.001 1.10 55.6 2.42 3.2 23.1 02309 1.14 0.008 0.021 1.79 0.003 >10000 0.002 <0.002 2.86 <0.001 0.42 27.9 1.205 2.1 0.15 02310 3.00 0.016 0.011 6.70 0.007 >10000 0.002 <0.002 3.70 <0.001 0.43 18.50 1.875 1.9 0.10 02312 5.29 0.007 0.020 1.48 0.025 >10000 0.004 <0.002 7.49 <0.001 0.34 24.9 0.905 2.4 0.21 02313 2.93 0.009 0.014 3.60 0.010 >10000 0.001 <0.002 2.60 <0.001 >10.0 47.5 0.775 98.0 87.6 02314 17.05 0.005 0.036 1.83 0.002 2230 <0.001 <0.002 3.15 <0.001 >10.0 55.0 0.159 21.9 28.6 02315 0.40 0.007 0.007 1.19 0.004 >10000 <0.001 <0.002 1.210 <0.001 1.40 45.0 0.082 2.2 0.17 02316 42.5 0.007 0.009 0.69 <0.001 4880 <0.001 <0.002 0.395 0.002 >10.0 266 0.045 58.0 353 02318 0.44 0.051 0.036 1.39 0.023 73.2 0.001 <0.002 3.44 <0.001 0.02 0.303 1.825 0.4 0.10 02319

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 179

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - G 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L Ag- OG46 Cu- OG46 Pb- OG46 élément Sr Ta Te Th Ti Tl U V W Y Zn Zr Ag Cu Pb unités ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm % % Description échantillon L.D. 0.01 0.005 0.01 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 0.01 1 0.001 0.001

02223 13.25 <0.005 <0.01 5.76 0.004 0.032 0.990 13.9 0.080 8.79 270 7.31 02224 150.5 <0.005 <0.01 0.254 0.001 0.072 0.476 9.1 0.076 30.2 84.2 1.49 9.10 02225 18.90 <0.005 0.01 1.480 0.001 0.153 0.653 1.2 0.075 1.765 60.3 6.18 02226 42.6 <0.005 0.24 0.732 0.008 1.325 0.357 8.4 0.574 1.335 36.8 8.64 131 02227 6.24 <0.005 <0.01 0.295 0.001 0.066 1.230 1.4 0.222 0.984 54.6 1.40 2.59 02228 21.0 <0.005 0.03 0.762 0.004 0.196 0.359 5.9 7.36 0.694 165.5 3.55 02229 23.2 <0.005 <0.01 0.031 <0.001 0.140 0.815 8.3 0.050 23.7 3920 0.24 98 1.015 10.70 02230 55.0 <0.005 <0.01 0.171 0.001 0.094 0.160 1.1 0.194 0.314 111.5 0.52 232 10.50 02231 864 <0.005 <0.01 0.099 <0.001 0.406 0.499 10.0 0.105 30.9 287 0.97 7.48 02232 208 <0.005 <0.01 0.081 0.001 0.016 0.052 1.7 0.023 23.9 93.8 0.37 02233 196.5 <0.005 0.01 0.943 0.009 1.060 1.615 14.7 0.487 1.465 918 5.69 2.44 02234 234 <0.005 <0.01 0.899 0.001 0.036 0.279 28.9 0.036 80.3 46.4 3.41 02235 383 <0.005 0.13 2.46 0.018 0.482 1.615 26.9 1.595 2.77 751 8.07 02236 217 <0.005 <0.01 0.087 <0.001 0.032 0.037 2.4 0.020 77.5 72.7 0.39 1.305 02237 13.25 <0.005 <0.01 0.197 0.001 0.090 0.092 1.7 0.200 1.375 11.6 1.27 4.40 02238 02239 02240 02241 02242 194.0 <0.005 <0.01 0.708 0.001 0.034 0.260 3.0 0.038 75.2 30.0 5.03 02243 02244 02245 02246 02247 16.80 <0.005 <0.01 1.485 0.005 0.369 0.230 8.0 0.149 1.045 51.5 5.50 02248 02249 02250 02306 9.00 <0.005 <0.01 1.110 0.001 0.071 0.712 1.5 0.024 1.520 77.9 2.38 02307 21.9 <0.005 <0.01 0.108 0.001 0.259 0.246 2.2 0.123 1.040 45.5 0.71 5.93 02308 103.0 <0.005 0.18 0.949 0.013 0.515 0.819 34.4 1.215 1.005 426 12.25 02309 16.55 <0.005 <0.01 0.256 0.001 0.113 0.477 1.6 0.015 10.50 >10000 1.47 4.02 02310 13.00 <0.005 <0.01 0.401 0.001 0.082 0.300 2.2 0.027 18.00 258 2.51 2.90 02312 37.5 <0.005 <0.01 1.210 0.001 0.108 0.485 6.8 0.161 12.90 9330 3.89 7.19 02313 3.53 <0.005 0.04 0.225 0.001 0.250 0.060 7.0 0.286 1.010 >10000 1.75 267 1.130 02314 1.53 <0.005 0.24 0.466 <0.001 0.259 0.138 0.5 0.422 0.643 4120 3.35 02315 3.09 <0.005 0.01 0.095 <0.001 0.158 0.070 1.3 0.150 0.533 97.1 0.38 7.85 02316 1.10 <0.005 0.37 0.036 <0.001 0.290 0.032 0.3 4.32 0.107 >10000 0.22 237 02318 9.44 <0.005 0.02 4.02 0.002 0.032 0.631 19.7 0.080 4.29 30.5 7.80 02319

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 180

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - H 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode Zn- OG46 Ag- GRA21 As- OG46 élément Zn Ag As unités % ppm % Description échantillon L.D. 0.001 5 0.01

02223 02224 02225 02226 02227 02228 02229 02230 02231 02232 02233 02234 02235 8.15 02236 02237 02238 02239 02240 02241 02242 02243 02244 02245 02246 02247 02248 02249 02250 02306 02307 02308 02309 3.22 02310 02312 02313 1.810 02314 02315 02316 3.29 1.95 02318 02319

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 181

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - A 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode WEI- 21 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Poids reçu Ba Ce Cr Cs Dy Er Eu Ga Gd Hf Ho La Lu Nb unités kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.02 0.5 0.5 10 0.01 0.05 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 0.2

02320 2.61 1205 54.7 10 0.81 6.92 4.02 1.31 18.2 6.08 5.7 1.43 25.4 0.57 10.4 02321 2.70 546 20.7 30 1.42 2.54 1.65 0.54 10.6 2.11 4.1 0.55 9.0 0.33 10.0 02322 2.39 02323 2.19 752 53.3 30 1.11 2.97 1.87 0.87 11.2 3.12 4.9 0.64 25.8 0.30 10.2 02324 2.36 1100 22.3 30 1.19 2.84 1.66 0.46 11.3 2.57 4.1 0.60 10.1 0.30 8.6 02325 1.77 429 38.0 30 3.23 2.34 1.49 0.36 10.1 2.51 3.9 0.51 17.9 0.22 6.7 02326 2.21 1015 54.8 90 3.39 2.37 1.39 0.91 18.7 2.93 4.2 0.46 24.2 0.23 6.8 02327 1.37 871 35.7 20 1.29 2.47 1.78 0.47 12.3 2.22 4.1 0.61 19.7 0.31 10.7 02328 1.88 1305 58.9 50 2.02 3.91 2.19 1.17 18.3 4.26 5.0 0.80 29.0 0.31 9.0 02329 2.07 1410 71.7 20 2.92 4.15 2.74 0.87 19.2 4.32 5.7 0.89 41.1 0.41 10.8 02330 2.34 2310 58.1 10 4.62 4.74 2.63 0.65 11.7 5.18 3.9 0.94 28.1 0.38 7.8 02331 1.93 588 24.1 20 3.24 2.35 1.56 0.65 19.0 2.42 3.8 0.51 12.1 0.29 7.2 02332 1.56 477 10.9 50 2.58 1.58 1.06 0.26 8.9 1.30 2.8 0.36 5.8 0.23 7.1 02333 2.45 1405 87.5 100 1.37 4.93 2.83 1.99 16.2 5.74 4.4 1.00 42.0 0.41 8.1 02334 2.62 953 66.8 20 3.24 4.30 2.52 0.79 18.6 4.36 5.1 0.83 33.7 0.38 10.1 02335 2.74 04501 0.73 04502 0.53 04503 0.88 04504 0.41 04506 0.59 04508 0.72 04510 0.81 04511 0.81 04512 0.73 04513 0.55 04514 0.67 04515 0.98 04516 0.60 04517 0.46 04518 1.27 04519 0.67 04520 0.54 04521 0.67 04522 1.19

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 182

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - B 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Nd Pr Rb Sm Sn Sr Ta Tb Th Tl Tm U V W Y unités ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.1 0.03 0.2 0.03 1 0.1 0.1 0.01 0.05 0.5 0.01 0.05 5 1 0.5

02320 26.7 6.60 92.3 5.90 2 70.6 0.7 0.97 8.27 0.6 0.61 4.85 68 5 37.0 02321 9.6 2.43 118.0 2.24 1 35.8 1.0 0.38 12.25 0.7 0.31 3.24 6 <1 14.0 02322 02323 21.6 6.06 134.0 3.97 1 72.0 0.7 0.47 11.55 0.8 0.30 3.48 29 1 18.8 02324 10.8 2.85 131.5 2.38 2 51.1 0.8 0.40 11.85 0.9 0.28 7.14 9 <1 17.3 02325 15.3 4.28 113.5 3.20 5 28.3 0.5 0.35 7.48 1.3 0.24 2.81 17 1 13.4 02326 20.9 5.83 155.0 3.90 2 88.8 0.5 0.41 7.43 1.1 0.20 2.69 83 4 13.7 02327 14.3 3.85 152.5 2.64 21 115.0 0.9 0.37 10.70 1.4 0.32 6.38 19 3 15.7 02328 24.9 6.73 96.8 4.96 1 232 0.6 0.65 7.84 0.7 0.39 2.92 80 2 21.0 02329 29.6 8.30 146.0 5.68 2 113.5 0.8 0.68 12.40 0.7 0.40 5.62 25 4 24.5 02330 27.5 7.14 121.0 5.63 1 42.2 0.6 0.77 9.48 1.4 0.36 3.02 14 <1 25.3 02331 11.1 2.99 183.0 2.52 26 51.2 0.6 0.37 8.25 1.9 0.26 4.14 61 5 15.4 02332 6.3 1.73 132.0 1.45 2 24.5 0.8 0.27 9.67 1.0 0.20 1.98 13 1 8.9 02333 37.3 9.88 93.6 6.93 2 119.5 0.5 0.79 7.00 0.8 0.42 4.43 165 1 26.4 02334 26.9 7.34 139.5 5.26 2 103.5 0.8 0.64 10.55 0.8 0.38 4.58 39 4 24.5 02335 04501 04502 04503 04504 04506 04508 04510 04511 04512 04513 04514 04515 04516 04517 04518 04519 04520 04521 04522

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 183

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - C 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS81 ME- MS81 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 élément Yb Zr SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO unités ppmppm%%%%%%%%%%%%% Description échantillon L.D. 0.03 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

02320 3.67 195 65.0 14.45 6.58 1.28 1.86 4.01 3.66 <0.01 0.97 0.11 0.26 0.01 0.13 02321 2.01 95 79.9 11.20 0.78 0.36 0.16 2.76 4.99 <0.01 0.07 0.03 0.03 <0.01 0.06 02322 02323 1.88 166 77.4 12.35 1.04 0.46 0.13 3.00 5.12 <0.01 0.20 0.03 0.07 0.01 0.08 02324 1.93 128 77.9 11.35 1.14 0.43 0.19 2.69 5.09 <0.01 0.09 0.03 0.03 0.01 0.11 02325 1.52 127 83.1 6.42 2.56 0.21 0.48 0.01 2.37 <0.01 0.17 0.02 0.04 0.01 0.04 02326 1.34 150 65.3 15.75 4.97 1.10 0.61 3.40 5.79 0.01 0.64 0.05 0.17 0.01 0.11 02327 2.02 125 71.0 10.25 6.21 0.25 0.10 1.18 5.57 <0.01 0.38 0.01 0.09 0.01 0.10 02328 2.10 192 61.4 16.20 5.75 1.77 2.33 4.78 3.33 0.01 0.67 0.12 0.25 0.03 0.14 02329 2.56 203 69.3 14.85 3.03 1.22 0.70 3.33 3.78 <0.01 0.34 0.07 0.09 0.02 0.15 02330 2.24 118 78.7 9.78 2.10 1.36 1.02 0.07 3.35 <0.01 0.13 0.16 0.03 0.01 0.26 02331 1.64 134 55.4 12.60 19.30 0.36 0.65 0.02 3.69 <0.01 0.35 0.04 0.10 0.01 0.06 02332 1.47 59 83.4 7.50 1.38 0.46 0.29 0.08 5.00 <0.01 0.03 0.02 0.01 0.01 0.05 02333 2.64 157 60.4 12.10 7.89 3.27 3.39 2.01 3.30 0.01 1.00 0.21 0.28 0.02 0.15 02334 2.41 183 64.8 14.75 4.01 2.36 1.10 2.87 3.62 <0.01 0.44 0.07 0.12 0.01 0.10 02335 04501 04502 04503 04504 04506 04508 04510 04511 04512 04513 04514 04515 04516 04517 04518 04519 04520 04521 04522

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 184

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - D 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode OA- GRA05 TOT- ICP06 Au- ICP21 Au- GRA21 ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément LOI Total Au Au Au Ag Al As B Ba Be Bi Ca Cd Ce unités % % ppm ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm Description échantillon L.D. 0.01 0.01 0.001 0.05 0.0002 0.001 0.01 0.01 10 0.5 0.01 0.001 0.01 0.001 0.003

02320 3.00 101.32 02321 1.37 101.71 02322 0.006 0.0053 0.898 1.26 30.3 <10 63.9 0.66 0.087 0.47 0.601 31.1 02323 1.50 101.39 02324 1.52 100.58 02325 3.14 98.57 02326 2.50 100.41 02327 5.71 100.86 02328 3.28 100.06 02329 2.77 99.65 02330 3.39 100.36 02331 5.52 98.10 02332 1.57 99.80 02333 5.70 99.73 02334 3.99 98.24 02335 1.790 0.862 99.1 0.49 >10000 <10 7.9 0.09 0.022 0.49 90.9 4.79 04501 0.014 0.0167 >100 0.08 103.5 <10 117.5 0.09 0.506 0.07 3.17 5.60 04502 0.094 0.105 0.618 0.23 194.0 <10 848 0.39 0.009 0.18 0.147 48.9 04503 3.70 2.79 68.9 0.43 >10000 <10 11.6 0.13 0.015 0.05 40.2 4.72 04504 0.314 0.357 10.25 0.19 269 <10 39.3 0.08 5.13 0.51 0.125 13.35 04506 0.286 0.305 2.33 0.20 165.5 <10 27.7 0.12 1.925 0.25 0.112 16.30 04508 0.005 0.0069 >100 0.16 1560 <10 66.3 0.11 0.302 2.67 69.0 11.75 04510 0.002 0.0015 4.15 0.01 21.6 <10 1325 0.03 1.730 0.08 0.307 1.075 04511 0.038 0.0385 >100 0.02 119.5 <10 909 0.09 0.887 0.48 0.911 10.60 04512 >10.0 9.76 10.70 86.1 0.84 7220 <10 489 1.64 92.4 0.36 120.5 18.95 04513 1.025 1.120 32.6 0.66 >10000 10 264 0.35 21.8 0.75 36.3 17.00 04514 1.350 1.425 58.0 0.24 1180 <10 235 0.08 0.464 0.07 1.990 1.510 04515 7.01 5.42 >100 0.02 9580 <10 8.8 0.01 33.0 0.01 20.5 0.959 04516 0.018 0.0208 1.465 0.07 66.6 <10 41.5 0.20 0.139 0.02 0.165 0.579 04517 3.67 4.10 82.6 0.13 2420 <10 179.5 0.05 19.90 0.30 0.842 9.64 04518 0.007 0.0046 0.418 0.59 18.75 <10 523 0.18 0.884 1.06 0.090 13.90 04519 0.028 0.0337 1.395 0.19 402 10 1775 5.92 11.75 0.21 0.345 12.15 04520 0.009 0.0083 17.30 1.29 8.56 <10 3250 0.25 9.08 0.10 0.017 8.91 04521 0.022 0.0209 85.9 0.06 297 <10 1760 0.18 3.03 0.01 3.15 4.69 04522 0.060 0.0612 0.336 0.82 381 10 333 0.27 1.280 0.49 0.037 6.74

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 185

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - E 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Co Cr Cs Cu Fe Ga Ge Hf Hg In K La Li Mg Mn unités ppm ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm % ppm Description échantillon L.D. 0.001 0.01 0.005 0.01 0.001 0.004 0.005 0.002 0.004 0.005 0.01 0.002 0.1 0.01 0.1

02320 02321 02322 7.50 33.8 1.695 472 3.38 4.99 0.067 0.202 0.050 0.025 0.22 17.00 15.3 0.31 267 02323 02324 02325 02326 02327 02328 02329 02330 02331 02332 02333 02334 02335 2.51 3.72 0.252 184.0 28.5 2.85 0.174 0.042 2.05 0.151 0.05 2.57 7.9 0.18 1055 04501 1.935 15.35 0.227 107.0 0.560 0.389 0.025 0.038 7.26 0.110 0.04 5.23 0.6 0.01 300 04502 1.475 16.30 0.778 9.15 1.210 0.751 0.065 0.266 0.048 0.042 0.19 22.4 0.5 0.01 141.0 04503 2.08 4.88 0.787 67.9 25.8 1.745 0.152 0.076 1.760 0.025 0.10 2.59 4.7 0.14 370 04504 0.466 8.66 0.436 4.63 1.250 0.839 0.025 0.234 3.67 0.009 0.06 6.78 0.7 0.03 54.7 04506 1.625 8.92 0.239 12.00 2.45 3.81 0.031 0.171 0.567 0.027 0.08 8.83 0.5 0.02 37.0 04508 22.0 8.91 0.239 >10000 0.720 0.508 0.017 0.063 6.28 0.503 0.07 6.23 0.3 0.01 642 04510 0.435 0.53 0.009 128.5 0.094 0.033 0.005 0.004 0.374 0.024 <0.01 0.649 0.1 <0.01 58.4 04511 11.05 7.25 0.032 >10000 3.59 0.205 0.049 0.006 0.397 0.622 0.01 4.75 0.2 0.01 975 04512 2.20 8.79 0.454 540 13.90 5.03 0.314 0.354 4.41 10.10 0.28 9.50 1.8 0.04 125.5 04513 1.315 5.28 0.073 729 27.9 6.44 0.202 0.294 0.222 4.35 0.45 8.63 1.3 0.10 37.9 04514 1.765 9.67 0.665 124.5 5.40 3.16 0.056 0.142 22.5 2.43 0.50 0.988 0.4 0.03 31.5 04515 7.26 9.02 0.062 1405 26.5 1.765 0.362 0.005 2.34 23.7 0.01 0.454 0.2 <0.01 27.0 04516 1.380 24.9 0.275 10.65 0.710 0.337 0.009 0.047 0.063 0.131 0.02 0.272 7.5 0.01 42.9 04517 0.964 12.35 0.180 124.5 3.31 1.405 0.106 0.226 12.25 0.707 0.15 4.03 1.2 0.04 41.9 04518 13.70 69.0 0.096 212 1.930 2.84 0.063 0.066 0.148 0.026 0.03 6.87 8.8 0.39 956 04519 148.0 8.44 0.109 1455 28.6 1.525 1.095 0.026 0.624 0.224 0.01 6.32 1.0 0.08 1655 04520 56.1 10.75 0.204 >10000 1.510 2.99 0.029 0.127 25.1 0.019 0.08 4.43 50.6 1.32 198.0 04521 2.69 17.00 0.047 >10000 3.96 1.105 0.127 0.021 31.9 1.460 0.02 2.21 0.4 0.01 27.2 04522 3.76 54.6 0.459 232 18.15 8.62 0.214 0.146 0.113 0.043 0.30 3.47 2.3 0.11 39.6

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 186

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - F 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Mo Na Nb Ni P Pb Pd Pt Rb Re S Sb Sc Se Sn unités ppm % ppm ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm Description échantillon L.D. 0.01 0.001 0.002 0.04 0.001 0.005 0.001 0.002 0.005 0.001 0.01 0.005 0.005 0.1 0.01

02320 02321 02322 0.27 0.022 0.022 7.10 0.065 92.8 0.002 <0.002 9.21 0.001 0.44 1.220 2.78 0.3 0.31 02323 02324 02325 02326 02327 02328 02329 02330 02331 02332 02333 02334 02335 5.37 0.005 0.011 2.67 0.017 8960 <0.001 <0.002 2.22 <0.001 >10.0 467 0.928 5.0 17.65 04501 4.88 0.007 0.014 1.40 0.008 >10000 <0.001 <0.002 1.995 <0.001 0.71 125.5 0.781 4.6 0.25 04502 2.94 0.008 0.120 1.53 0.010 208 <0.001 <0.002 6.76 <0.001 0.11 1.815 0.679 0.9 0.13 04503 2.01 0.005 0.012 3.65 0.018 6370 <0.001 <0.002 4.87 <0.001 >10.0 557 0.719 3.9 20.8 04504 4.40 0.039 0.166 1.12 0.009 153.5 <0.001 <0.002 2.72 <0.001 0.09 28.2 0.508 0.3 13.90 04506 15.55 0.005 0.067 0.98 0.007 109.5 <0.001 <0.002 3.50 <0.001 0.08 5.99 0.482 1.4 2.50 04508 9.31 0.005 0.003 10.75 0.021 >10000 0.002 <0.002 3.30 <0.001 2.05 8490 2.89 1.0 0.30 04510 0.29 0.010 0.003 0.81 <0.001 150.5 0.013 <0.002 0.092 <0.001 0.09 23.9 0.019 0.1 0.55 04511 12.10 0.007 0.004 6.31 0.005 >10000 0.003 <0.002 0.431 <0.001 0.28 129.0 0.195 3.8 27.2 04512 8.31 0.096 0.018 2.18 0.016 4610 0.002 <0.002 6.11 <0.001 0.52 68.5 1.305 66.4 226 04513 49.1 0.052 0.106 4.87 0.017 533 0.004 <0.002 8.52 <0.001 0.84 52.9 0.296 2.4 33.3 04514 35.3 0.025 0.053 2.88 0.022 6250 <0.001 <0.002 14.70 0.001 1.00 63.7 0.457 2.9 8.89 04515 155.0 0.005 0.014 0.94 0.001 >10000 <0.001 <0.002 0.647 <0.001 >10.0 238 0.044 42.0 149.5 04516 2.24 0.004 0.015 1.45 <0.001 121.0 <0.001 <0.002 0.858 <0.001 0.17 1.455 0.247 0.3 0.45 04517 122.0 0.043 0.123 1.57 0.005 2770 0.001 <0.002 11.95 <0.001 0.54 200 0.483 27.3 34.5 04518 0.57 0.009 0.002 26.0 0.034 46.5 0.008 <0.002 1.135 <0.001 0.21 1.780 4.07 1.1 0.12 04519 20.5 0.003 0.008 92.7 0.031 90.9 <0.001 0.003 0.451 0.001 0.09 43.6 4.17 2.3 1.37 04520 3.54 0.008 0.006 115.5 0.026 64.3 0.004 <0.002 2.38 <0.001 0.09 1.355 1.265 0.8 0.13 04521 10.05 0.001 0.008 4.38 0.002 >10000 0.001 <0.002 1.015 <0.001 0.18 44.5 0.456 22.5 10.15 04522 0.35 0.011 0.009 4.48 0.048 29.3 0.002 <0.002 15.70 0.001 0.25 1.685 2.07 1.0 0.11

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 187

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - G 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L Ag- OG46 Cu- OG46 Pb- OG46 élément Sr Ta Te Th Ti Tl U V W Y Zn Zr Ag Cu Pb unités ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm % % Description échantillon L.D. 0.01 0.005 0.01 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 0.01 1 0.001 0.001

02320 02321 02322 7.35 <0.005 0.02 2.57 0.016 0.075 3.53 29.5 0.122 5.77 1155 6.48 02323 02324 02325 02326 02327 02328 02329 02330 02331 02332 02333 02334 02335 5.67 <0.005 0.04 0.135 0.001 0.743 0.031 5.5 0.732 1.415 >10000 1.22 04501 32.5 <0.005 0.03 0.116 0.001 0.134 0.676 1.9 0.095 1.345 421 0.93 101 11.90 04502 25.5 <0.005 0.04 2.22 <0.001 0.101 0.630 0.7 0.619 7.17 27.2 7.47 04503 1.38 <0.005 0.01 0.230 0.001 0.330 0.055 4.3 0.759 0.890 9790 2.41 04504 24.5 <0.005 0.01 3.62 0.004 0.144 0.519 3.6 0.444 1.650 35.9 5.38 04506 23.2 <0.005 <0.01 1.005 0.002 0.568 0.880 12.2 0.212 1.345 37.1 4.77 04508 151.0 <0.005 <0.01 0.272 0.001 0.179 0.848 3.1 0.262 5.28 1405 1.72 >1500 2.20 13.35 04510 752 <0.005 <0.01 0.011 <0.001 0.002 0.017 0.3 0.020 0.528 22.7 0.10 04511 38.7 <0.005 <0.01 0.026 <0.001 0.041 1.525 0.5 0.197 3.74 292 0.31 308 10.65 11.50 04512 147.5 <0.005 0.13 1.330 0.002 0.160 2.13 41.2 7.93 6.03 2920 7.48 04513 405 0.007 0.01 1.005 0.004 0.494 2.63 4.5 0.985 1.835 951 6.52 04514 11.20 <0.005 <0.01 0.459 0.007 1.350 0.488 10.2 0.328 0.604 549 3.82 04515 1.10 <0.005 0.01 0.029 <0.001 1.060 0.018 0.3 1.830 0.128 1955 0.23 339 2.25 04516 3.62 <0.005 <0.01 0.152 0.001 0.017 0.167 5.1 0.224 0.304 15.9 1.55 04517 119.0 <0.005 0.05 0.844 0.003 2.25 0.261 4.7 0.853 0.835 39.8 5.35 04518 509 <0.005 0.03 0.241 0.003 0.028 0.273 31.1 0.072 11.50 72.4 3.36 04519 37.8 <0.005 0.02 0.052 0.001 0.040 6.44 297 0.148 24.3 102.5 2.11 04520 37.8 <0.005 0.02 0.988 0.001 0.021 1.890 17.4 0.029 2.35 75.9 4.19 18.30 04521 28.6 <0.005 0.58 0.076 <0.001 0.026 4.30 13.5 0.104 2.51 1340 0.63 2.41 2.32 04522 94.6 <0.005 <0.01 1.175 0.005 0.126 0.560 67.8 0.083 1.350 15.8 5.11

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 188

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 3 - H 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 3 (A - H) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 21- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

Méthode Zn- OG46 Ag- GRA21 As- OG46 élément Zn Ag As unités % ppm % Description échantillon L.D. 0.001 5 0.01

02320 02321 02322 02323 02324 02325 02326 02327 02328 02329 02330 02331 02332 02333 02334 02335 1.935 3.34 04501 04502 04503 7.79 04504 04506 04508 3360 04510 04511 04512 04513 1.59 04514 04515 04516 04517 04518 04519 04520 04521 04522

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 189

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: Annexe 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Total # les pages d'annexe: 1 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 21- JUIN- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101629

COMMENTAIRE DE CERTIFICAT

COMMENTAIRES ANALYTIQUES Interférence: Ca> 10% interfère sur As par ICP- MS. As par ICP- AES sont reportés (2 ppm DL) Applique à la Méthode: ME- MS41L

L'analyses de l'or par cette méthode sont semi- quantitatif à cause du peu d'échantillon pesée (0.5g). Applique à la Méthode: ME- MS41L

ADRESSE DE LABORATOIRE Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada. Applique à la Méthode: CRU- 31 CRU- QC LOG- 22 PUL- 31 PUL- QC SPL- 21 WEI- 21

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applique à la Méthode: Ag- GRA21 Ag- OG46 As- OG46 Au- GRA21 Au- ICP21 Cu- OG46 ME- ICP06 ME- MS41L ME- MS81 ME- OG46 OA- GRA05 Pb- OG46 TOT- ICP06 Zn- OG46 190

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Finalisée date: 19- JUIN- 2013 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Cette copie a fait un rapport sur Téléphone: 604 984 0221 Télécopieur: 604 984 0218 5- JUIL- 2013 www.alsglobal.com Compte: MAYOR

CERTIFICAT VO13101630 PRÉPARATION ÉCHANTILLONS CODE ALS DESCRIPTION Projet: BOUMADINE, MAROC WEI- 21 Poids échantillon reçu Bon de commande #: CRU- QC Test concassage QC PUL- QC Test concassage QC Ce rapport s'applique aux 11 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 5- JUIN- 2013. LOG- 22 Entrée échantillon - Reçu sans code barre CRU- 31 Granulation - 70 % < 2 mm Les résultats sont transmis à: SPL- 21 Échant. fractionné - div. riffles MICHEL BOILY FRANCOIS GOULET PUL- 31 Pulvérisé à 85 % < 75 um

PROCÉDURES ANALYTIQUES CODE ALS DESCRIPTION INSTRUMENT TOT- ICP06 ICP- AES ME- ICP06 Roche entière - ICP- AES ICP- AES OA- GRA05 Perte par calcination à 1 000 C WST- SEQ ME- MS81Fusion Lithium Borate ICP- MS ICP- MS

À: MAYA GOLD & SILVER INC. ATTN: MICHEL BOILY 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 BLAINVILLE QC J7C 3V5

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. Signature: ***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** Colin Ramshaw, Vancouver Laboratory Manager 191

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - A 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 19- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101630

Méthode WEI- 21 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Poids reçu Ba Ce Cr Cs Dy Er Eu Ga Gd Hf Ho La Lu Nb unités kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.02 0.5 0.5 10 0.01 0.05 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 0.2

2305 2.50 1010 62.8 20 2.25 2.70 1.53 0.54 16.5 3.06 4.8 0.54 30.5 0.27 8.9 2311 1.32 133.0 42.1 20 2.15 2.26 1.42 0.63 6.7 2.18 2.8 0.50 20.9 0.26 9.1 2317 2.44 511 45.1 10 0.70 2.91 2.09 0.47 10.2 2.60 4.1 0.68 21.1 0.35 7.0 2336 2.72 1755 136.5 40 1.70 5.25 2.68 1.63 15.5 6.85 3.8 1.02 70.1 0.36 6.8 2337 2.19 1025 57.6 20 1.85 3.16 1.83 0.53 17.4 3.67 4.8 0.66 29.7 0.28 9.5 2338 2.26 785 71.2 20 3.29 5.91 3.45 0.93 19.5 5.91 5.9 1.21 34.9 0.50 11.6 2339 1.66 434 25.5 20 4.40 2.17 1.34 0.40 12.2 1.86 2.5 0.45 14.0 0.20 7.0 2340 1.88 2520 72.2 20 2.52 3.76 2.59 0.26 10.9 4.06 4.3 0.79 34.8 0.42 12.6 4505 0.39 1045 46.1 10 1.09 6.99 3.85 2.11 20.0 7.22 6.9 1.42 25.2 0.51 11.6 4507 1.14 612 14.0 20 4.66 2.55 1.93 0.35 13.9 1.77 4.2 0.62 7.3 0.37 11.3 4509 0.56 717 33.6 60 2.05 2.62 1.62 0.68 21.4 2.51 5.1 0.56 18.9 0.28 9.5

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 192

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - B 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 19- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101630

Méthode ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 ME- MS81 élément Nd Pr Rb Sm Sn Sr Ta Tb Th Tl Tm U V W Y unités ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.1 0.03 0.2 0.03 1 0.1 0.1 0.01 0.05 0.5 0.01 0.05 5 1 0.5

2305 23.4 6.65 130.0 3.97 2 71.3 0.8 0.46 10.75 0.8 0.24 4.24 27 1 14.9 2311 15.5 4.67 47.0 2.85 21 46.6 0.6 0.35 10.85 <0.5 0.25 3.18 11 6 13.8 2317 18.0 4.87 78.7 3.30 18 22.3 0.7 0.45 9.82 1.4 0.32 4.30 8 1 17.9 2336 50.8 14.40 78.8 8.39 2 191.0 0.5 0.93 5.89 0.5 0.39 2.87 79 3 28.9 2337 22.9 6.43 113.0 4.39 3 129.5 0.8 0.48 10.85 0.8 0.28 4.14 32 2 16.6 2338 31.7 8.50 160.5 6.69 5 40.8 0.9 0.90 13.25 1.3 0.48 4.01 17 1 31.9 2339 8.6 2.57 93.9 1.99 20 124.5 0.7 0.34 7.46 0.8 0.21 6.08 51 3 12.8 2340 27.4 7.82 165.0 5.34 6 63.6 1.1 0.56 17.25 1.4 0.41 7.44 7 1 21.9 4505 30.3 7.44 114.5 7.65 2 81.8 0.8 1.14 9.93 1.1 0.60 5.92 143 2 39.4 4507 7.5 2.05 144.5 1.99 7 40.2 1.3 0.34 15.25 1.8 0.34 4.38 11 1 16.6 4509 14.5 4.06 191.5 2.86 63 125.5 0.6 0.41 6.47 1.9 0.25 2.25 96 8 15.3

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 193

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - C 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 19- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101630

Méthode ME- MS81 ME- MS81 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 ME- ICP06 élément Yb Zr SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO unités ppmppm%%%%%%%%%%%%% Description échantillon L.D. 0.03 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

2305 1.68 170 72.5 13.55 3.11 0.86 0.86 3.07 3.81 <0.01 0.34 0.06 0.12 0.01 0.10 2311 1.59 87 90.3 3.73 2.43 0.28 0.23 0.02 0.98 <0.01 0.17 0.01 0.03 0.01 0.01 2317 2.07 120 79.4 4.25 6.27 0.40 0.36 0.01 2.09 <0.01 0.07 0.03 0.03 <0.01 0.05 2336 2.30 137 62.9 14.10 4.35 3.92 1.44 4.54 2.26 0.01 0.73 0.12 0.19 0.02 0.18 2337 1.77 174 69.4 14.00 3.39 0.67 1.02 3.75 3.59 <0.01 0.36 0.07 0.11 0.02 0.10 2338 3.28 186 72.8 13.75 2.24 0.15 1.16 1.62 4.00 <0.01 0.22 0.11 0.04 0.01 0.08 2339 1.27 91 52.8 6.23 25.7 2.62 0.31 0.71 2.49 <0.01 0.17 0.03 0.15 0.01 0.05 2340 2.77 122 81.1 9.03 1.30 0.13 0.33 0.04 4.35 <0.01 0.08 0.01 0.02 0.01 0.26 4505 3.57 243 61.8 14.55 7.08 1.47 1.78 3.72 4.18 <0.01 1.20 0.13 0.34 0.01 0.12 4507 2.41 84 77.4 11.15 1.69 0.13 0.50 1.90 4.66 <0.01 0.06 0.03 0.02 <0.01 0.07 4509 1.79 194 67.8 12.95 5.33 0.18 0.73 0.11 4.56 0.01 0.78 0.03 0.16 0.02 0.08

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 194

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - D 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 19- JUIN- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101630

Méthode OA- GRA05 TOT- ICP06 élément LOI Total unités %% Description échantillon L.D. 0.01 0.01

2305 2.26 100.65 2311 2.04 100.24 2317 5.98 98.94 2336 4.74 99.50 2337 2.01 98.49 2338 2.88 99.06 2339 8.28 99.55 2340 1.71 98.37 4505 3.18 99.56 4507 1.70 99.31 4509 7.18 99.92

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 195

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: Annexe 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Total # les pages d'annexe: 1 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 19- JUIN- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13101630

COMMENTAIRE DE CERTIFICAT

ADRESSE DE LABORATOIRE Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada. Applique à la Méthode: CRU- 31 CRU- QC LOG- 22 PUL- 31 PUL- QC SPL- 21 WEI- 21

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applique à la Méthode: ME- ICP06 ME- MS81 OA- GRA05 TOT- ICP06 196

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Finalisée date: 10- SEPT- 2013 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Cette copie a fait un rapport sur Téléphone: 604 984 0221 Télécopieur: 604 984 0218 18- OCT- 2013 www.alsglobal.com Compte: MAYOR

CERTIFICAT VO13156337 PRÉPARATION ÉCHANTILLONS CODE ALS DESCRIPTION Projet: BOUMADINE, MAROC FND- 02 Local. échantillon pour analyse suppl. Bon de commande #: Ce rapport s'applique aux 26 échantillons de roche soumis à notre laboratoire de Val PROCÉDURES ANALYTIQUES d'Or, QC, Canada le 29- AOUT- 2013. CODE ALS DESCRIPTION INSTRUMENT Les résultats sont transmis à: Au- ICP21 Au 30 g FA fini ICP- AES ICP- AES MICHEL BOILY GUY GOULET ME- MS41L 51 anaux. regia ICPMS d aqua

À: MAYA GOLD & SILVER INC. ATTN: MICHEL BOILY 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 BLAINVILLE QC J7C 3V5

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. Signature: ***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** Colin Ramshaw, Vancouver Laboratory Manager Commentaire: ***** ORIGINALLY FROM WO: VO13101629 MAYOR ***** 197

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - A 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 10- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156337

Méthode Au- ICP21 ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Au Au Ag Al As B Ba Be Bi Ca Cd Ce Co Cr Cs unités ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm Description échantillon L.D. 0.001 0.0002 0.001 0.01 0.01 10 0.5 0.01 0.001 0.01 0.001 0.003 0.001 0.01 0.005

02238 0.008 0.0103 0.173 0.28 85.1 <10 108.5 0.27 0.056 0.28 0.038 45.7 1.265 10.75 0.579 02239 0.019 0.0229 4.35 0.24 463 <10 608 0.14 0.189 0.26 0.373 34.9 0.324 3.34 0.144 02240 0.001 0.0026 0.915 0.34 34.3 <10 1540 0.23 0.196 0.15 0.134 61.2 0.645 5.24 0.462 02241 0.028 0.0318 13.85 0.42 375 <10 89.8 0.33 0.201 0.37 1.630 14.15 0.251 14.65 0.099 02243 0.054 0.0615 25.6 0.27 184.5 <10 87.7 0.07 0.184 0.33 1.275 14.80 0.211 3.06 0.076 02244 0.011 0.0109 7.62 0.29 73.1 <10 94.6 0.10 0.127 0.24 0.134 36.3 0.138 3.07 0.087 02245 0.027 0.0310 0.324 0.21 110.0 <10 102.5 0.06 0.018 0.19 0.039 27.6 0.494 6.41 0.097 02246 0.017 0.0156 10.10 0.42 46.2 <10 41.4 0.19 0.132 0.12 0.244 47.3 0.149 4.66 0.131 02248 0.001 0.0008 0.489 0.82 4.17 <10 84.0 0.47 0.021 0.95 0.224 33.8 3.99 9.56 0.591 02249 <0.001 0.0004 0.046 0.30 1.20 <10 68.3 0.51 0.019 0.24 0.012 35.3 0.439 8.51 0.764 02250 0.003 0.0020 0.121 1.27 5.21 <10 132.0 0.71 0.137 1.71 0.049 51.3 6.79 11.65 0.879 02319 0.002 0.0025 1.615 1.10 9.85 <10 63.4 0.48 0.152 2.88 6.00 48.8 4.93 13.50 0.693 02320 <0.001 0.0006 0.041 1.97 2.41 <10 196.5 0.53 0.040 0.90 0.069 47.1 11.50 4.41 0.293 02321 0.001 0.0011 0.082 0.29 7.44 <10 90.9 0.13 0.096 0.27 0.087 13.70 1.320 14.30 0.455 02323 0.002 0.0012 0.081 0.27 17.85 <10 93.6 0.19 0.124 0.33 0.118 32.4 4.99 12.45 0.340 02324 0.003 0.0029 0.594 0.39 8.08 <10 241 0.11 0.105 0.31 0.185 13.40 1.645 13.55 0.396 02325 0.047 0.0494 3.01 0.22 176.5 <10 159.5 0.08 0.228 0.16 2.60 17.10 0.429 11.90 0.340 02326 0.002 0.0004 0.026 1.04 15.70 <10 78.0 0.45 0.006 0.79 0.042 42.6 11.65 54.5 1.275 02327 0.099 0.110 21.3 0.53 1505 <10 212 0.13 1.045 0.17 0.711 17.70 0.764 8.80 0.625 02328 0.001 0.0009 0.182 1.98 6.95 <10 108.0 0.60 0.010 1.18 0.310 43.9 14.65 41.7 0.758 02329 0.001 0.0003 0.084 0.93 3.72 <10 509 0.67 0.032 0.88 9.78 55.7 3.13 7.28 0.525 02330 0.005 0.0053 0.431 0.47 61.1 <10 1770 0.87 0.167 1.04 3.86 45.9 2.82 4.70 0.715 02331 0.073 0.0870 1.025 0.72 748 <10 85.4 0.90 0.220 0.27 4.22 11.95 1.800 9.68 0.867 02332 0.002 0.0013 0.383 0.36 5.00 <10 95.2 0.20 0.017 0.36 0.088 8.42 1.265 15.05 1.170 02333 0.003 0.0021 0.271 2.46 35.0 <10 226 0.82 0.149 2.35 0.335 60.3 19.20 92.4 0.493 02334 0.002 0.0017 0.076 1.13 29.2 <10 178.5 0.75 0.086 1.73 0.129 48.5 5.97 8.66 1.145

Commentaire: ***** ORIGINALLY FROM WO: VO13101629 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 198

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - B 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 10- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156337

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Cu Fe Ga Ge Hf Hg In K La Li Mg Mn Mo Na Nb unités ppm % ppm ppm ppm ppm ppm % ppm ppm % ppm ppm % ppm Description échantillon L.D. 0.01 0.001 0.004 0.005 0.002 0.004 0.005 0.01 0.002 0.1 0.01 0.1 0.01 0.001 0.002

02238 7.02 1.050 0.967 0.055 0.363 0.012 0.013 0.19 21.7 1.2 0.02 72.3 1.70 0.004 0.061 02239 13.45 1.110 1.755 0.048 0.343 0.103 0.051 0.21 17.00 0.7 0.03 46.7 2.70 0.005 0.085 02240 7.62 1.260 1.310 0.080 0.195 0.111 0.024 0.18 31.7 0.8 0.02 119.5 1.03 0.018 0.042 02241 27.9 8.20 17.60 0.068 0.227 3.08 1.440 1.86 6.81 1.3 0.05 19.1 1.61 0.035 0.104 02243 86.9 1.270 2.66 0.036 0.130 1.805 1.265 0.30 7.35 0.5 0.03 31.7 0.53 0.010 0.077 02244 3.85 0.540 2.47 0.050 0.112 2.17 1.520 0.24 17.30 0.5 0.04 32.0 0.44 0.005 0.052 02245 5.03 0.770 0.809 0.049 0.360 0.027 0.013 0.19 13.70 0.4 0.02 42.8 0.61 0.004 1.270 02246 4.62 0.350 2.31 0.061 0.099 1.240 0.783 0.27 23.8 0.7 0.03 29.2 0.74 0.004 0.022 02248 177.5 1.640 4.03 0.055 0.228 0.045 0.016 0.22 16.75 10.4 0.25 313 0.37 0.037 0.032 02249 1.83 0.700 1.535 0.054 0.369 0.018 0.015 0.22 19.65 0.7 0.03 168.0 0.28 0.022 0.257 02250 3.90 2.57 6.36 0.074 0.290 0.084 0.034 0.23 25.8 16.6 0.57 448 1.18 0.045 0.015 02319 33.6 2.42 6.08 0.064 0.213 0.200 0.045 0.16 24.3 13.6 0.45 755 1.32 0.031 0.018 02320 14.65 4.49 15.65 0.133 0.348 0.065 0.063 0.08 22.3 26.0 1.08 804 0.18 0.044 0.010 02321 17.15 0.500 1.100 0.029 0.436 0.029 0.017 0.13 6.16 1.2 0.05 264 0.21 0.039 0.308 02323 6.17 0.630 0.956 0.041 0.260 0.046 0.012 0.14 15.90 1.0 0.02 259 0.16 0.037 0.052 02324 89.9 0.760 2.76 0.036 0.386 0.037 0.019 0.13 6.55 1.7 0.09 201 0.24 0.035 0.162 02325 17.65 1.710 2.14 0.043 0.134 1.495 0.022 0.35 8.36 0.6 0.05 46.4 0.70 0.011 0.043 02326 3.38 3.16 7.57 0.081 0.181 0.019 0.022 0.18 19.10 16.3 0.25 403 0.31 0.034 0.006 02327 20.1 4.38 5.50 0.045 0.290 0.374 2.39 0.61 10.45 1.1 0.03 56.8 1.54 0.035 0.040 02328 29.4 4.00 12.45 0.100 0.234 0.021 0.037 0.14 21.5 31.7 1.37 951 0.24 0.052 0.012 02329 4.24 1.690 4.55 0.079 0.254 0.042 0.029 0.25 34.4 10.4 0.24 520 0.16 0.037 0.034 02330 8.69 1.430 1.290 0.067 0.155 0.015 0.044 0.21 22.8 5.9 0.28 1170 0.33 <0.001 0.031 02331 203 12.70 3.53 0.094 0.186 0.133 2.47 0.22 6.44 1.1 0.05 78.6 5.45 0.006 0.013 02332 14.15 0.910 1.840 0.026 0.185 0.048 0.016 0.19 4.92 2.0 0.10 174.0 0.30 0.007 0.659 02333 301 5.44 12.25 0.133 0.226 0.028 0.080 0.09 28.4 48.7 2.00 1620 2.35 0.024 0.006 02334 4.40 2.36 4.97 0.063 0.247 0.021 0.024 0.27 23.9 15.2 0.45 583 0.24 0.031 0.009

Commentaire: ***** ORIGINALLY FROM WO: VO13101629 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 199

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - C 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 10- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156337

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Ni P Pb Pd Pt Rb Re S Sb Sc Se Sn Sr Ta Te unités ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.04 0.001 0.005 0.001 0.002 0.005 0.001 0.01 0.005 0.005 0.1 0.01 0.01 0.005 0.01

02238 1.25 0.006 85.4 0.001 <0.002 7.69 <0.001 0.01 1.395 0.611 0.9 0.25 9.39 0.006 0.04 02239 0.60 0.023 334 0.002 <0.002 8.23 <0.001 0.16 5.58 0.564 0.6 0.73 47.4 0.005 0.02 02240 1.39 0.006 294 0.001 <0.002 8.78 <0.001 0.10 2.36 0.542 0.2 0.24 37.4 0.006 <0.01 02241 0.69 0.024 4450 0.002 <0.002 64.5 <0.001 3.37 10.40 0.929 1.7 9.12 23.8 0.005 0.02 02243 0.50 0.005 500 0.001 <0.002 8.28 <0.001 0.43 4.26 0.526 1.8 8.51 13.20 0.005 0.01 02244 0.51 0.005 195.5 0.001 <0.002 7.96 <0.001 0.23 1.930 0.557 0.4 3.07 11.60 0.006 0.02 02245 0.78 0.010 103.0 0.001 <0.002 6.71 <0.001 0.05 2.16 0.382 0.7 0.16 11.40 0.008 0.01 02246 0.53 0.013 422 0.001 <0.002 10.80 <0.001 0.10 1.065 0.749 0.6 0.56 11.95 0.006 <0.01 02248 2.68 0.045 18.50 0.003 <0.002 11.25 <0.001 0.03 0.322 1.300 0.4 0.22 14.45 0.006 <0.01 02249 1.03 0.004 20.2 0.002 <0.002 10.10 <0.001 0.01 0.748 0.917 0.2 0.52 5.06 0.006 0.01 02250 4.50 0.061 16.95 0.001 <0.002 10.80 <0.001 0.02 0.352 2.18 0.2 0.63 34.8 0.006 <0.01 02319 4.09 0.052 1665 0.002 <0.002 8.62 <0.001 0.03 1.545 2.68 0.6 0.34 29.5 0.006 <0.01 02320 1.49 0.114 16.45 0.001 <0.002 3.07 <0.001 0.03 0.348 11.95 0.7 0.58 18.20 0.006 <0.01 02321 1.23 0.009 21.8 0.001 <0.002 3.96 <0.001 0.06 0.547 0.532 0.2 0.11 9.07 0.006 <0.01 02323 2.66 0.030 12.00 0.001 <0.002 5.71 <0.001 0.04 0.357 0.693 0.2 0.09 10.50 0.006 <0.01 02324 1.74 0.010 80.3 0.001 <0.002 4.20 <0.001 0.06 0.797 0.747 0.2 0.46 16.30 0.006 <0.01 02325 1.12 0.013 573 0.002 <0.002 14.85 <0.001 0.51 4.15 0.458 1.7 1.49 22.7 0.005 0.06 02326 14.30 0.074 4.53 0.002 <0.002 8.20 <0.001 0.02 0.476 3.92 0.3 0.14 10.70 0.006 <0.01 02327 2.07 0.033 2450 0.002 <0.002 29.4 <0.001 1.04 9.25 2.43 0.8 17.55 48.4 0.006 0.01 02328 15.95 0.113 13.30 0.001 <0.002 6.47 <0.001 0.03 0.403 6.98 0.4 0.46 24.1 0.006 0.02 02329 3.17 0.039 73.1 <0.001 <0.002 13.20 <0.001 0.03 0.511 1.585 0.4 0.47 25.8 0.006 0.01 02330 4.28 0.011 43.8 0.002 <0.002 8.33 <0.001 0.07 1.750 0.466 0.5 0.12 34.1 0.006 0.01 02331 2.73 0.042 1690 0.002 <0.002 11.35 <0.001 0.10 9.95 1.815 4.0 1.46 44.0 0.007 0.02 02332 2.81 0.006 6.10 0.002 <0.002 8.04 <0.001 0.02 1.820 0.299 0.1 0.34 8.46 0.006 0.01 02333 39.6 0.123 239 0.002 <0.002 3.50 <0.001 0.02 3.48 7.96 0.7 0.35 16.65 0.006 0.01 02334 4.08 0.053 11.65 0.001 <0.002 12.60 <0.001 0.02 0.786 2.47 0.4 0.25 29.6 0.006 <0.01

Commentaire: ***** ORIGINALLY FROM WO: VO13101629 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 200

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - D 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 10- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156337

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Th Ti Tl U V W Y Zn Zr unités ppm % ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 0.01

02238 3.31 0.001 0.066 0.519 2.8 0.047 4.56 8.5 11.00 02239 1.930 0.001 0.187 0.346 1.3 0.042 1.830 24.7 9.49 02240 2.73 0.001 0.097 0.628 1.0 0.153 2.78 26.1 6.58 02241 0.753 0.002 1.790 0.252 7.1 0.029 1.080 48.9 5.54 02243 0.868 0.001 0.157 0.257 1.0 0.079 0.808 23.0 3.38 02244 1.475 0.001 0.124 0.164 0.9 0.044 1.270 8.5 2.94 02245 6.94 0.001 0.066 0.978 1.4 0.131 2.88 10.0 8.40 02246 2.42 0.001 0.163 0.151 2.0 0.076 1.515 12.5 2.85 02248 4.19 0.002 0.060 0.907 5.3 0.034 9.54 41.6 7.77 02249 3.71 0.004 0.081 0.503 3.8 0.280 4.55 8.1 11.20 02250 4.61 0.002 0.063 0.963 15.1 0.041 10.40 67.4 11.25 02319 5.08 0.003 0.065 0.998 13.9 0.052 18.70 750 7.14 02320 2.05 0.007 0.033 0.669 57.8 0.066 15.40 61.3 13.60 02321 4.47 0.001 0.036 0.787 2.3 0.054 3.53 24.0 10.85 02323 2.78 0.001 0.057 0.782 3.9 0.033 7.70 12.6 7.01 02324 2.38 0.001 0.046 1.140 5.7 0.038 4.09 39.2 13.50 02325 1.490 0.001 0.317 0.647 3.0 0.124 1.115 18.3 3.89 02326 2.37 0.003 0.060 0.514 30.9 0.522 6.88 39.1 6.26 02327 1.760 0.006 0.489 0.822 11.6 0.160 2.02 293 7.61 02328 1.735 0.006 0.047 0.367 45.8 0.071 9.44 98.4 11.50 02329 3.69 0.002 0.083 1.065 7.1 0.429 11.30 2300 7.37 02330 2.07 <0.001 0.175 0.408 1.1 0.029 9.45 91.0 4.87 02331 2.62 0.001 0.161 1.445 24.2 0.574 6.85 925 5.16 02332 3.64 0.001 0.084 0.341 4.4 0.127 3.04 52.3 4.25 02333 2.44 0.005 0.040 0.948 117.0 0.050 16.80 145.0 8.79 02334 4.80 0.002 0.083 0.902 8.9 0.471 10.75 54.5 8.63

Commentaire: ***** ORIGINALLY FROM WO: VO13101629 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 201

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: Annexe 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Total # les pages d'annexe: 1 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 10- SEPT- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156337

COMMENTAIRE DE CERTIFICAT

COMMENTAIRES ANALYTIQUES L'analyses de l'or par cette méthode sont semi- quantitatif à cause du peu d'échantillon pesée (0.5g). Applique à la Méthode: ME- MS41L

ADRESSE DE LABORATOIRE Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada. Applique à la Méthode: FND- 02

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applique à la Méthode: Au- ICP21 ME- MS41L 202

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Finalisée date: 12- SEPT- 2013 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Cette copie a fait un rapport sur Téléphone: 604 984 0221 Télécopieur: 604 984 0218 18- OCT- 2013 www.alsglobal.com Compte: MAYOR

CERTIFICAT VO13156338 PRÉPARATION ÉCHANTILLONS CODE ALS DESCRIPTION Projet: BOUMADINE, MAROC FND- 02 Local. échantillon pour analyse suppl. Bon de commande #: Ce rapport s'applique aux 11 échantillons de roche soumis à notre laboratoire de Val PROCÉDURES ANALYTIQUES d'Or, QC, Canada le 29- AOUT- 2013. CODE ALS DESCRIPTION INSTRUMENT Les résultats sont transmis à: Au- ICP21 Au 30 g FA fini ICP- AES ICP- AES MICHEL BOILY GUY GOULET ME- MS41L 51 anaux. regia ICPMS d aqua

À: MAYA GOLD & SILVER INC. ATTN: MICHEL BOILY 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 BLAINVILLE QC J7C 3V5

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. Signature: ***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** Colin Ramshaw, Vancouver Laboratory Manager Commentaire: ***** ORIGINALLY FROM WO: VO13101630 MAYOR ***** 203

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - A 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 12- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156338

Méthode Au- ICP21 ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Au Au Ag Al As B Ba Be Bi Ca Cd Ce Co Cr Cs unités ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm Description échantillon L.D. 0.001 0.0002 0.001 0.01 0.01 10 0.5 0.01 0.001 0.01 0.001 0.003 0.001 0.01 0.005

2305 0.002 0.0006 1.075 0.95 6.19 <10 138.5 0.41 0.256 0.59 3.27 33.3 4.23 11.30 0.565 2311 0.235 0.261 8.01 0.22 233 <10 63.9 0.11 4.19 0.19 0.101 20.3 0.544 5.44 0.365 2317 0.071 0.0724 5.55 0.20 314 <10 133.5 0.05 0.257 0.29 0.182 13.80 0.268 3.88 0.082 2336 0.002 0.0011 1.695 1.40 19.40 <10 1065 0.52 0.127 2.67 0.159 78.8 9.78 27.3 0.591 2337 0.003 0.0018 0.597 1.00 55.6 <10 68.3 0.37 0.246 0.43 5.39 39.4 6.31 12.15 0.389 2338 0.004 0.0046 1.115 0.69 34.7 <10 155.5 0.79 0.263 0.09 1.445 59.8 3.27 2.97 0.561 2339 0.358 0.381 7.63 0.55 1380 <10 184.0 0.44 0.175 1.75 3.60 13.70 3.12 13.15 0.546 2340 0.005 0.0040 1.005 0.25 67.6 <10 1470 0.21 0.016 0.09 0.024 56.1 0.388 5.93 0.409 4505 0.001 0.0004 0.152 2.03 5.51 <10 233 0.66 0.013 0.96 0.162 40.4 10.95 3.72 0.402 4507 0.002 0.0013 0.214 0.60 2.73 <10 95.1 0.40 0.014 0.09 0.048 9.93 1.250 5.61 0.925 4509 0.041 0.0373 29.6 0.50 528 <10 173.5 0.29 0.033 0.12 0.062 17.35 0.399 13.75 0.136

Commentaire: ***** ORIGINALLY FROM WO: VO13101630 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 204

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - B 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 12- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156338

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Cu Fe Ga Ge Hf Hg In K La Li Mg Mn Mo Na Nb unités ppm % ppm ppm ppm ppm ppm % ppm ppm % ppm ppm % ppm Description échantillon L.D. 0.01 0.001 0.004 0.005 0.002 0.004 0.005 0.01 0.002 0.1 0.01 0.1 0.01 0.001 0.002

2305 663 1.880 5.16 0.060 0.198 0.032 0.110 0.18 15.25 18.3 0.36 413 1.74 0.036 0.015 2311 9.29 1.610 1.315 0.035 0.267 4.20 <0.005 0.10 9.92 0.8 0.04 37.4 5.33 0.020 0.198 2317 2.49 4.27 4.74 0.032 0.206 0.162 0.033 0.79 6.55 0.6 0.07 42.6 4.20 0.013 0.131 2336 534 2.82 7.27 0.103 0.214 0.027 0.028 0.14 41.1 34.1 0.73 918 0.74 0.047 0.023 2337 155.0 2.19 6.71 0.061 0.243 0.026 0.028 0.13 19.70 16.5 0.49 548 0.86 0.038 0.011 2338 7.32 1.250 3.21 0.082 0.350 0.019 0.163 0.21 30.3 12.3 0.26 782 0.59 0.017 0.017 2339 29.6 17.35 5.60 0.101 0.334 0.319 0.060 0.44 8.15 3.4 0.07 203 2.62 0.069 0.196 2340 11.60 0.780 0.901 0.064 0.422 0.042 0.007 0.18 28.5 0.7 0.02 29.9 29.2 0.005 0.260 4505 15.10 4.83 15.55 0.195 0.282 0.152 0.038 0.10 20.3 28.0 1.01 1030 0.54 0.038 0.200 4507 3.61 1.050 4.13 0.026 0.309 0.016 0.005 0.20 4.97 6.3 0.19 209 0.12 0.024 0.352 4509 7.78 3.37 6.27 0.070 0.116 0.790 0.521 0.73 8.83 0.7 0.06 37.3 1.28 0.065 0.025

Commentaire: ***** ORIGINALLY FROM WO: VO13101630 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 205

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - C 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 12- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156338

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Ni P Pb Pd Pt Rb Re S Sb Sc Se Sn Sr Ta Te unités ppm % ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.04 0.001 0.005 0.001 0.002 0.005 0.001 0.01 0.005 0.005 0.1 0.01 0.01 0.005 0.01

2305 3.14 0.047 38.3 <0.001 <0.002 10.35 <0.001 0.03 0.477 1.725 0.3 0.37 13.95 0.005 <0.01 2311 1.36 0.010 215 <0.001 <0.002 4.58 <0.001 0.07 28.6 0.653 0.7 11.55 29.4 0.005 <0.01 2317 0.61 0.010 205 <0.001 <0.002 22.3 <0.001 1.38 12.35 0.388 0.8 7.54 16.35 0.005 0.02 2336 6.60 0.085 21.7 <0.001 <0.002 7.11 <0.001 0.05 0.818 4.94 0.5 0.25 49.1 0.005 <0.01 2337 3.05 0.046 1160 <0.001 <0.002 5.61 <0.001 0.04 0.787 2.42 0.4 0.50 9.51 0.005 <0.01 2338 4.25 0.016 370 <0.001 <0.002 9.02 <0.001 0.02 3.60 1.095 0.4 0.44 6.23 0.005 <0.01 2339 4.98 0.065 1270 <0.001 <0.002 16.20 <0.001 0.90 15.80 1.465 0.7 11.75 90.6 0.010 <0.01 2340 0.92 0.005 152.0 <0.001 <0.002 8.51 <0.001 0.06 3.34 0.307 0.6 0.50 35.7 0.005 0.01 4505 1.79 0.155 3.94 0.001 <0.002 3.86 <0.001 0.02 0.609 9.91 0.8 0.73 28.0 0.006 <0.01 4507 1.01 0.008 7.55 <0.001 <0.002 8.39 <0.001 0.02 0.702 0.663 0.2 0.91 9.10 0.005 <0.01 4509 0.72 0.058 2520 <0.001 <0.002 22.5 <0.001 1.20 3.40 1.440 10.7 20.2 115.0 0.005 0.01

Commentaire: ***** ORIGINALLY FROM WO: VO13101630 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 206

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: 2 - D 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Nombre total de pages: 2 (A - D) North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 plus les pages d'annexe Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Finalisée date: 12- SEPT- 2013 www.alsglobal.com Compte: MAYOR Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156338

Méthode ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L ME- MS41L élément Th Ti Tl U V W Y Zn Zr unités ppm % ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 0.01

2305 6.02 0.002 0.072 1.330 10.0 0.029 9.07 498 7.02 2311 4.85 0.004 0.189 0.617 5.1 0.145 2.05 16.2 6.01 2317 1.595 0.003 0.569 0.273 2.8 0.071 1.135 9.8 5.19 2336 3.12 0.009 0.053 0.735 43.9 0.038 14.35 63.3 7.26 2337 6.02 0.002 0.039 1.160 15.5 0.028 9.24 457 7.32 2338 4.46 0.001 0.119 0.559 2.5 0.029 7.29 489 10.55 2339 2.61 0.006 0.271 2.56 40.3 0.281 3.87 643 10.35 2340 6.23 <0.001 0.094 1.895 1.3 0.151 5.00 17.3 10.20 4505 2.82 0.054 0.062 1.190 115.5 0.086 21.2 136.5 11.70 4507 4.68 0.001 0.105 1.210 3.3 0.061 4.57 24.3 7.41 4509 0.741 0.002 0.270 0.214 13.8 0.075 1.160 24.5 4.85

Commentaire: ***** ORIGINALLY FROM WO: VO13101630 MAYOR *****

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** 207

ALS Canada Ltd. À: MAYA GOLD & SILVER INC. Page: Annexe 1 2103 Dollarton Hwy 10 BOUL. DE LA SEIGNEURERIE EST, SUITE 207 Total # les pages d'annexe: 1 North Vancouver BC V7H 0A7 BLAINVILLE QC J7C 3V5 Finalisée date: 12- SEPT- 2013 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 Compte: MAYOR www.alsglobal.com

Projet: BOUMADINE, MAROC CERTIFICAT D'ANALYSE VO13156338

COMMENTAIRE DE CERTIFICAT

COMMENTAIRES ANALYTIQUES L'analyses de l'or par cette méthode sont semi- quantitatif à cause du peu d'échantillon pesée (0.5g). Applique à la Méthode: ME- MS41L

ADRESSE DE LABORATOIRE Traité à ALS Val d'Or, 1324 Rue Turcotte, Val d'Or, QC, Canada. Applique à la Méthode: FND- 02

Traité à ALS Vancouver, 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applique à la Méthode: Au- ICP21 ME- MS41L