Sensitivity of the Weddell Sea Sector Ice Streams to Sub-Shelf Melting and Surface Accumulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dustin M. Schroeder
Dustin M. Schroeder Assistant Professor of Geophysics Department of Geophysics, School of Earth, Energy, and Environmental Sciences 397 Panama Mall, Mitchell Building 361, Stanford University, Stanford, CA 94305 [email protected], 440.567.8343 EDUCATION 2014 Jackson School of Geosciences, University of Texas, Austin, TX Doctor of Philosophy (Ph.D.) in Geophysics 2007 Bucknell University, Lewisburg, PA Bachelor of Science in Electrical Engineering (B.S.E.E.), departmental honors, magna cum laude Bachelor of Arts (B.A.) in Physics, magna cum laude, minors in Mathematics and Philosophy PROFESSIONAL EXPERIENCE 2016 – present Assistant Professor of Geophysics, Stanford University 2017 – present Assistant Professor (by courtesy) of Electrical Engineering, Stanford University 2020 – present Center Fellow (by courtesy), Stanford Woods Institute for the Environment 2020 – present Faculty Affiliate, Stanford Institute for Human-Centered Artificial Intelligence 2021 – present Senior Member, Kavli Institute for Particle Astrophysics and Cosmology 2016 – 2020 Faculty Affiliate, Stanford Woods Institute for the Environment 2014 – 2016 Radar Systems Engineer, Jet Propulsion Laboratory, California Institute of Technology 2012 Graduate Researcher, Applied Physics Laboratory, Johns Hopkins University 2008 – 2014 Graduate Researcher, University of Texas Institute for Geophysics 2007 – 2008 Platform Hardware Engineer, Freescale Semiconductor SELECTED AWARDS 2021 Symposium Prize Paper Award, IEEE Geoscience and Remote Sensing Society 2020 Excellence in Teaching Award, Stanford School of Earth, Energy, and Environmental Sciences 2019 Senior Member, Institute of Electrical and Electronics Engineers 2018 CAREER Award, National Science Foundation 2018 LInC Fellow, Woods Institute, Stanford University 2016 Frederick E. Terman Fellow, Stanford University 2015 JPL Team Award, Europa Mission Instrument Proposal 2014 Best Graduate Student Paper, Jackson School of Geosciences 2014 National Science Olympiad Heart of Gold Award for Service to Science Education 2013 Best Ph.D. -
Englacial Architecture and Age‐Depth Constraints Across 10.1029/2019GL086663 the West Antarctic Ice Sheet Key Points: David W
RESEARCH LETTER Englacial Architecture and Age‐Depth Constraints Across 10.1029/2019GL086663 the West Antarctic Ice Sheet Key Points: David W. Ashmore1 , Robert G. Bingham2 , Neil Ross3 , Martin J. Siegert4 , • We measure and date individual 5 1 isochronal radar internal reflection Tom A. Jordan , and Douglas W. F. Mair horizons across the Weddell Sea 1 2 sector of the West Antarctic Ice School of Environmental Sciences, University of Liverpool, Liverpool, UK, School of GeoSciences, University of Sheet Edinburgh, Edinburgh, UK, 3School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, • – – Horizons dated to 1.9 3.2, 3.5 6.0, UK, 4Grantham Institute and Department of Earth Science and Engineering, Imperial College London, London, UK, and 4.6–8.1 ka are widespread and 5British Antarctic Survey, Cambridge, UK linked to previous radar surveys of the Ross and Amundsen Sea sectors • These form the basis for a wider database of ice sheet architecture for Abstract The englacial stratigraphic architecture of internal reflection horizons (IRHs) as imaged by validating and calibrating ice sheet ice‐penetrating radar (IPR) across ice sheets reflects the cumulative effects of surface mass balance, basal models of West Antarctica melt, and ice flow. IRHs, considered isochrones, have typically been traced in interior, slow‐flowing regions. Here, we identify three distinctive IRHs spanning the Institute and Möller catchments that cover 50% of Supporting Information: • Supporting Information S1 West Antarctica's Weddell Sea Sector and are characterized by a complex system of ice stream tributaries. We place age constraints on IRHs through their intersections with previous geophysical surveys tied to Byrd Ice Core and by age‐depth modeling. -
A Review of Ice-Sheet Dynamics in the Pine Island Glacier Basin, West Antarctica: Hypotheses of Instability Vs
Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 A review of ice-sheet dynamics in the Pine Island Glacier basin, West Antarctica: hypotheses of instability vs. observations of change. David G. Vaughan, Hugh F. J. Corr, Andrew M. Smith, Adrian Jenkins British Antarctic Survey, Natural Environment Research Council Charles R. Bentley, Mark D. Stenoien University of Wisconsin Stanley S. Jacobs Lamont-Doherty Earth Observatory of Columbia University Thomas B. Kellogg University of Maine Eric Rignot Jet Propulsion Laboratories, National Aeronautical and Space Administration Baerbel K. Lucchitta U.S. Geological Survey 1 Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 Abstract The Pine Island Glacier ice-drainage basin has often been cited as the part of the West Antarctic ice sheet most prone to substantial retreat on human time-scales. Here we review the literature and present new analyses showing that this ice-drainage basin is glaciologically unusual, in particular; due to high precipitation rates near the coast Pine Island Glacier basin has the second highest balance flux of any extant ice stream or glacier; tributary ice streams flow at intermediate velocities through the interior of the basin and have no clear onset regions; the tributaries coalesce to form Pine Island Glacier which has characteristics of outlet glaciers (e.g. high driving stress) and of ice streams (e.g. shear margins bordering slow-moving ice); the glacier flows across a complex grounding zone into an ice shelf coming into contact with warm Circumpolar Deep Water which fuels the highest basal melt-rates yet measured beneath an ice shelf; the ice front position may have retreated within the past few millennia but during the last few decades it appears to have shifted around a mean position. -
A New Bed Elevation Model for the Weddell Sea Sector of the West Antarctic Ice Sheet
Earth Syst. Sci. Data, 10, 711–725, 2018 https://doi.org/10.5194/essd-10-711-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet Hafeez Jeofry1,2, Neil Ross3, Hugh F. J. Corr4, Jilu Li5, Mathieu Morlighem6, Prasad Gogineni7, and Martin J. Siegert1 1Grantham Institute and Department of Earth Science and Engineering, Imperial College London, South Kensington, London, UK 2School of Marine Science and Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia 3School of Geography, Politics and Sociology, Newcastle University, Claremont Road, Newcastle Upon Tyne, UK 4British Antarctic Survey, Natural Environment Research Council, Cambridge, UK 5Center for the Remote Sensing of Ice Sheets, University of Kansas, Lawrence, Kansas, USA 6Department of Earth System Science, University of California, Irvine, Irvine, California, USA 7Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, USA Correspondence: Hafeez Jeofry ([email protected]) and Martin J. Siegert ([email protected]) Received: 11 August 2017 – Discussion started: 26 October 2017 Revised: 26 October 2017 – Accepted: 5 February 2018 – Published: 9 April 2018 Abstract. We present a new digital elevation model (DEM) of the bed, with a 1 km gridding, of the Weddell Sea (WS) sector of the West Antarctic Ice Sheet (WAIS). The DEM has a total area of ∼ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. -
Laurentide Ice Sheet Retreat Around 8000 Years Ago Occurred Over Western Quebec (700-900 Meters/Year)
The retreat chronology of the Laurentide Ice Sheet during the last 10,000 years and implications for deglacial sea-level rise David Ullman University of Wisconsin-Madison, Department of Geoscience Author Profile Shortcut URL: https://serc.carleton.edu/59463 Location Continent: North America Country: Canada State/Province:Quebec, Labrador City/Town: UTM coordinates and datum: none Setting Climate Setting: Tectonic setting: Type: Chronology Show caption Show caption Show caption Description Much of the world's population is located along the coasts. In a world of changing climate, the rate of sea level rise will determine the ability of these communities to adapt to sea level rise. Perhaps the greatest uncertainty in sea level rise prediction has to do with amount of water melting off of Earth's major ice sheets. Recent decades have seen an accelerated loss of ice from Greenland and Antarctica. These bodies of ice may be prone to change more rapid than expected. Greenland and Antarctica contain enough frozen water, which, if melted could raise sea level by 70 m, but predictions on the rate at which this sea level rise could occur depend on scientists' understanding of the complex physics of ice flow (and on future climate scenarios). Paleoclimate researchers study past climates in hopes of developing a better understanding of our current and future climates. Similarly, understanding past ice sheets will aid in future prediction of ice sheet change. At the end of the Last Glacial Maximum, roughly 20,000 years ago, much of Earth in the northern hemisphere was covered in vast ice sheets. -
Ice-Flow Structure and Ice Dynamic Changes in the Weddell Sea Sector
Bingham RG, Rippin DM, Karlsson NB, Corr HFJ, Ferraccioli F, Jordan TA, Le Brocq AM, Rose KC, Ross N, Siegert MJ. Ice-flow structure and ice-dynamic changes in the Weddell Sea sector of West Antarctica from radar-imaged internal layering. Journal of Geophysical Research: Earth Surface 2015, 120(4), 655-670. Copyright: ©2015 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. DOI link to article: http://dx.doi.org/10.1002/2014JF003291 Date deposited: 04/06/2015 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk PUBLICATIONS Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE Ice-flow structure and ice dynamic changes 10.1002/2014JF003291 in the Weddell Sea sector of West Antarctica Key Points: from radar-imaged internal layering • RES-sounded internal layers in Institute/Möller Ice Streams show Robert G. Bingham1, David M. Rippin2, Nanna B. Karlsson3, Hugh F. J. Corr4, Fausto Ferraccioli4, fl ow changes 4 5 6 7 8 • Ice-flow reconfiguration evinced in Tom A. Jordan , Anne M. Le Brocq , Kathryn C. Rose , Neil Ross , and Martin J. Siegert Bungenstock Ice Rise to higher 1 2 tributaries School of GeoSciences, University of Edinburgh, Edinburgh, UK, Environment Department, University of York, York, UK, • Holocene dynamic reconfiguration 3Centre for Ice and Climate, Niels Bohr Institute, University -
Subglacial Lake Ellsworth CEE V2.Indd
Proposed Exploration of Subglacial Lake Ellsworth Antarctica Draft Comprehensive Environmental Evaluation February 2011 1 The cover art was created by first, second, and third grade students at The Village School, a Montessori school located in Waldwick, New Jersey. Art instructor, Bob Fontaine asked his students to create an interpretation of the work being done on The Lake Ellsworth Project and to create over 200 of their own imaginary microbes. This art project was part of The Village School’s art curriculum that links art with ongoing cultural work. 2 Contents Non Technical Summary .................................................4 Personnel ............................................................................................ 26 Chapter 1: Introduction ...................................................6 Power generation and fuel calculations ....................................... 27 Chapter 2: Description of proposed activity..................7 Vehicles ................................................................................................ 28 Background and justification ..............................................................7 Water and waste ...............................................................................28 The site ...................................................................................................8 Communications ............................................................................... 28 Chapter 3: Baseline conditions of Lake Ellsworth .........9 Transport of equipment -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 299 (2011) 363–384 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo The Mendel Formation: Evidence for Late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula Daniel Nývlt a,⁎, Jan Košler b,c, Bedřich Mlčoch b, Petr Mixa b, Lenka Lisá d, Miroslav Bubík a, Bart W.H. Hendriks e a Czech Geological Survey, Brno branch, Leitnerova 22, 658 69 Brno, Czechia b Czech Geological Survey, Klárov 3, 118 21 Praha 1, Czechia c Department of Earth Science, University of Bergen, Allegaten 41, Bergen, Norway d Institute of Geology of the Czech Academy of Sciences, v.v.i., Rozvojová 269, 165 02 Praha, Czechia e Geological Survey of Norway, Leiv Eirikssons vei 39, 7491 Trondheim, Norway article info abstract Article history: A detailed description of the newly defined Mendel Formation is presented. This Late Miocene (5.9–5.4 Ma) Received 31 May 2010 sedimentary sequence with an overall thickness of more than 80 m comprises cyclic deposition in terrestrial Received in revised form 9 November 2010 glacigenic, glaciomarine and marine environments. -
Report November 1996
International Council of Scientific Unions No13 report November 1996 Contents SCAR Group of Specialists on Global Change and theAntarctic (GLOCHANT) Report of bipolar meeting of GLOCHANT / IGBP-PAGES Task Group 2 on Palaeoenvironments from Ice Cores (PICE), 1995 1 Report of GLOCHANTTask Group 3 on Ice Sheet Mass Balance and Sea-Level (ISMASS), 1995 6 Report of GLOCHANT IV meeting, 1996 16 GLOCHANT IV Appendices 27 Published by the SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH at the Scott Polar Research Institute, Cambridge, United Kingdom INTERNATIONAL COUNCIL OF SCIENTIFIC UNIONS SCIENTIFIC COMMITfEE ON ANTARCTIC RESEARCH SCAR Report No 13, November 1996 Contents SCAR Group of Specialists on Global Change and theAntarctic (GLOCHANT) Report of bipolar meeting of GLOCHANT / IGBP-PAGES Task Group 2 on Palaeoenvironments from Ice Cores (PICE), 1995 1 Report of GLOCHANT Task Group 3 on Ice Sheet Mass Balance and Sea-Level (ISMASS), 1995 6 Report of GLOCHANT IV meeting, 1996 16 GLOCHANT IV Appendices 27 Published by the SCIENTIFIC COMMITfEE ON ANT ARCTIC RESEARCH at the Scott Polar Research Institute, Cambridge, United Kingdom SCAR Group of Specialists on Global Change and the Antarctic (GLOCHANT) Report of the 1995 bipolar meeting of the GLOCHANT I IGBP-PAGES Task Group 2 on Palaeoenvironments from Ice Cores. (PICE) Boston, Massachusetts, USA, 15-16 September; 1995 Members ofthe PICE Group present Dr. D. Raynaud (Chainnan, France), Dr. D. Peel (Secretary, U.K.}, Dr. J. White (U.S.A.}, Mr. V. Morgan (Australia), Dr. V. Lipenkov (Russia), Dr. J. Jouzel (France), Dr. H. Shoji (Japan, proxy for Prof. 0. Watanabe). Apologies: Prof. 0. -
Here Westerlies in Patagonia and South Georgia Island; Kreutz K (PI), Campbell S (Co-PI) $11,952
Seth William Campbell University of Maine Juneau Icefield Research Program Climate Change Institute The Foundation for Glacier School of Earth & Climate Sciences & Environmental Research 202 Sawyer Hall 4616 25th Avenue NE, Suite 302 Orono, Maine 04469-5790 Seattle, Washington 98105 [email protected] [email protected] 207-581-3927 www.alpinesciences.net Education 2014 Ph.D. Earth & Climate Sciences University of Maine, Orono 2010 M.S. Earth Sciences University of Maine, Orono 2008 B.S. Earth Sciences University of Maine, Orono 2005 M. Business Administration University of Maine, Orono 2001 B.A. Environmental Science, Minor: Geology University of Maine, Farmington Current Employment 2018 – Present University of Maine, Assistant Professor of Glaciology; Climate Change Institute and School of Earth & Climate Sciences 2018 – Present Juneau Icefield Research Program, Director of Academics & Research 2016 – Present ERDC-CRREL, Research Geophysicist (Intermittent Status) Prior Employment 2015 – 2018 University of Maine, Research Assistant Professor 2016 – 2018 University of Washington, Post-Doctoral Research Associate 2014 – 2016 ERDC-CRREL, Research Geophysicist 2014 – 2017 University of California, Davis, Research Associate 2011 – 2014 University of Maine, Graduate Research Assistant 2009 – 2014 ERDC-CRREL, Research Physical Scientist 2010 – 2012 University of Washington, Professional Research Staff 2008 – 2009 University of Maine, Graduate Teaching Assistant 2000 E/Pro Engineering & Environmental Consulting, Survey Technician 1999 -
Comparing Numerical Ice-Sheet Model Output with Radio-Echo Sounding Measurements in the Weddell Sea Sector of West Antarctica
Annals of Glaciology Comparing numerical ice-sheet model output with radio-echo sounding measurements in the Weddell Sea sector of West Antarctica Hafeez Jeofry1,2 , Neil Ross3 and Martin J. Siegert1 Article 1Grantham Institute and Department of Earth Science and Engineering, Imperial College London, London Cite this article: Jeofry H, Ross N, Siegert MJ SW7 2AZ, UK; 2Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu (2020). Comparing numerical ice-sheet model 21300 Terengganu, Malaysia and 3School of Geography, Politics and Sociology, Newcastle University, Newcastle output with radio-echo sounding upon Tyne NE1 7RU, UK measurements in the Weddell Sea sector of West Antarctica. Annals of Glaciology 61(81), 188–197. https://doi.org/10.1017/aog.2019.39 Abstract Received: 24 July 2019 Numerical ice-sheet models are commonly matched to surface ice velocities from InSAR mea- Revised: 31 October 2019 surements by modifying basal drag, allowing the flow and form of the ice sheet to be simulated. Accepted: 31 October 2019 Geophysical measurements of the bed are rarely used to examine if this modification is realistic, First published online: 28 November 2019 however. Here, we examine radio-echo sounding (RES) data from the Weddell Sea sector of West Key words: Antarctica to investigate how the output from a well-established ice-sheet model compares with Ice-sheet modelling; ice streams; radio-echo measurements of the basal environment. We know the Weddell Sea sector contains the Institute, sounding Möller and Foundation ice streams, each with distinct basal characteristics: Institute Ice Stream lies partly over wet unconsolidated sediments, where basal drag is very low; Möller Ice Stream lies Author for correspondence: Martin J. -
A Deep Subglacial Embayment Adjacent to the Grounding Line of Institute Ice Stream, West Antarctica
Jeofry H, Ross N, Corr HFJ, Li J, Gogineni P, Siegert MJ. A deep subglacial embayment adjacent to the grounding line of Institute Ice Stream, West Antarctica. Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes. Geological Society, London, Special Publications 2017, 461 Copyright: This article is published under the terms of the CC-BY 3.0 license DOI link to article: http://doi.org/10.1144/SP461.11 Date deposited: 10/01/2018 This work is licensed under a Creative Commons Attribution 3.0 Unported License Newcastle University ePrints - eprint.ncl.ac.uk Downloaded from http://sp.lyellcollection.org/ by guest on January 10, 2018 A deep subglacial embayment adjacent to the grounding line of Institute Ice Stream, West Antarctica HAFEEZ JEOFRY1,2*, NEIL ROSS3, HUGH F. J. CORR4, JILU LI5, PRASAD GOGINENI6 & MARTIN J. SIEGERT1 1Grantham Institute and Department of Earth Science and Engineering, Imperial College London, South Kensington, London, UK 2School of Marine Science and Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia 3School of Geography, Politics and Sociology, Newcastle University, Claremont Road, Newcastle Upon Tyne, UK 4British Antarctic Survey, Natural Environment Research Council, Cambridge, UK 5Center for the Remote Sensing of Ice Sheets, University of Kansas, Lawrence, Kansas, USA 6Electrical and Computer Engineering, University of Alabama, Tuscaloosa, Alabama, USA *Correspondence: [email protected] Abstract: The Institute Ice Stream (IIS) in West Antarctica may be increasingly vulnerable to melt- ing at the grounding line through modifications in ocean circulation. Understanding such change requires knowledge of grounding-line boundary conditions, including the topography on which it rests.