Mass–Length Allometry Covaries with Ecosystem Productivity at a Global Scale
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Millipedes Along the Northern Western Ghats
Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1. -
Production and Efficiency of Organic Compost Generated by Millipede Activity
Ciência Rural, Santa Maria, v.46,Production n.5, p.815-819, and efficiency mai, 2016 of organic compost generated by http://dx.doi.org/10.1590/0103-8478cr20150714millipede activity. 815 ISSN 1678-4596 SOIL SCIENCE Production and efficiency of organic compost generated by millipede activity Produção e eficiência de composto orgânico gerado pela atividade de gongolos Luiz Fernando de Sousa AntunesI Rafael Nogueira ScorizaI* Dione Galvão da SilvaII Maria Elizabeth Fernandes CorreiaII ABSTRACT características físicas e químicas; (3) sua eficiência, quando utilizado para a produção de mudas de alface. O primeiro The putrefactive activity of organisms such as experimento durou 90 dias, utilizando 6,5 litros de gliricídea, 6,5 diplopods in the edaphic macrof auna can be leveraged to promote litros de flemingea, 13,5 litros de aparas de grama, 4,5 litros de the transformation of agricultural and urban waste into a low- papelão, 4,5 litros de casca de coco e 4,5 litros de sabugo de cost substrate for the production of vegetable seedlings. This milho. Os volumes de gongolos utilizados como tratamento foram research aimed to evaluate: (1) the quantity of Gervais millipedes 0, 0,10, 0,30, 0,50 e 0,90 litros. Após 23 dias, foram avaliados (Trigoniulus corallinus) needed to produce an acceptable os pesos da massa fresca e seca da parte aérea e das raízes e quantity of organic compost; (2) the main physical and chemical altura. O volume de 0,1 litros de gongolos mostrou-se suficiente characteristics of different compost types; and (3) compost para a produção de um volume aceitável de composto orgânico. -
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results .............................................................................................................. -
University of Copenhagen
Myriapods (Myriapoda). Chapter 7.2 Stoev, Pavel; Zapparoli, Marzio; Golovatch, Sergei; Enghoff, Henrik; Akkari, Nasrine; Barber, Anthony Published in: BioRisk DOI: 10.3897/biorisk.4.51 Publication date: 2010 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Stoev, P., Zapparoli, M., Golovatch, S., Enghoff, H., Akkari, N., & Barber, A. (2010). Myriapods (Myriapoda). Chapter 7.2. BioRisk, 4(1), 97-130. https://doi.org/10.3897/biorisk.4.51 Download date: 07. apr.. 2020 A peer-reviewed open-access journal BioRisk 4(1): 97–130 (2010) Myriapods (Myriapoda). Chapter 7.2 97 doi: 10.3897/biorisk.4.51 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Myriapods (Myriapoda) Chapter 7.2 Pavel Stoev1, Marzio Zapparoli2, Sergei Golovatch3, Henrik Enghoff 4, Nesrine Akkari5, Anthony Barber6 1 National Museum of Natural History, Tsar Osvoboditel Blvd. 1, 1000 Sofi a, Bulgaria 2 Università degli Studi della Tuscia, Dipartimento di Protezione delle Piante, via S. Camillo de Lellis s.n.c., I-01100 Viterbo, Italy 3 Institute for Problems of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospekt 33, Moscow 119071 Russia 4 Natural History Museum of Denmark (Zoological Museum), University of Copen- hagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark 5 Research Unit of Biodiversity and Biology of Populations, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, 9 Avenue Dr. Zouheir Essafi , La Rabta, 1007 Tunis, Tunisia 6 Rathgar, Exeter Road, Ivybridge, Devon, PL21 0BD, UK Corresponding author: Pavel Stoev ([email protected]) Academic editor: Alain Roques | Received 19 January 2010 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Stoev P et al. -
A. R. Pérez-Asso1 and D. E. Pérez-Gelabert2
Bol. S.E.A., nº 28 (2001) : 67—80. CHECKLIST OF THE MILLIPEDS (DIPLOPODA) OF HISPANIOLA A. R. Pérez-Asso 1 and D. E. Pérez-Gelabert 2 1 Investigador Asociado, División de Entomología, Museo Nacional de Historia Natural, Plaza de la Cultura, Santo Domingo, República Dominicana. 2 5714 Research Associate, Department of Entomology, National Museum of Natural History, Washington, D.C. 20560. USA. Abstract: The present catalogue lists all 162 species of diplopods, living or fossil, so far known from Hispaniola. Treatment of higher taxonomic categories follows Hoffman's (1980) proposals. For each species considered there is information on synonymy, holotype and paratype localization, collector, date, country (Haiti or Dominican Republic) and geographic distribution. Included are some annotations and species with uncertain taxonomic status are indicated. All bibliographic references on the taxonomy of the island's diplopods are included. Keywords: Millipeds, Diplopoda, fauna, Hispaniola, Dominican Republic, Haiti. Checklist de los milípedos (Diplopoda) de Hispaniola Resumen: El presente catálogo lista las 162 especies de diplópodos, vivientes o fósiles, hasta ahora conocidos de la Hispaniola. El tratamiento de las categorías taxonómicas superiores sigue las propuestas por Hoffman (1980). Para cada especie tratada se incluye información sobre sinonimia, localización del holotipo y paratipos, colector, fecha, país (Haití o República Dominicana) y distribución geográfica. Se incluyen notas aclaratorias y se indican aquellas especies cuya situación taxonómica es incierta. Se presentan todas las referencias bibliograficas que tratan la taxonomía de los diplópodos de la isla. Introduction The first important contribution to the knowledge of Hispaniola's its complex geological history. The uniqueness of millipeds in diplopods was made by Ralph V. -
Check List 9(2): 323–328, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
Check List 9(2): 323–328, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution The current status of knowledge on Lycidae Laporte, PECIES S OF ISTS L 1836 from Brazil (Insecta: Coleoptera) Elynton Alves do Nascimento [email protected]. Universidade Estadual do Centro-Oeste, Departamento de Engenharia Ambiental. PR 153, Km 7, Riozinho,. CEP 84500-000. Irati, PR, Brazil. E-mail: Abstract: Lycids are often very aposematic toxic beetles, and are considered models in mimicry systems. They are cosmopolitan, with the highest diversity around tropical regions, however the knowledge of the South American lycids is yet relatively poor. Here I present an overview of the Brazilian lycids including a complete list of species and updated occurrence data. Introduction Brazil (Kleine 1933; Blackwelder 1945; Costa et al. 1988; The lycids are soft-bodied beetles, often aposematically Costa 2000). colored, presenting high levels of toxins, largely known Although the majority of Brazilian lycid species was to act as center models in mimetic rings (Marshall and described by foreign taxonomists up to 1949 (Table 1), Poulton 1902; Shelford 1902; Guenther 1931; Darlington there is a recent interest emerging in national researchers 1938; Linsley et al. 1961; Moore and Brown 1981). to study little known elateroids in the country. Former researchers usually received specimens from Brazil and other South American countries and often the collection otherThe family soft-bodied Lycidae families is a member like Cantharidae, of Elateriformia Lampyridae, series, site was not precise, or even non-existent, labeled only as Phengodidae,placed in the Telegeusidae,Elateroidea superfamily,as well as together hard-bodied with “Brazil”, “Brasilia” or “South America”. -
Redalyc.Production and Efficiency of Organic Compost Generated By
Ciência Rural ISSN: 0103-8478 [email protected] Universidade Federal de Santa Maria Brasil de Sousa Antunes, Luiz Fernando; Nogueira Scoriza, Rafael; Galvão da Silva, Dione; Fernandes Correia, Maria Elizabeth Production and efficiency of organic compost generated by millipede activity Ciência Rural, vol. 46, núm. 5, mayo, 2016, pp. 815-819 Universidade Federal de Santa Maria Santa Maria, Brasil Available in: http://www.redalyc.org/articulo.oa?id=33144653009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência Rural, Santa Maria, v.46,Production n.5, p.815-819, and efficiency mai, 2016 of organic compost generated by http://dx.doi.org/10.1590/0103-8478cr20150714millipede activity. 815 ISSN 1678-4596 SOIL SCIENCE Production and efficiency of organic compost generated by millipede activity Produção e eficiência de composto orgânico gerado pela atividade de gongolos Luiz Fernando de Sousa AntunesI Rafael Nogueira ScorizaI* Dione Galvão da SilvaII Maria Elizabeth Fernandes CorreiaII ABSTRACT características físicas e químicas; (3) sua eficiência, quando utilizado para a produção de mudas de alface. O primeiro The putrefactive activity of organisms such as experimento durou 90 dias, utilizando 6,5 litros de gliricídea, 6,5 diplopods in the edaphic macrof auna can be leveraged to promote litros de flemingea, 13,5 litros de aparas de grama, 4,5 litros de the transformation of agricultural and urban waste into a low- papelão, 4,5 litros de casca de coco e 4,5 litros de sabugo de cost substrate for the production of vegetable seedlings. -
Millipede Genomes Reveal Unique Adaptation of Genes and Micrornas During Myriapod Evolution
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.900019; this version posted January 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Millipede genomes reveal unique adaptation of genes and microRNAs during myriapod 2 evolution 3 4 Zhe Qu1,^, Wenyan Nong1,^, Wai Lok So1,^, Tom Barton-Owen1,^, Yiqian Li1,^, Chade Li1, 5 Thomas C.N. Leung2, Tobias Baril3, Annette Y.P. Wong1, Thomas Swale4, Ting-Fung Chan2, 6 Alexander Hayward3, Sai-Ming Ngai2, Jerome H.L. Hui1,* 7 8 1. School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory 9 of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 10 11 2. School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese 12 University of Hong Kong, Hong Kong 13 14 3. Department of Conservation and Ecology, Penryn Campus, University of Exeter, United 15 Kingdom 16 17 4. Dovetail Genomics, United States of America 18 19 20 ^ = contributed equally, 21 * = corresponding author, [email protected] 22 23 24 25 26 27 28 29 30 31 32 33 34 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.900019; this version posted January 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Biodiversity, Abundance and Prevalence of Kleptoparasitic Nematodes Living Inside the Gastrointestinal Tract of North American Diplopods
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods Gary Phillips University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Phillips, Gary, "Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4837 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Gary Phillips entitled "Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Entomology, -
Diplopoda: Spirobolida: Spirobolidea): Proposals of Aztecolini N
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2014 Expanded concept of the milliped family Spirobolidae (Diplopoda: Spirobolida: Spirobolidea): Proposals of Aztecolini n. tribe and Floridobolinae/ini and Tylobolini n. stats.; re)descriptions of Floridobolus and F. penneri, both Causey, 1957, and F. orini n. sp.; hypotheses on origins and affinities Rowland M. Shelley North Carolina State Museum of Natural Sciences, [email protected] Samuel D. Floyd Xeric Bayou Invertebrates, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Shelley, Rowland M. and Floyd, Samuel D., "Expanded concept of the milliped family Spirobolidae (Diplopoda: Spirobolida: Spirobolidea): Proposals of Aztecolini n. tribe and Floridobolinae/ini and Tylobolini n. stats.; re)descriptions of Floridobolus and F. penneri, both Causey, 1957, and F. orini n. sp.; hypotheses on origins and affinities" (2014). Insecta Mundi. 869. http://digitalcommons.unl.edu/insectamundi/869 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0357 Expanded concept of the milliped family Spirobolidae (Diplopoda: Spirobolida: Spirobolidea): Proposals of Aztecolini n. tribe and Floridobolinae/ini and Tylobolini n. stats.; (re)descriptions of Floridobolus and F. penneri, both Causey, 1957, and F. orini n. sp.; hypotheses on origins and affi nities Rowland M. Shelley Research Laboratory North Carolina State Museum of Natural Sciences MSC #1626 Raleigh, NC 27699-1626 U.S.A. -
Arthropod Pests of Conservation Significance in the Pacific: a Preliminary Assessment of Selected Groups
Nishida and Evenhuis: Arthropod pests of conservation significance Arthropod pests of conservation significance in the Pacific: A preliminary assessment of selected groups Gordon M. Nishida and Neal L. Evenhuis Pacific Biological Survey, Bishop Museum, 1525 Bernice St, Honolulu, Hawaii 96817-2704, USA Abstract oceanic havens have become easy targets for inva- sive pest organisms in the last half of this century. Arthropod species are by far the most numerous in- Arthropods are by far the largest group (in numbers) vasive organisms on islands, but those of conserva- of organisms that invade islands each year, e.g. an tion significance in the Pacific, except for Hawaii estimated 20 per year in Hawaii—of which four are and the Galapagos, are not well documented. Ants considered pests (Beardsley 1979). Therefore, a re- may pose the greatest arthropod threat to conserva- tion in the Pacific, by predation, direct competition, view of existing knowledge of arthropod pests in the and creating favourable conditions for other invasive Pacific is a necessary preliminary to larger, more com- biota. Information is given on some of the potentially prehensive surveys and detailed reviews of the fauna. most damaging: bigheaded ant Pheidole This study only scratches the surface of the amount megacephala, long-legged or crazy ant Anoplolepis of research that will be necessary to provide adequate longipes, Argentine ant Linepithema humile, little fire knowledge to deal with the alien arthropod pests that ant Wasmannia auropunctata, and others. Vespid threaten native ecosystems throughout the Pacific. wasps pose another critical threat; an outline is given Arthropods of conservation significance in the Pa- of the yellowjacket wasp Vespula pensylvanica, re- cific, except for Hawaii and the Galapagos, are not corded only from Hawaii in the Pacific, but with se- well documented. -
Diversity, Evolution, and Function of Myriapod Hemocyanins Samantha Scherbaum1, Nadja Hellmann2, Rosa Fernández3,4, Christian Pick1 and Thorsten Burmester1*
Scherbaum et al. BMC Evolutionary Biology (2018) 18:107 https://doi.org/10.1186/s12862-018-1221-2 RESEARCHARTICLE Open Access Diversity, evolution, and function of myriapod hemocyanins Samantha Scherbaum1, Nadja Hellmann2, Rosa Fernández3,4, Christian Pick1 and Thorsten Burmester1* Abstract Background: Hemocyanin transports O2 in the hemolymph of many arthropod species. Such respiratory proteins have long been considered unnecessary in Myriapoda. As a result, the presence of hemocyanin in Myriapoda has long been overlooked. We analyzed transcriptome and genome sequences from all major myriapod taxa – Chilopoda, Diplopoda, Symphyla, and Pauropoda – with the aim of identifying hemocyanin-like proteins. Results: We investigated the genomes and transcriptomes of 56 myriapod species and identified 46 novel full-length hemocyanin subunit sequences in 20 species of Chilopoda, Diplopoda, and Symphyla, but not Pauropoda. We found in Cleidogona sp. (Diplopoda, Chordeumatida) a hemocyanin-like sequence with mutated copper-binding centers, which cannot bind O2. An RNA-seq approach showed markedly different hemocyanin mRNA levels from ~ 6 to 25,000 reads per kilobase per million reads. To evaluate the contribution of hemocyanin to O2 transport, we specifically studied the hemocyanin of the centipede Scolopendra dehaani. This species harbors two distinct hemocyanin subunits with low expression levels. We showed cooperative O2 binding in the S. dehaani hemolymph, indicating that hemocyanin supports O2 transport even at low concentration. Further, we demonstrated that hemocyanin is > 1500-fold more highly expressed in the fertilized egg than in the adult. Conclusion: Hemocyanin was most likely the respiratory protein in the myriapod stem-lineage, but multiple taxa may have independently lost hemocyanin and thus the ability of efficient O2 transport.