PUBLICATIONS Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE Ice-flow structure and ice dynamic changes 10.1002/2014JF003291 in the Weddell Sea sector of West Antarctica Key Points: from radar-imaged internal layering • RES-sounded internal layers in Institute/Möller Ice Streams show Robert G. Bingham1, David M. Rippin2, Nanna B. Karlsson3, Hugh F. J. Corr4, Fausto Ferraccioli4, fl ow changes 4 5 6 7 8 • Ice-flow reconfiguration evinced in Tom A. Jordan , Anne M. Le Brocq , Kathryn C. Rose , Neil Ross , and Martin J. Siegert Bungenstock Ice Rise to higher 1 2 tributaries School of GeoSciences, University of Edinburgh, Edinburgh, UK, Environment Department, University of York, York, UK, • Holocene dynamic reconfiguration 3Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 4British Antarctic occurred in much of IIS/MIS as ice Survey, Natural Environment Research Council, Cambridge, UK, 5Geography, College of Life and Environmental Sciences, thinned University of Exeter, Exeter, UK, 6Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK, 7School of Geography, Politics and Sociology, Newcastle University, Newcastle, UK, 8Grantham Institute and Department of Supporting Information: Earth Science and Engineering, Imperial College London, London, UK • Sections S1–S4 and Figure S1 Correspondence to: Abstract Recent studies have aroused concerns over the potential for ice draining the Weddell Sea R. G. Bingham, sector of West Antarctica to figure more prominently in sea level contributions should buttressing from
[email protected] the Filchner-Ronne Ice Shelf diminish. To improve understanding of how ice stream dynamics there evolved through the Holocene, we interrogate radio echo sounding (RES) data from across the catchments of Citation: Institute and Möller Ice Streams (IIS and MIS), focusing especially on the use of internal layering to Bingham, R.