19 91Apjs. . .76. .185E the Astrophysical Journal Supplement

Total Page:16

File Type:pdf, Size:1020Kb

19 91Apjs. . .76. .185E the Astrophysical Journal Supplement The Astrophysical Journal Supplement Series, 76:185-214, 1991 May .185E © 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A. .76. 91ApJS. THE STRUCTURE AND EVOLUTION OF RICH STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD 19 Rebecca A. W. Elson Bunting Institute, Radcliffe College; and Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1990 March 19; accepted 1990 September 14 ABSTRACT Surface brightness profiles and color-magnitude diagrams are presented for 18 rich star clusters in the Large Magellanic Cloud (LMC), with ages ~ 107-109 yr. The profiles of the older clusters are well represented by models with a King-like core. The profiles of many of the younger clusters show departures from such models in the form of bumps, sharp “shoulders,” and central dips. These features persist in profiles derived from images from which the bright stars have been subtracted; they therefore appear to reflect real substructure within the clusters. There is an upper limit to the radii of the cluster cores, and this upper limit increases with age from ^ 1 pc for the youngest clusters, to ^6 pc for the oldest ones. This trend probably reflects expansion of the cores driven by mass loss from evolving stars. Recent models of cluster evolution predict that the cores should expand at a rate that depends on the slope of the initial mass function ( IMF). In the context of these models, the data favor an IMF for most of the clusters with a slope slightly flatter than the Salpeter value (for the range of stellar masses 0.4-14M©), but with significant cluster-to-cluster variations. If the clusters have undergone violent relaxation, then the small cores of the youngest ones may imply formation from relatively “cool” initial conditions, while the sharp shoulders favor “warmer” conditions. An alternative interpretation of the shoulders is that they are signa- tures of merging subcondensations. It seems likely that the high ellipticity observed in many of the young LMC clusters is due, at least in part, to the presence of these subcondensations. Such substructure will be erased as the clusters evolve, and this might account for the general rounder appearance of the older clusters. Finally, since the younger clusters are not relaxed through two-body encounters, their current structure should provide a good guide for selecting initial conditions for theoretical models of globular cluster evolution. Subject headings: clusters: open — galaxies: Magellanic Clouds — photometry — stars: stellar statistics 1. INTRODUCTION project, which complements that of EFF, was to investigate Gravitational collapse in the cores of globular clusters, a whether a relation between core radius and age was evident in a phenomenon expected to occur during the later stages of clus- larger sample of clusters with more accurate measurements of ter evolution, has provoked considerable interest over the past core radii. A synopsis of the results was given by Elson, Free- decade (see Elson, Hut, & Inagaki 1987 for a review). Several man, & Lauer ( 1989 ) : the trend of increasing core radius with surveys of globular clusters in the Galaxy, and of the older age did indeed persist. Furthermore, recent models of cluster clusters in the Magellanic Clouds, have been undertaken to evolution by Chemoff & Weinberg ( 1990) predict just such determine the proportion and properties of clusters with “col- core expansion due to mass loss from stellar evolution. lapsed” cores (Djorgovski & King 1986; Mateo 1987; Meylan This paper presents the full set of data on which the results of & Djorgovski 1987). Relatively little has been done to explore Elson et al. are based, including color-magnitude diagrams and the processes through which a core is initially established in a surface brightness profiles for the 18 clusters in their sample. cluster, and the evolution of that core prior to collapse. Such The observations are described in § 2, and the results are dis- studies could contribute to our understanding of the evolution cussed in § 3, and summarized in § 4. of A-body systems, the formation of globular clusters, and per- haps the conditions prevailing in the halos of galaxies at the 2. OBSERVATIONS epoch when globular clusters formed. CCD images of 18 of the richest clusters in the LMC with Elson, Fall, & Freeman ( 1987, hereafter EFF) determined ages ~107-109 yr, were obtained to provide a sequence of surface brightness profiles for ten rich young clusters in the “snapshots,” to investigate the evolution of the inner parts of Large Magellanic Cloud (LMC) using star counts from photo- these globular-like clusters. (The estimated masses of the clus- 4 5 graphic plates. They found that the outer parts of the clusters ters are ^10 -10 Mo;EFF).The clusters are listed in Table 1. showed little or no tidal truncation and had surface brightness Images in the B and V passbands were obtained on 1988 Jan- p(r) which varied as /¿(r) oc r~T, with 7 æ 2.6. The youngest uary 12-14, using the 1 m telescope at Siding Spring Observa- clusters in their sample had the smallest cores while the older tory, and the MSSSO coated GEC chip No. 2; the Limages are clusters had larger ones. There were too few clusters, and the shown in Figures l<2-ls (Pis. 26-35). At F/8 the image scale core radii were too crude, to determine whether this repre- was 0?56 pixel-1. Integration times were short to avoid satura- sented a real trend, but the possibility that clusters are born tion (200 s in F and 400 s in 2?), and limiting magnitudes were with very small cores which then go through a phase of expan- B ^ Væ 18. Seeing ranged from ~2"-5" which, while poor, sion was intriguing. The primary motivation for the present was adequate for determining cluster profiles. Preliminary re- 185 © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 26 .76. 91ApJS. 19 © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 27 .76. 91ApJS. 19 o Ûh \c Fig. Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 28 .76. 91ApJS. 19 1/ Fig. le - FlG Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 29 .76. 91ApJS. 19 Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 30 .76. 91ApJS. 19 1, . G n \h Fra. Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E .76. 91ApJS. 19 Ik Fig. Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 32 .76. 91ApJS. 19 S o £ © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 33 .76. 91ApJS. 19 \o Fig. \n Fig. Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System 91ApJS. 19 IG p \p FKj. Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E PLATE 35 .76. 91ApJS. 19 Is Fig. Elson (see 76, 185) © American Astronomical Society • Provided by the NASA Astrophysics Data System .185E 186 ELSON Vol. 76 TABLE 1 .76. Cluster Parameters NGC Number E(B- V) Age rJ,V) rJ<B) FWHM(F) FWHM(B) rÁV) (4) (10) 91ApJS. (1) (2) (3) (5) (6) (7) (8) (9) 19 NGC 1711 0.16 7.4 16.5 6.7 ± 0.5 7.4 ± 0.5 2.2 3.1 5.7 6.2 NGC 1755 0.12 7.5 17.0 7.1 ±0.6 7.2 ± 0.5 3.2 3.5 5.8 5.9 NGC 1818 0.10 7.3 16.5 9.4 ± 1.4 9.5 ± 1.3 3.5 3.9 7.9 7.9 NGC 1831 0.10 (8.5) 18.5 15.7 ±0.9 15.1 ±0.5 3.3 3.7 14.2 13.4 NGC 1850 0.15 7.5 16.5 10.2 ± 0.7 10.4 ± 0.5 3.1 3.8 8.8 8.8 NGC 1855 0.12 7.5 16.5 10.7 ± 0.9 11.3 ±0.9 4.1 5.1 9.0 9.3 NGC 1866 0.10 (8.1) 17.0 13.6 ±0.4 14.7 ± 0.4 4.4 5.0 11.7 12.5 NGC 1868 0.07 (8.7) 19.5 6.0 ± 0.3 6.4 ± 0.3 2.0 2.3 5.1 5.3 NGC 1872 0.13 7.6 17.5 >5.6 >6.1 2.0 2.4 >4.7 >5.1 NGC 2002 0.12 7.2 16.5 3.5 ± 0.4 6.0 ± 1.5 3.9 4.2 ^3.5 <6.0 NGC 2004 0.06 7.3 16.0 5.6 ± 0.7 6.1 ±0.7 3.7 3.6 4.3 4.7 NGC 2100 0.24 7.2 16.0 8.2 ± 0.7 8.4 ± 0.6 3.9 4.5 6.7 6.7 NGC 2156 0.10 7.6 18.0 7.1 ±2.4 5.9 ± 0.5 1.8 2.1 6.4 4.9 NGC 2157 0.10 7.6 17.5 9.6 ± 1.3 9.2 ± 0.8 2.2 2.9 8.6 7.9 NGC 2159 0.10 7.6 18.0 8.1 ± 1.0 8.6 ± 1.1 2.0 2.3 7.2 7.6 NGC 2164 0.10 7.7 17.0 7.4 ± 0.4 7.9 ± 0.5 4.6 5.4 5.7 5.9 NGC 2172 0.10 7.6 18.0 10.0 ± 1.4 10.4 ± 1.4 5.3 5.7 8.0 8.3 NGC 2214 0.10 7.6 17.5 10.5 ± 0.7 10.8 ± 0.7 5.3 5.7 8.5 8.6 Notes.—Col.
Recommended publications
  • Giant H II Regions in the Merging System NGC 3256: Are They the Birthplaces of Globular Clusters?
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Paper I: To be submitted to A.J. Giant H II regions in the merging system NGC 3256: Are they the birthplaces of globular clusters? J. English University of Manitoba K.C. Freeman Research School of Astronomy and Astrophysics, The Australian National University ABSTRACT CCD images and spectra of ionized hydrogen in the merging system NGC3256 were acquired as part of a kinematic study to investigate the formation of globular clusters (GC) during the interactions and mergers of disk galaxies. This paper focuses on the proposition by Kennicutt & Chu (1988) that giant H II regions, with an Hα luminosity > 1:5 1040 erg s 1, are birthplaces of young populous clusters (YPC’s ). × − Although NGC 3256 has relatively few (7) giant H II complexes, compared to some other interacting systems, these regions are comparable in total flux to about 85 30- Doradus-like H II regions (30-Dor GHR’s). The bluest, massive YPC’s (Zepf et al. 1999) are located in the vicinity of observed 30-Dor GHR’s, contributing to the notion that some fraction of 30-Dor GHR’s do cradle massive YPC’s, as 30 Dor harbors R136. If interactions induce the formation of 30-Dor GHR’s, the observed luminosities indi- cate that almost 900 30-Dor GHR’s would form in NGC 3256 throughout its merger epoch. In order for 30-Dor GHR’s to be considered GC progenitors, this number must be consistent with the specific frequencies of globular clusters estimated for elliptical galaxies formed via mergers of spirals (Ashman & Zepf 1993).
    [Show full text]
  • Formation of Very Young Massive Clusters and Implications for Globular Clusters
    Formation of Very Young Massive Clusters and implications for globular clusters Sambaran Banerjee and Pavel Kroupa To be published in The Origin of Stellar Clusters, ed. S. Stahler (Springer) Abstract How Very Young Massive star Clusters (VYMCs; also known as “star- 4 burst” clusters), which typically are of & 10 M and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and com- putational studies provide clues about their formation scenarios and the underly- ing physical processes involved. This chapter is focused on reviewing the decade- long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modeling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by address- ing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date lit- erature, in an integrated fashion, several new insights and discussions are provided.
    [Show full text]
  • Expected Differences Between AGB Stars in the LMC and the SMC Due to Differences in Chemical Composition
    New Views of the Magellanic Clouds fA U Symposium, Vol. 190, 1999 Y.-H. Chu, N.B. Suntzef], J.E. Hesser, and D.A. Bohlender, eds. Expected Differences between AGB Stars in the LMC and the SMC Due to Differences in Chemical Composition Ju. Frantsman Astronomical Institute, Latvian University, Raina Blvd. 19, Riga, LV-1586, LATVIA Abstract. Certain aspects of the AGB population, such as the relative number of M and N stars, the mass loss rates, and the initial masses of carbon- oxygen cores, depend on the initial heavy element abundance Z. I have calculated synthetic populations of AGB stars for different initial Z values taking into consideration the evolution of single and close binary stars. I present the results of population syntheses of AGB stars in clusters as a function of different initial chemical compositions. The relation for the tip luminosity of AGB stars versus cluster age as a function of Z is presented and is used to determine the ages for a number of clusters in the LMC and the SMC, including clusters with no previous age determinations. Population simulations show that for low heavy element abundance (Z = 0.001) few M stars are formed with respect to the number of carbon stars. However, the total number of all AGB stars in clusters is not affected by the initial chemical composition. As a result of the evolution of close binary components after the mass exchange, an increase in the range of limiting values of the thermal pulsing AGB star luminosities is expected. The difference between the maximum luminosity on the AGB of single star and the luminosity of a star after a mass exchange event in a close binary system may be as great as 1 magnitude for very young clusters.
    [Show full text]
  • The State of Anthro–Earth
    The Rosette Gazette Volume 22,, IssueIssue 7 Newsletter of the Rose City Astronomers July, 2010 RCA JULY 19 GENERAL MEETING The State Of Anthro–Earth THE STATE OF ANTHRO-EARTH: A Visitor From Far, Far Away Reviews the Status of Our Planet In This Issue: A Talk (in Earth-English) By Richard Brenne 1….General Meeting Enrico Fermi famously wondered why we hadn't heard from any other planetary 2….Club Officers civilizations, and Richard Brenne, who we'd always suspected was probably from another planet, thinks he might know the answer. Carl Sagan thought it was likely …...Magazines because those on other planets blew themselves up with nuclear weapons, but Richard …...RCA Library thinks its more likely that burning fossil fuels changed the climates and collapsed the 3….Local Happenings civilizations of those we might otherwise have heard from. Only someone from another planet could discuss this most serious topic with Richard's trademark humor 4…. Telescope (in a previous life he was an award-winning screenwriter - on which planet we're not Transformation sure) and bemused detachment. 5….Special Interest Groups Richard Brenne teaches a NASA-sponsored Global Climate Change class, serves on 6….Star Party Scene the American Meteorological Society's Committee to Communicate Climate Change, has written and produced documentaries about climate change since 1992, and has 7.…Observers Corner produced and moderated 50 hours of panel discussions about climate change with 18...RCA Board Minutes many of the world's top climate change scientists. Richard writes for the blog "Climate Progress" and his forthcoming book is titled "Anthro-Earth", his new name 20...Calendars for his adopted planet.
    [Show full text]
  • On the Effects of Subvirial Initial Conditions and the Birth
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 24 October 2018 (MN LATEX style file v2.2) On the Effects of Subvirial Initial Conditions and the Birth Temperature of R136 Daniel P. Caputo1⋆, Nathan de Vries1 and Simon Portegies Zwart1 1Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands 24 October 2018 ABSTRACT We investigate the effect of different initial virial temperatures, Q, on the dynamics of star clusters. We find that the virial temperature has a strong effect on many aspects of the resulting system, including among others: the fraction of bodies escaping from the system, the depth of the collapse of the system, and the strength of the mass segregation. These differences deem the practice of using “cold” initial conditions no longer a simple choice of convenience. The choice of initial virial temperature must be carefully considered as its impact on the remainder of the simulation can be profound. We discuss the pitfalls and aim to describe the general behavior of the collapse and the resultant system as a function of the virial temperature so that a well reasoned choice of initial virial temperature can be made. We make a correction to the previous theoretical estimate for the minimum radius, Rmin, of the cluster at the deepest (−1/3) moment of collapse to include a Q dependency, Rmin ≈ Q+N , where N is the number of particles. We use our numericalresults to infer more aboutthe initial conditions of the young cluster R136. Based on our analysis, we find that R136 was likely formed with a rather cool, but not cold, initial virial temperature (Q ≈ 0.13).
    [Show full text]
  • THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
    THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 141 — 1 June 2016 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Editorial Dear Colleagues, It is my pleasure to present you the 141st issue of the Magellanic Clouds Newsletter. There is a lot of interest in massive stars, star clusters, supernova remnants and binaries, but also several exciting new results about the large-scale structure of the Magellanic Clouds System. The next issue is planned to be distributed on the 1st of August 2016. Editorially Yours, Jacco van Loon 1 Refereed Journal Papers Non-radial pulsation in first overtone Cepheids of the Small Magellanic Cloud R. Smolec1 and M. Sniegowska´ 2 1Nicolaus Copernicus Astronomical Center, Warsaw, Poland 2Warsaw University Observatory, Warsaw, Poland We analyse photometry for 138 first overtone Cepheids from the Small Magellanic Cloud, in which Optical Gravitational Lensing Experiment team discovered additional variability with period shorter than first overtone period, and period ratios in the (0.60,0.65) range. In the Petersen diagram, these stars form three well-separated sequences. The additional variability cannot correspond to other radial mode. This form of pulsation is still puzzling. We find that amplitude of the additional variability is small, typically 2–4 per cent of the first overtone amplitude, which corresponds to 2–5 mmag. In some stars, we find simultaneously two close periodicities corresponding to two sequences in the Petersen diagram. The most important finding is the detection of power excess at half the frequency of the additional variability (at subharmonic) in 35 per cent of the analysed stars.
    [Show full text]
  • Assessment of Stellar Stratification in Three Young Star Clusters in The
    ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 11/10/09 ASSESSMENT OF STELLAR STRATIFICATION IN THREE YOUNG STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD. DIMITRIOS A. GOULIERMIS Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany DOUGAL MACKEY Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK YU XIN Argelander-Institut für Astronomie, Rheinische Friedrich-Wilhelms-Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany AND BOYKE ROCHAU Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany Accepted for Publication in the Astrophysical Journal ABSTRACT We present a comprehensive study of stellar stratification in young star clusters in the LargeMagellanicCloud (LMC). We apply our recently developed effective radius method for the assessment of stellar stratification on imaging data obtained with the Advanced Camera for Surveys of three young LMC clusters to characterize the phenomenon and develop a comparative scheme for its assessment in such clusters. The clusters of our sample, NGC 1983, NGC 2002 and NGC 2010, are selected on the basis of their youthfulness, and their variety in appearance, structure, stellar content, and surrounding stellar ambient. Our photometry is complete for magnitudes down to m814 ≃ 23 mag, allowing the calculation of the structural parameters of the clusters, the estimation of their ages and the determination of their stellar content. Our study shows that each cluster in our sample demonstrates stellar stratification in a quite different manner and at different degree from the others. Specifically, NGC 1983 shows to be partially segregated with the effective radius increasing with fainter magnitudes only for the faintest stars of the cluster.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. I
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Draft version September 9, 1999 Preprint typeset using LATEX style emulateapj v. 04/03/99 ULTRAVIOLET IMAGING POLARIMETRY OF THE LARGE MAGELLANIC CLOUD. I. OBSERVATIONS Andrew A. Cole,1;4 Kenneth H. Nordsieck,1;2 Steven J. Gibson,3 & Walter M. Harris2 Draft version September 9, 1999 ABSTRACT We have used the rocket-borne Wide-Field Imaging Survey Polarimeter (WISP) to image a 1◦:5 4◦:8 × area of the western side of the Large Magellanic Cloud (LMC) at a wavelength of λ = 2150 Aanda˚ resolution of 10 1:05. These are the first wide-field ultraviolet polarimetric images in astronomy. We find the UV background× light of the LMC to be linearly polarized at levels ranging from our sensitivity limit of 4% to as high as 40%. In general, the polarization in a pixel increases as the flux decreases; the weighted mean value of≈ polarization across the WISP field is 12.6% 2.3%. The LMC’s diffuse UV ± 8 1 2 1 1 background, in uncrowded areas, rises from a minimum of 5.6 3.1 10− erg s− cm− A˚− Sr− 2 8 1 2 ±1 ×1 2 (23.6 0.5 mag arcsec− )to9.3 1.1 10− erg s− cm− A˚− Sr− (23.1 0.2 mag arcsec− )in regions± near the bright associations.± We× use our polarization maps to investigate± the geometry of the interstellar medium in the LMC, and to search for evidence of a significant contribution of scattered light from OB associations to the diffuse galactic light of the LMC.
    [Show full text]
  • Braking Stars in the Young Magellanic Cloud Massive Clusters
    Mem. S.A.It. Vol. 89, 42 c SAIt 2018 Memorie della Braking stars in the Young Magellanic Cloud Massive Clusters F. D’Antona1, A. Milone2, M. Tailo3, P. Ventura1, E. Vesperini4, and M. Di Criscienzo1 1 Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Roma, Via Frascati, I-00040 Monte Porzio Catone, Italy, e-mail: [email protected] 2 Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita` di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy 3 Dipartimento di Fisica, Universita` degli Studi di Cagliari, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy 4 Department of Astronomy, Indiana University, Bloomington, IN (USA) Abstract. The presence of extended main sequence turnoff (eMSTO) regions in the Young Massive Clusters in the Magellanic Clouds was explained either as due to an “age spread”, or to “rotational spread”. Both models presented points of strength and flimsiness. The rota- tional model is becoming now favored, because if explains both the increase of the apparent age spread with the cluster age, and the presence of a split main sequence in the younger clus- ters (age <400Myr), interpreted with the presence of a scarcely rotating blue main sequence and a rapidly rotating red main sequence, this latter ending into an extended main sequence turnoff (eMSTO) region. The slowly–rotating bMS always includes stars which are apparently ∼30% “younger” than the rest. We show that, in a coeval stellar sample, this feature signals the presence of stars caught in the stage of braking from an initial rapidly rotating configu- ration; these stars are thus in a “younger” nuclear evolution stage (less hydrogen consumed in core burning) than stars directly born slowly–rotating in the same star–formation episode.
    [Show full text]
  • Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
    Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1).
    [Show full text]
  • IV. the Double Main Sequence of the Young Cluster NGC 1755
    MNRAS 458, 4368–4382 (2016) doi:10.1093/mnras/stw608 Advance Access publication 2016 March 15 Multiple stellar populations in Magellanic Cloud clusters – IV. The double main sequence of the young cluster NGC 1755 A. P. Milone,1‹ A. F. Marino,1 F. D’Antona,2 L. R. Bedin,3 G. S. Da Costa,1 H. Jerjen1 and A. D. Mackey1 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma, Italy 3Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, Padova, I-35122, Italy Accepted 2016 March 10. Received 2016 March 8; in original form 2016 January 7 ABSTRACT Nearly all the star clusters with ages of ∼1–2 Gyr in both Magellanic Clouds exhibit an extended main-sequence turn-off (eMSTO) whose origin is under debate. The main scenarios suggest that the eMSTO could be either due to multiple generations of stars with different ages or to coeval stellar populations with different rotation rates. In this paper we use Hubble Space Telescope images to investigate the ∼80-Myr old cluster NGC 1755 in the LMC. We find that the MS is split with the blue and the red MS hosting about the 25 per cent and the 75 per cent of the total number of MS stars, respectively. Moreover, the MSTO of NGC 1755 is broadened in close analogy with what is observed in the ∼300-Myr-old NGC 1856 and in most intermediate-age Magellanic-Cloud clusters.
    [Show full text]