Torpor Patterns in Desert Hedgehogs (Paraechinus Aethiopicus) Represent Another New Point Along a Thermoregulatory Continuum

Total Page:16

File Type:pdf, Size:1020Kb

Torpor Patterns in Desert Hedgehogs (Paraechinus Aethiopicus) Represent Another New Point Along a Thermoregulatory Continuum 445 Torpor Patterns in Desert Hedgehogs (Paraechinus aethiopicus) Represent Another New Point along a Thermoregulatory Continuum Justin G. Boyles1,* We suggest that this family (Erinaceidae) and order (Eulipo- Nigel C. Bennett2,3 typhla) may be important for understanding the evolution of Osama B. Mohammed2 thermoregulatory patterns among Laurasiatheria and mammals Abdulaziz N. Alagaili2 in general. 1Cooperative Wildlife Research Laboratory, Department of Zoology, Southern Illinois University, Carbondale, Illinois; Keywords: body temperature, Ethiopian hedgehog, Eulipo- 2King Saud University Mammals Research Chair, Department typhla, heterothermy, hibernation. of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; 3Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa Introduction Accepted 2/13/2017; Electronically Published 4/12/2017 Describing variation in thermoregulatory and body tempera- — ture (Tb) patterns and determining the distribution both phylo- genetically and geographically—of those patterns in mammals ABSTRACT and birds is vital to understanding the evolutionary history of Documenting variation in thermoregulatory patterns across endothermy. Of special interest is how various derivations of phylogenetically and geographically diverse taxa is key to un- heterothermy relate to the evolutionary history of endothermy. derstanding the evolution of endothermy and heterothermy in Patterns of heterothermy have often been considered distinct birds and mammals. We recorded body temperature (Tb)in (Geiser 1998), with daily heterothermy and hibernation (seasonal free-ranging desert hedgehogs (Paraechinus aethiopicus)across heterothermy) differentiated by parameters including length of ’ 7– three seasons in the deserts of Saudi Arabia. Modal Tb s(35 torpor bouts and metabolic rate during torpor (Geiser and Ruf 36.57C) were slightly below normal for mammals but still warmer 1995). Increased interest in the topic and advances in technology than those of other hedgehogs. The single maximum Tb recorded have led to an increase in research on species from tropical, sub- 7 ’ was 39.2 C,whichiscoolerthanmaximumTb s recorded in tropical, and desert regions, and exceptions that fall in-between most desert mammals. Desert hedgehogs commonly used tor- the normal classifications of heterothermy are common enough por during winter and spring but never during summer. Torpor (Lovegrove et al. 2001; Lovegrove and Genin 2008; Geiser and bouts occurred frequently but irregularly, and most lasted less Mzilikazi 2011; Geiser and Martin 2013) that many researchers than 24 h. Unlike daily heterotherms, desert hedgehogs did now view the metabolic plasticity between normothermy and occasionally remain torpid for more than 24 h, including one hibernation as a continuum (Canale et al. 2012; Boyles et al. 2013; bout of 101 h. Body temperatures during torpor were often van Breukelen and Martin 2015) arising from ancestral hetero- within 27–37C of ambient temperature; however, we never re- thermy (Lovegrove 2012a). corded repeated boutsof long, predictable torporpunctuated by Differentiating between the two competing views of hetero- brief arousal periods similar to those common among seasonal thermy (distinct categories vs. a continuum) will become easier hibernators. Thus, desert hedgehogs can be included on the as more data on Tb of phylogenetically and geographically di- ever-growing list of species that display torpor patterns inter- verse species become available. One such phylogenetically im- mediate to traditionally defined hibernators and daily hetero- portant order is the Eulipotyphla (solenodons, shrews, moles, therms. Extant hedgehogs are a recent radiation within an an- hedgehogs, and moonrats), which occupy an interesting (albeit cient family, and the intermediate thermoregulatory pattern contentious) position in the mammalian phylogeny (Mouchaty displayed by desert hedgehogs is unlike the deeper and more et al. 2000; Douady et al. 2002). They are most commonly placed regular torpor seen in other hedgehogs, suggesting that this may sister to the rest of Laurasiatheria (Douady et al. 2002; Bininda- be a derived—as opposed to ancestral—trait in this subfamily. Emonds et al. 2007), diverging 75–85 million years ago (Douady and Douzery 2003; Hallström and Janke 2010). The Eulipo- typhla have been singled out as important in understanding the *Corresponding author; e-mail: [email protected]. evolution of heterothermy in mammals because of their early Physiological and Biochemical Zoology 90(4):445–452. 2017. q 2017 by The divergence from the other laurasiatherians (Lovegrove 2012b). University of Chicago. All rights reserved. 1522-2152/2017/9004-6169$15.00. Among the Eulipotyphla, the thermal physiology of hedge- DOI: 10.1086/691542 hogs (subfamily Erinaceinae) has long interested researchers 446 J.G.Boyles,N.C.Bennett,O.B.Mohammed,andA.N.Alagaili (Dmi’el and Schwarz 1984; Soivio et al. 1968). Hedgehogs typi- first collection period was in summer 2013 (June 2013). The 7 7 cally maintain normothermic Tb between 33 and 35 C (Shkolnik second collection period was in winter 2013–2014 (November and Schmidt-Nielsen 1976; Fowler and Racey 1990; Król 1994; 2013). We captured 20 animals in each season. Hallam and Mzilikazi 2011), which is intermediate between We temporarily housed the hedgehogs in an animal facility monotremes, metatherians, and more basal placental mammals at the Department of Zoology of King Saud University in Ri- 7– 7 (Tb of 30 33 C; Grant 1983; Grigg et al. 2003; Nicol and An- yadh. We used temperature-sensitive data loggers set to re- derson 2006; Lovegrove and Genin 2008) and the more typical cord at 1-h intervals (0.06257C resolution, iButtons, DS1922L, 7– 7 mammalian Tb of 37 38 C. Even among the Eulipotyphla, hedge- 4.2gwithwax,MaximSemiconductors,Dallas)tomeasurecoreTb. hogs display unusually low Tb (Whittowetal.1977;Campbell We did not have proper equipment available to fully calibrate et al. 1999). While a large body of literature exists on thermo- data loggers. Previous experience with this model of data logger regulation of hedgehogs, relatively little work has been pub- indicates that most are accurate within values claimed by the 7 lished on Tb patterns of this taxon in the wild, especially in arid manufacturer (0.5 C) and that precision within a batch is high environments. Laboratory and semicaptive studies suggest that (J. G. Boyles, personal observation). However, a weakness of this the European hedgehog (Erinaceus europaeus) probably under- model is that a small proportion of them deviate outside these goes the longest and deepest torpor bouts among hedgehogs values. Therefore, before implanting the data loggers, we com- (Dmi’el and Schwarz 1984; Soivio et al. 1968; Fowler and Racey pared their recorded temperatures to measured air temperatures 1990; Webb and Ellison 1998), but other hedgehog species also to remove any data loggers with a clear offset. Thus, we are fi 5 7 display relatively long torpor bouts characterized by low Tb (Hal- con dent that our measurements are within 0.5 C of actual Tb lam and Mzilikazi 2011; Mouhoub-Sayah et al. 2012). The four values.We then coated the data loggerswith biologically inert wax species for which Tb data are available come from a variety of and had them implanted intraperitoneally by a licensed veteri- climates (temperature and subtropical) and habitats (woodlands narian following standard procedures. The veterinarian im- and grasslands), and all use torpor. planted data loggers after anesthetizing animals with isoflurane We recorded Tb of free-ranging desert hedgehogs (Paraechi- and sutured the incision with absorbable catgut. Animals were nus aethiopicus) across three seasons in a harsh desert environ- given a long-acting, broad-spectrum antibiotic (Oxytetracy- ment. Desert hedgehogs are unusual among the hedgehogs be- cline, Pfizer) to minimize chances of postsurgery infection and cause of their adaptations to extremely arid environments; thus, were held for at least 7 d to ensure recovery from surgeries. Fi- their thermoregulation is likely to be unusual as well. Given that nally, to facilitate recapture, we clipped a few spines and glued heterothermy seems ubiquitous among the hedgehogs, we ex- (Torbot Liquid Bonding Cement, Torbot) radio transmitters (RI- pected heterothermy in desert hedgehogs as well. However, given 2B, 10 g, Holohil Systems) to the dorsal skin. Combined, the data the unusual ecology of this species relative to other hedgehogs, we logger and transmitter were well below 5% body mass of all in- had no a priori expectations about the form of heterothermy. dividuals. We released the animals in the same area where we had captured them and attempted to recapture them approx- Methods imately 2 mo after the first capture period and 5 mo after the second capture period. The first period was completed wholly Study Species during summer. The second period began in early winter and The desert hedgehog (150–600 g) is an arid-adapted insectivore ended in late spring/early summer. Recapture was lower during found throughout the nonmountainous regions of the Arabian summer because hedgehogs more commonly left the area or Peninsula and in extreme northern Africa. Relatively little is were killed on roads. We euthanized animals using ether to re- known about the natural history, behavior, and ecology of this trieve data loggers. These capture procedures were conducted
Recommended publications
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • Zeitschrift Für Säugetierkunde
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Z. Säugetierkunde 61 (1996) 189-191 ZEITSCHRIPr^^'FUR © 1996 Gustav Fischer, Jena SAUGETIERKUNDE INTERNATIONAL JOURNAL OF MAMMALIAN BIOLOGY WISSENSCHAFTLICHE KURZMITTEILUNG The desert hedgehog, Paraechinus aethiopicus (Ehrenberg, 1833), new to the fauna of Syria By D. Kock and C. Ebenau Forschungsinstitut Senckenberg, Frankfurt a. M. Receipt of Ms. 05. Ol. 1996 Acceptance of Ms. 29. 02. 1996 The mammal fauna of desert regions of Syria is still imperfectly known both with regard to species number and to distribution. Recent field work in the Euphrates valley (by C. E.) resulted in the addition of a third species of hedgehog, Paraechinus aethiopicus (Ehrenberg, 1833), to the Syrian fauna. Previously only Erinaceus concolor Martin, 1838, and Hemiechinus auritus (Gmelin, 1770) were known from this country (Harrison and Bates 1991). Besides Syria, only Israel, Palestine and Jordan host such a high species di- versity of spiny hedgehogs (Erinaceinae) due to the geographic position at the crossing of three faunal realms, the Palaearctic, Oriental and Aethiopian region. Material: Cater Magara Cave at Hussein al-Achmad village, 35. 53.N - 39.01. E, ca. 2.5 km W of Ratla, S-bank Euphrates, IL 1993. unsexed subad. (Skull and mandibles) Senckenberg-Museum Frankfurt SMF 79445, C. Ebenau leg. Comparative material: Saudi Arabia: Riyadh, 1958, unsexed (skull, skin) SMF 19919. Near Abgeig (= Abqaiq), 25.26. N - 49.40. E, unsexed (skull) American Museum Nat. His- tory, New York, AMNH 166942 (labeled ''hypomelas'\ emend. IX.1977, not measured). P. ae. pectoralis (Heuglin, 1861): Jordan: Azraq area, 24. III. 1977, male (skull, skin) SMF 54967, R.
    [Show full text]
  • Cytological Studies of Certain Desert Mammals of Saudi Arabia 3. the Karyotype of Paraechinus Aethiopicus
    Cytologia 50: 507-512, 1985 Cytological Studies of Certain Desert Mammals of Saudi Arabia 3. The Karyotype of Paraechinus aethiopicus A. A. AI-Saleh and M. A. Khan Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia Accepted January 24, 1984 The mammalian fauna of Saudi Arabia is much more diverse and interesting than most realized and many new and interesting discoveries will certainly be made as it is studied. Cytogenetic surveys of the fauna, which have not been conducted so far in Saudi Arabia, are particularly of great importance in deciding the true systematic position of the individual animals and in evaluating the merits of these animals with reference to the desert ecosystem. Presently our paper deals with karyotype analysis of the hedgehog Paraechinus aethiopicus which is of common oc currence in Saudi Arabia. This study is one among the series of surveys of desert mammals of Saudi Arabia (Al-Saleh and Khan 1984 a, b). Except the hedgehog Erinaceus amurensis (2n=44) the diploid number of 48 chromosomes is seen in the various species of the well known genera, Erinaceus, Hemiechinus and Aethechinus (Painter 1925, Bovey 1949, Gropp and Geisler 1966, Gropp et al. 1966, Jordon 1966, Geisler and Gropp 1967, Kral 1967, Hsu and Benirschke 1968, Borgaonkar 1969, Gropp et al. 1969, Natarajan and Gropp 1971, Sharma et al. 1971, Gropp and Natarajan 1972, Matthey 1973 and Sharma et al. 1975). To the best of our knowledge there is only one report about the karyotype fo Paraechinus aethiopicus from Iraq (Bhatnagar and El-Azawi 1978).
    [Show full text]
  • Status and Red List of Pakistan's Mammals
    SSttaattuuss aanndd RReedd LLiisstt ooff PPaakkiissttaann’’ss MMaammmmaallss based on the Pakistan Mammal Conservation Assessment & Management Plan Workshop 18-22 August 2003 Authors, Participants of the C.A.M.P. Workshop Edited and Compiled by, Kashif M. Sheikh PhD and Sanjay Molur 1 Published by: IUCN- Pakistan Copyright: © IUCN Pakistan’s Biodiversity Programme This publication can be reproduced for educational and non-commercial purposes without prior permission from the copyright holder, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior permission (in writing) of the copyright holder. Citation: Sheikh, K. M. & Molur, S. 2004. (Eds.) Status and Red List of Pakistan’s Mammals. Based on the Conservation Assessment and Management Plan. 312pp. IUCN Pakistan Photo Credits: Z.B. Mirza, Kashif M. Sheikh, Arnab Roy, IUCN-MACP, WWF-Pakistan and www.wildlife.com Illustrations: Arnab Roy Official Correspondence Address: Biodiversity Programme IUCN- The World Conservation Union Pakistan 38, Street 86, G-6⁄3, Islamabad Pakistan Tel: 0092-51-2270686 Fax: 0092-51-2270688 Email: [email protected] URL: www.biodiversity.iucnp.org or http://202.38.53.58/biodiversity/redlist/mammals/index.htm 2 Status and Red List of Pakistan Mammals CONTENTS Contributors 05 Host, Organizers, Collaborators and Sponsors 06 List of Pakistan Mammals CAMP Participants 07 List of Contributors (with inputs on Biological Information Sheets only) 09 Participating Institutions
    [Show full text]
  • The Reproductive Biology of the Ethiopian Hedgehog, Paraechinus Aethiopicus, from Central Saudi Arabia: the Role of Rainfall and Temperature
    The reproductive biology of the Ethiopian hedgehog, Paraechinus aethiopicus, from central Saudi Arabia: The role of rainfall and temperature A.N. Alagaili a, N.C. Bennett a, b, O.B. Mohammed a, D.W. Hart b, * a KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia b Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa *Corresponding author. E-mail address: [email protected] (D.W. Hart). Highlights • Ethiopian hedgehog is a seasonal breeder. • Breeding season occurs from spring and to end of summer. • Female reproduction is activated in spring with the first occurrence of rain. • Male reproduction is activated in late winter due to changing temperatures. • Precipitation crucial for onset of female reproduction. Abstract We set out to test whether the Ethiopian hedgehog, Paraechinus aethiopicus is a seasonal or aseasonal breeder and assess which environmental cues bring about both reproductive recrudescence and its subsequent regression. In this study, the body mass, morphometry of the reproductive tract the histology of the reproductive organs and the hormone concentra- tions of males and females were studied over 12 consecutive months in a wild population of the Ethiopian hedgehog from central Saudi Arabia. Using these data we investigated the potential proximate environmental cues that may trigger the onset of reproduction. Temperature is important for the initial activation of the males by bringing about an increase in testosterone concentration. In female hedgehogs the first rains trigger the onset of reproductive activation with ovulation. In turn increased temperature brings about the final activation of the males with increased testes size and seminiferous tubule diameter.
    [Show full text]
  • Gharaibeh, BM 1997. Systematics, Distribution
    Gharaibeh, B. M. 1997. Systematics, distribution, and zoogeography of mammals of Tunisia. Thesis: 1-369. Keywords: 1TN/Acinonyx jubatus/caracal/Caracal caracal/cheetah/distribution/Felis margarita/Felis silvestris/Felis silvestris lybica/leopard/Leptailurus serval/lion/mammals/Panthera leo/Panthera pardus/records/sand cat/serval/systematics/taxonomy/wildcat/zoogeography Abstract: The taxonomic identity of each species of mammals that occurs in the Republic of Tunisia, North Africa has been determined to the subspecific level. History of names was followed and descriptions of types were studied to better provide opinions on the nomenclamre and minimize the confusion existing in the literature concerning the taxonomic identity of many Tunisian species. Keys to distinguish related taxa were constructed and maps depicting the distribution of species within the borders of Tunisia and in the whole North African region were drawn. These maps show original records obtained during this study as well records reported in the literature. Furthermore, the available natural history information on the Tunisian mammal fauna and background information on the vegetation, rainfall, topography, and land forms of the country were presented. Chromosomal G-band data for Merlones shawl from Tunisia, hitherto unavailable, was used to reexamine proposed chromosomal homologies and update the phylogenetic tree of Family Gerbillidae. G-banded chromosomal complement for Jaculus orlentalls was reported. Notable differences in pelage color were seen between populations of the North African elephant shrew, Elephantulus rozetl in northern and southern Tunisia. However, no disjunction was seen in morphometric measurements analyzed using principal components analysis (PCA). Differences in pelage color between 5 populations of Gerblllus campestrls are discussed.
    [Show full text]
  • Additional Records of the Long-Eared Hedgehog, Hemiechinus Auritus (Gmelin, 1770) (Erinaceomorpha: Erinaceidae) from Fars Province, Southern Iran
    Journal of Animal Diversity (2019), 1 (2): 36–43 Online ISSN: 2676-685X Research Article DOI: 10.29252/JAD.2019.1.2.3 Additional records of the Long-eared Hedgehog, Hemiechinus auritus (Gmelin, 1770) (Erinaceomorpha: Erinaceidae) from Fars Province, southern Iran Ali Gholamifard1* and Bruce D. Patterson2 1Department of Biology, Faculty of Sciences, Lorestan University, 6815144316 Khorramabad, Iran 2Negaunee Integrative Research Center, Field Museum of Natural History, Chicago IL 60605-2827, USA Corresponding author : [email protected] Abstract Iran is home to three genera and four species of hedgehogs in the family Received: 28 November 2019 Erinaceidae. One of these, Paraechinus hypomelas, is known to occur in Accepted: 20 December 2019 Fars Province. In the present study, we report two new distribution Published online: 31 December 2019 records of the Long-eared Hedgehog, Hemiechinus auritus from the southwestern region of Fars Province (Varavi Mountain in Mohr and Lamerd Townships in the southern Zagros Mountains), marking a range extension for this species in southern Iran. Key words: Hedgehogs, Hemiechinus auritus, Zagros Mountains, Fars Province, Iran Introduction Knowledge concerning the mammal fauna of Iran continues to grow. It was thought to include 191 species belonging to 93 genera and 10 orders (Karami et al., 2008), but has subsequently grown to 194 species (Ziaie, 2008), and 199 species (Karami et al., 2016), respectively. The small order of Erinaceomorpha Gregory has 10 genera and 26 species distributed in Africa, Asia and Europe (Karami et al., 2016; Best, 2019). In Iran, the order Erinaceomorpha is represented by four species belonging to three genera in one family (Erinaceidae).
    [Show full text]
  • Terrestrial Environment of Abu Dhabi Emirate, United Arab Emirates
    of Abu Dhabi Emirate, United Arab Emirates TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES of Abu Dhabi Emirate, United Arab Emirates TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES Page . IV TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES H. H. Sheikh Khalifa bin Zayed Al Nahyan President of the United Arab Emirates Page . V TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES Page . VI TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES H. H. Sheikh Mohammed bin Zayed Al Nahyan Crown Prince of Abu Dhabi, Deputy Supreme Commander of the UAE Armed Forces Page . VII TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES Page . VIII TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES H. H. Sheikh Hamdan bin Zayed Al Nahyan Deputy Prime Minister, Chairman, EAD Page . IX TERRESTRIAL ENVIRONMENTS OF ABU DHABI EMIRATE, UNITED ARAB EMIRATES · اﻟﺒﻴﺎﻧﺎت · ﺑﺸﻜﻞ ﻋﺎم، ﺗﻢ إﻋﺪاد اﻷوراق اﻟﻘﻄﺎﻋﻴﺔ اﻷﺻﻠﻴﺔ ﺑﺸﻜﻞ ﺟﺪﻳﺪ ﻗﺪم ﻓﻴﻬﺎ · اﻷدوات واﻷﺳﺎﻟﻴﺐ ﻣﺠﻤﻮﻋﺔ ﻗﻴﻤﺔ ﻣﻦ اﳌﻌﻠﻮﻣﺎت · اﻟﺘﻮﻋﻴﺔ · مل ﺗﺼﻞ ﻣﺸﺎرﻛﺔ اﻟﴩﻛﺎء واﻟﺠﻬﺎت اﳌﻌﻨﻴني إﱃ اﻟﺤﺪ اﳌﺨﻄﻂ ﻟﻪ · ﺑﻨﺎء اﻟﻘﺪرات · ﺗﻢ أﻋﺪاد اﻷوراق اﻟﻘﻄﺎﻋﻴﺔ ﺑﺪون دﻋﻢ ﻛﺎﰲ ﻣﻦ اﻟﻬﻴﺌﺔ أو اﻟﴩﻛﺎء واﻟﺠﻬﺎت ·اﻟﺴﻴﺎﺳﺔ اﳌﻌﻨﻴني، وﺑﺎﻟﺘﺎﱄ، ﻛﺎن ﻋﲆ ﻣﺆﻟﻒ اﻟﻮرﻗﺔ اﻟﻘﻄﺎﻋﻴﺔ ﺗﺤﻤﻞ ﻋﺐء إﻋﺪاد ورﻗﺔ اﻷوراق اﻟﻘﻄﺎﻋﻴﺔ ﻫﺬا اﻟﻘﻄﺎع ﰲ وﻗﺖ زﻣﻨﻲ ﻣﺤﺪود ﻧﻮﻋﺎ ﻣﺎ · ﰲ ﺑﻌﺾ اﻟﺤﺎﻻت ﻛﺎﻧﺖ اﻟﺒﻴﺎﻧﺎت اﳌﺴﺘﺨﺪﻣﺔ ﻗﺪميﺔ ﻧﺴﺒﻴﺎ ﺧﻼل اﻟﺴﻨﻮات اﳌﺎﺿﻴﺔ ﻗﺎﻣﺖ ﻣﺨﺘﻠﻒ اﻟﻘﻄﺎﻋﺎت اﳌﻌﻨﻴﺔ ﺑﺸﺆون اﻟﺒﻴﺌﺔ ﺑﺘﺠﻤﻴﻊ ﻛﻢ ﻣﻦ اﳌﻌﻠﻮﻣﺎت اﳌﺘﻨﻮﻋﺔ ﺑﻌﺪة ﺻﻮر ﺗﺼﻒ ﻣﺎ ﻫﻮ ﻣﻌﺮوف ﻋﻦ اﻟﺒﻴﺌﺔ ﰲ إﻣﺎرة · مل ﻳﺘﻢ إﺿﻔﺎء اﻟﻄﺎﺑﻊ اﳌﺆﺳﴘ ﻋﲆ ﻋﻤﻠﻴﺔ ﺟﻤﻊ اﻟﺒﻴﺎﻧﺎت وﺗﺒﺎدﻟﻬﺎ أﺑﻮﻇﺒﻲ ودوﻟﺔ اﻹﻣﺎرات اﻟﻌﺮﺑﻴﺔ اﳌﺘﺤﺪة واﻟﺨﻠﻴﺞ اﻟﻌﺮيب.
    [Show full text]
  • Alexis Museum Loan NM
    STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305-5020 DEPARTMENT OF BIOLOGY PH. 650.725.2655 371 Serrra Mall FAX 650.723.0589 http://www.stanford.edu/group/hadlylab/ [email protected] 4/26/13 Joseph A. Cook Division of Mammals The Museum of Southwestern Biology at the University of New Mexico Dear Joe: I am writing on behalf of my graduate student, Alexis Mychajliw and her collaborator, Nat Clarke, to request the sampling of museum specimens (tissue, skins, skeletons) for DNA extraction for use in our study on the evolution of venom genes within Eulipotyphlan mammals. Please find included in this request the catalogue numbers of the desired specimens, as well as a summary of the project in which they will be used. We have prioritized the use of frozen or ethanol preserved tissues to avoid the destruction of museum skins, and seek tissue samples from other museums if only skins are available for a species at MSB. The Hadly lab has extensive experience in the non-destructive sampling of specimens for genetic analyses. Thank you for your consideration and assistance with our research. Please contact Alexis ([email protected]) with any questions or concerns regarding our project or sampling protocols, or for any additional information necessary for your decision and the processing of this request. Alexis is a first-year student in my laboratory at Stanford and her project outline is attached. As we are located at Stanford University, we are unable to personally pick up loan materials from the MSB. We request that you ship materials to us in ethanol or buffer.
    [Show full text]
  • IUCN Red List Mediteranean Mammals.Indd
    THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod AN E AN R R E IT MED The IUCN Red List of Threatened Species™ – Regional Assessment IUCN Red list mediteranean mammals.indd 1 14/9/09 10:06:40 IUCN Red list mediteranean mammals.indd 2 17/8/09 10:50:42 THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod The IUCN Red List of Threatened Species™ – Regional Assessment IUCN Red list mediteranean mammals.indd 1 17/8/09 10:50:42 The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organizations, concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland and Cambridge, UK Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Red List logo: © 2008 Citation: Temple, H.J. and Cuttelod, A. (Compilers). 2009. The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge, UK : IUCN. vii+32pp.
    [Show full text]
  • 2014 Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons
    American Society of Mammalogists Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons 94th Annual Meeting Renaissance Convention Center Hotel Oklahoma City, Oklahoma 6-10 June 2014 1 Table of Contents I. Secretary-Treasurers Report ....................................................................................................... 3 II. ASM Board of Trustees ............................................................................................................ 10 III. Standing Committees .............................................................................................................. 12 Animal Care and Use Committee .......................................................................... 12 Archives Committee ............................................................................................... 14 Checklist Committee .............................................................................................. 15 Conservation Committee ....................................................................................... 17 Conservation Awards Committee .......................................................................... 18 Coordination Committee ....................................................................................... 19 Development Committee ........................................................................................ 20 Education and Graduate Students Committee ....................................................... 22 Grants-in-Aid Committee
    [Show full text]
  • Predicting Wildlife Hosts of Betacoronaviruses for SARS-Cov-2 Sampling Prioritization 2 3 Daniel J
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.111344; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Predicting wildlife hosts of betacoronaviruses for SARS-CoV-2 sampling prioritization 2 3 Daniel J. Becker1,♰, Gregory F. Albery2,♰, Anna R. Sjodin3, Timothée Poisot4, Tad A. Dallas5, Evan 4 A. Eskew6,7, Maxwell J. Farrell8, Sarah Guth9, Barbara A. Han10, Nancy B. Simmons11, Michiel 5 Stock12, Emma C. Teeling13, and Colin J. Carlson14,15,* 6 7 8 9 ♰ These authors share lead author status 10 * Corresponding author: [email protected] 11 12 1. Department of Biology, Indiana University, Bloomington, IN, U.S.A. 13 2. Department of Biology, Georgetown University, Washington, D.C., U.S.A. 14 3. Department of Biological Sciences, University of Idaho, Moscow, ID, U.S.A. 15 4. Université de Montréal, Département de Sciences Biologiques, Montréal, QC, Canada. 16 5. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, U.S.A. 17 6. Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 18 NJ, U.S.A. 19 7. Department of Biology, Pacific Lutheran University, Tacoma, WA, U.S.A. 20 8. Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada. 21 9. Department of Integrative Biology, University of California Berkeley, Berkeley, CA, U.S.A. 22 10. Cary Institute of Ecosystem Studies, Millbrook, NY, U.S.A.
    [Show full text]