Uhf Catalogreduced.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Uhf Catalogreduced.Pdf Ant Freq Ant Enviro Freq PIM Elec Tune Misc. Spec Sinclair Config Pattern Conn ( Mount Gain Sturct Finish ) Proto Typ Range Series - Rating Split Rating Elev Freq - - Options - Assembly Environmental Rating PIM Rating Electrical Elevation X=Prototype S=Sinclair S=Standard duty L=Enhanced PIM rating Dnn=Electrical downtilt in Miscellaneuos Options H=Heavy duty S=Standard PIM rating degrees where nn = (00 - 10) BC= Bird cap Antenna Type U=Ultra duty Unn=Electrical uptilt in Cx= Where x = (0 - 99) designating cable length C=Collinear omni degrees where nn = (00 - 10) (in feet) if other than standard. This code must not D= Exposed dipole Configuration been used for ordering jumper cables. E=Enclosed dipole 2=Dual bay. Single input cable Connector Gain CG= Coast guard G=Ground plane 4=Four bay. Single input cable BF=BNC female G3 = 3 dB HP= High-power version (special assembly: should I=In-building D=Dual array. Two separate input cables BM=BNC female G5 = 5 dB be assigned an E-number instead?) M=Mobile L=Low profile DF=7/16 DIN female G6 = 6 dB IC= Integrated ice-guard version (special assembly: P=Single polarity panel M=Marine version (gen. 156-162.5 MHz) DM=7/16 DIN male G8 = 8 dB should be assigned an E-number instead?) R=Radome-encl, yagi/l.p./etc. Q=Quad array. Four separate input cables NF=N female LM= Less mast T=Transport, low profile (excal) R=Radome NM=N male LS= Integrated lightening spike version V=Corner or circular reflector T=Triple array. Three separate input cables SF=SMA female Structure LV= Low-VSWR version (Note: special assembly: X=Dual polarity "slant 45" panel X= Cross Polarized (Pannel Antenna) SM=SMA male should be assigned an E-number instead?) Y=Yagi C= Circularly Polarized (Pannel Antenna) TF=TNC female W = Welded SSC= Staneless Steel Clamps V= Vertically Polarized (Pannel Antenna) TM=TNC male UF=UHF female Freq. Range (MHz) UM=UHF male Finishing Options 1=0 - 100 ABK= Color finish – black anodizing 2=100 - 299 ABU= Color finish - blue anodizing 3=300 - 599 Frequency Split AGO= Color finish - gold anodizing 4=600 - 999 FX=No frequency splits exist or anticipated Pattern or Wavelength CCC= Chromate Conversion Coating 5=1000 - 2000 Fn=Where n=(1-99) designating the freq. split code nn=Azimuth beamwidth in degrees where nn=(30-99). CGO= Color finish - gold chromate 6=2400 - 2500 T1=Tetra band 1. Covers at least 380-400MHz Panels and other sectored ant's only. EBK= Color finish – black epoxy paint 8=4900 - 5000 T2=Tetra band 2. Covers at least 410-430MHz P2=1/2 W (fixed-pattern exposed dipoles and whips only EBU= Color finish – blue epoxy paint TB=Covers both Tetra bands, 380-430MHz P3=3/8 W (fixed-pattern exposed dipoles only EWH= Color finish – white epoxy paint P4=1/4 W (fixed-pattern exposed dipoles only EGR= Color finish – gray epoxy paint Antenna Series P5=5/8 W (mobile whip antennas only) MABK= Color finish- Military type III black anodizing 01=ground plane (101, 201, 301, 401) 28=corner reflector (228) PA=Field adjustable pattern, or beamwidth PBK= Color finish – black polyurethane paint 02=corner reflector (302, 402) 29=coil collinear omni (229, 329) PC=Circular polarized PBU= Color finish – blue polyurethane paint 03=3 element yagi (203, 303) 30=tetra panel (330) PS=Cross polarized, or Slant PWH= Color finish – white polyurethane paint 06=6 element yagi (206, 406) 32=2 phasor element, 3 dBd gain PGR= Color finish – gray polyurethane paint 07=7 element yagi (307) 33=phasor collinear omni (233) PSB= Color finish – shadow bronze paint 10=1-bay exposed dipole (210, 310) 35=2-bay exposed dipole (235, 335) TBK= Color finish - black teflon 11=2-bay enclosed dipole (411) 38=omni (238) Tune Frequency TWH= Color finish – white teflon 12=2-bay exposed dipole (212, 312) 40=data antenna (440) F0=Untuned. To be tuned by the Customer. TBU= Color finish – blue teflon 14=4-bay exposed dipole (214, 314) 41=data antenna (441) Ff=Where f = (0300 - 9995), designating the centre frequency TGR= Color finish – gray teflon 14=4-bay enclosed dipole (414) 50=yagi (250, 350) (1/2MHz increments) in MHz with 1 decimal point. Example: CWH= Radome material color – white 15=yagi (415) 60=radaflector (260, 360, 460) For a SC229 antenna ordered with centre frequency of 138.5 CGR= Radome material color – gray 17=low-gain omni-directional (217) 69=collinear omni (369) MHz, the "Ff" designator will be: F1385 18=8-bay exposed dipole (218, 318) 70=cellular/panel (470) Special Assembly Identifier 19=9-bay enclosed dipole (419) 72=civil aviation Mounting Configuration Five alphanumeric characters, "E" followed by 20=collinear omni (320, 420) 79= 9 dBd gain, 7 phasor collinear omni B=Bottom mount (a.k.a. Top Mount). four digits. Presence of an "E-number" indicates 21=excaliber mobiles (221, 321) 80=phasor collinear omni (480) C=Centre mount that the product is a "special assembly". 21=collinear omni (421) 81=corporate feed collinear omni (481) E=End mount Occasionally the customer supplied unique 22=2-bay exposed dipole (222) 82=mobile 1/2wave I=Inverted drawing number or part number may be used in 23=coil collinear omni (323) 83=mobile 5/8wave S=Side mount place of the E number. See "Special Assemblies" 24=4-bay exp. dipole (224) 88=phasor collinear omni (488) U=Universal (Could be mounted in more than one of the for details. 25=marine omni (225) 89=short phasor collinear omni (489) above-mentioned configuration, depending on the type of This portion of the name will (of course) be 26=economy yagi 90=wide-band collinear omni (490) antenna). omitted for all standard/stocked and standard/ 27=corner reflector (227) 97=phasor collinear omni (497) non-stocked products 00=excaliber mobiles (500) Issued Date: 06-28-2007 Revision 3 RM2(AA-W)(BB)(X)(Y)(C) Non-Expandable Receiver Multicoupler (100-299 MHz) Option Description Code (C) Output Connector Option B BNC Female * note that input connectors are always N female (Y) Power Supply Option 1 115 VAC 2 220 VAC 3 12 VDC 4 24 VDC 5 48 VDC 6 115 VAC CE 7 220 VAC CE 8 220 VAC option 9 220 VAC & 24 DC Stdby option 10 12 VDC termination block (X) Amplifier Option S Silicon Amplifier G GasFet Amplifier V 118-137 GaAsFet Option G 225-400 GaAsFet Option HP Performance OBA Amp (BB) Number of Receiver Multicoupler Channels 02 2 Channels 04 4 Channels 08 8 Channels 12 12 Channels 16 16 Channels (AA-W) Preselector Option (BW - Frequency Sub-band): 01-1 1 MHz BW / 138-150 MHz 01-2 1 MHz BW / 150-160 MHz 01-3 1 MHz BW / 160-174 MHz 01-4 1 MHz BW / 220-222 MHz 19-5 19 MHz BW / 118-137 MHz 32-6 32 MHz BW / 118-150 MHz 02-2 2.5 MHz BW / 150-160 MHz 00-0 NO PRESELECTOR ORDERED 09-9 Custom Preselector RM3(AA-W)(BB)(X)(Y)(C) Non-Expandable Receiver Multicoupler (300-599 MHz) Model # Description (C) Output Connector Option B BNC Female This is a special assembly that’s available on non-expandable versions of the RM's only. Expandable versions all use BNC N N Female female only. * note that input connectors are always N female (Y) Power Supply Option 1 115 VAC 2 220 VAC 3 12 VDC 4 24 VDC 5 48 VDC 6 115 VAC CE 7 220 VAC CE 8 DC Termination Block (X) Amplifier Option S Silicon Amplifier G GasFet Amplifier (BB) Number of Receiver Multicoupler Channels 02 2 Channels 04 4 Channels 08 8 Channels 16 16 Channels (AA-W) Preselector Option (BW - Frequency Sub-band): 01-1 1 MHz BW / 406-430 MHz 03-1 3 MHz BW / 406-440 MHz 05-1 5 MHz BW / 406-450 MHz 01-2 1 MHz BW / 440-470 MHz 03-2 3 MHz BW / 440-480 MHz 05-2 5 MHz BW / 450-480 MHz 01-3 1 MHz BW / 470-512 MHz 03-3 3 MHz BW / 480-512 MHz 05-3 5 MHz BW / 480-512 MHz 17-5 175 MHz BW / 225-400 MHz 09-9 Custom Preselector RM4(AA-W)E(BB)(X)(Y)(C) Expandable/Non-Expanbable Rx Multicoupler (600-999 MHz) Configuration # / Part Model # Description Number (C) Output Connector Option B BNC Female This is a special assembly that’s available on non- expandable versions of the RM's only. Expandable versions all use BNC female N N Female only. * note that input connectors are always N female (Y) Power Supply Option 1 115 VAC 2 220 VAC 3 12 VDC 4 24 VDC 5 48 VDC 6 115 VAC CE 7 220 VAC CE 8 DC Termination Block 9 Less Power Supply (X) Amplifier Option G GasFet Amplifier (BB) Number of Receiver Multicoupler Channels 02 2 Channels 04 4 Channels 08 8 Channels 16 16 Channels * 12 channel not available, must use 16 with termiation loads E Expandable Unit (available only for more than 20 channels) (AA-W) Preselector Option (BW - Frequency Sub-band): 15-1 15 MHz BW / 806-821 MHz 15-2 15 MHz BW / 821-849 MHz 15-3 15 MHz BW / 850-865MHz 15-4 15 MHz BW / 865-880 MHz 10-1 9.6 MHz BW / 896-901 MHz 09-9 Custom Preselector TM3(AA-W)(D)(BB)(X)(Y)(C) Non-Expandable TTA Multicoupler (300-599 MHz) Model # Description (C) Output Connector Option B BNC Female N N Female * note that input connectors are always N female (Y) Power Supply Option 1 115 VAC 2 220 VAC 3 12 VDC 4 24 VDC 5 48 VDC 6 115 VAC CE 7 220 VAC CE (X) Amplifier Option S Silicon Amplifier G GasFet Amplifier (BB) Number of Receiver Multicoupler Channels 02 2 Channels 04 4 Channels 08 8 Channels 16 16 Channels (D) Tower Mounted Unit Configuration Option A Standard Single Amplifier configuration B Single Amplifier with relay bypass configuration C Redundant aplifier with relay bypass configuration (AA-W) Preselector Option (BW - Frequency Sub-band): 01-1 1 MHz BW / 406-430 MHz 03-1 3 MHz BW / 406-440 MHz 05-1 5 MHz BW / 406-450 MHz 01-2 1 MHz BW / 440-470 MHz 03-2 3 MHz BW / 440-480 MHz 05-2 5 MHz BW / 450-480 MHz 01-3 1 MHz BW / 470-512 MHz 03-3 3 MHz BW / 480-512 MHz 05-3 5 MHz BW / 480-512 MHz 09-9 Custom Preselector TM4(AA-W)(D)(BB)(X)(Y)(C)
Recommended publications
  • Ultrasonic Transducers WEDGES, CABLES, TEST BLOCKS
    PANAMETRICS Ultrasonic Transducers WEDGES, CABLES, TEST BLOCKS • Contact • Dual Element • Angle Beam • Shear Wave • Delay Line • Protected Face • Immersion • TOFD • High FrequencyHigh Frequency • Atlas European Standard Atlas European Standard 920-041E-EN The Company Olympus Corporation is an international company operating in industrial, medical and consumer markets, specializing in optics, electronics and precision engineering. Olympus instruments contribute to the quality of products and add to the safety of infrastructure and facilities. Olympus is a world-leading manufacturer of innovative nondestructive testing and measurement instruments that are used in industrial and research applications ranging from aerospace, power generation, petrochemical, civil infrastructure and automotive to consumer products. Leading edge testing technologies include ultrasound, ultrasound phased array, eddy current, eddy current array, microscopy, optical metrology, and X-ray fluorescence. Its products include flaw detectors, thickness gages, industrial NDT systems and scanners, videoscopes, borescopes, high-speed video cameras, microscopes, portable x-ray analyzers, probes, and various accessories. Olympus NDT is based in Waltham, Massachusetts, USA, and has sales and service centers in all principal industrial locations worldwide. Visit www.olympus-ims.com for applications and sales assistance. Panametrics Ultrasonic Transducers Panametrics ultrasonic transducers are available in more than 5000 variations in frequency, element diameter, and connector styles. With more than forty years of transducer experience, Olympus NDT has developed a wide range of custom transducers for special applications in flaw detection, Visit www.olympus-ims.com to receive your free weld inspection, thickness gaging, and materials analysis. Ultrasonic Transducer poster. Table of Contents Transducer Selection . 2 Immersion Transducers .........................20 Part Number Configurations ......................4 Standard................................
    [Show full text]
  • Procom-Marine Antennas
    MARINE ANTENNAS Amphenol Private Networks PROCOM - Making the world smaller www.procom.dk Marine Antennas Table Of Content Home 1 S.M2 4 S.8Y series 7 S.6Y series 10 S.4Y series 13 S.3Y series 16 S.2Y series 20 S.1H series 23 S.1 series 26 RX 5000 29 TWA 1 31 SF 160/... 33 NTA 3E-SHT 36 Marifix 1 / Marifix 2 / ADT / MBS 38 MARCELL 3+ 42 MARCELL 47 MA DAB SC 51 MA 70/GPS 4/... 54 MA 2-1 SC-SHT 59 MA 2-1 SC 62 MA 2-1 MR 65 GPS 2000 68 GPS 100 KT-FME 73 GP 80 B/... 76 GP 80/160 78 GP 80 80 GP 450-3/... 82 HF 7500-3 84 GP 450/... 86 HF 5000 88 GP 40 90 GP 160 B 92 GP 160 5/8 94 GP 160 96 CXL 2400-6LW/... 99 CXL 2400-3/... 102 CXL 2/70C 105 CXL 2-5HD/... 108 CXL 2-3LW/... 111 CXL 2-3C/... 114 CXL 2-3 117 CXL 1800-6/DECT 120 CXL 2-2C 123 CXL 2-1LW/... 126 CXL 2-1/... 129 CXL 108-185C 132 BCL 1-KA 135 Page 2/254 Marine Antennas AAC 1/... 139 CXL VHF/GSM 142 CXL 800-1/... 145 CXL 900-3/... 147 CXL 900/1800/1900/UMTS 150 CXL 450-3LW-SS 153 CXL 450-6HD/T-X/... 156 CXL 70-3C/... 159 G-CXL 2-2C 162 G-CXL 2-1LW/... 165 CXL 5700-6 168 CXL 5700-3 171 CXL 5200-6LW 174 CXL 5700-1/..
    [Show full text]
  • Transducer Catalog
    Transducer Catalog Version 3.1 www.ndtsystems.com Company Introduction For more than 48 years, NDT Systems Inc. has been a leader in designing, manufacturing, and selling high quality, advanced ultrasonic testing and bond testing equipment to the non-destructive testing marketplace. Our wide variety of non-destructive testing equipment includes: • Thickness Gauges • Bond Testers and Probes • Portable Ultrasonic Flaw Detectors • Precision Ultrasonic Transducers • Manual and Automated Scanners NDT Systems manufactures customized solutions, including fully automated inspection systems and specialized transducers. These transducers are available in all frequency domains and upon request. Based in Huntington Beach, California, NDT Systems offers a wide portfolio of products to support the inspection of almost all materials types from metals, ceramics, and plastics to advanced composite materials and laminated structures. NDT Systems products are used in nearly all industries such as Aerospace and Composite Inspection/ Manufacturing, Oil and Gas (pipeline inspection), Power Generation, Military and Transportation, and Metal Forming. Our high-quality equipment offers full functionality at a very competitive price. All products are 100% made in the USA 2 www.ndtsystems.com Ultrasonic Transducers NDT Systems takes pride in its vast transducer offerings. We manufacture and inventory a wide range of transducers, in addition to accessories that support the range. All transducers are certified prior to shipment. A recharacterization service is also available, based upon applicable standards. Our complete range of transducers and accessories includes: • Contact / Delay Line • Dual Element • Angle Beam • Immersion • Bond Testing • Gauge Specific • Scanner Specific • Cables • Test Blocks Custom Design Transducers NDT Systems has the ability to engineer custom design transducers, upon request, to meet your specific needs.
    [Show full text]
  • Coaxial Cable
    ANALOG ELECTRICAL and DIGITAL VIDEO FORMATS and CONNECTORS Analog Electrical Formats/Connectors Component Video Component video is a type of video information that is transmitted or stored as two or more separate signals (as opposed to composite video, such as NTSC or PAL, which is a single signal). Most component video systems are variations of the red, green and blue signals that make up a television image. The simplest type, RGB, consists of the three discrete red, green and blue signals sent down three wires. This type is commonly used in Europe through SCART connectors. Outside Europe, it is generally used for computer monitors, but rarely for TV-type applications. Another type consists of R-Y, B-Y and Y, delivered the same way. This is the signal type that is usually meant when people talk of component video today. Y is the luminance channel, B-Y (also called U or Cb) is the blue component minus the luminance information, and R-Y (also called V or Cr) is the red component minus the luminance information. Variants of this format include YUV, YCbCr, YPbPr and YIQ. In component systems, the synchronization pulses can either be transmitted in one or usually two separate wires, or embedded in the blanking period of one or all of the components. In computing, the common standard is for two extra wires to carry the horizontal and vertical components, whereas in video applications it is more usual to embed the sync signal in the green or Y component. The former is known as sync-on-green.
    [Show full text]
  • COAXIAL CONNECTOR CHART Other Names Connector Maximum (Or Mates Male Female Type Frequency With)
    COAXIAL CONNECTOR CHART Other names Connector Maximum (or mates Male Female Type Frequency with) PL-259 (male), 300 MHz or SO-239 less (female) The UHF type connector saw its conception in the early 1930's, a time when VHF/UHF technology was quite new. The forefathers of VHF were in many cases Amateur radio experimenters, most with Engineering and technical backgrounds. They began experimenting and working the VHF frontier around 1926. Soon thereafter research into FM radio and Television began and out of this era came the then named UHF connector. Manufacturers of UHF plugs and receptors all state that this type connector are of generally non-constant UHF (characteristic) impedance and are suitable for use up to 200 or 300 MHz only, depending on production quality. They also state that the UHF connector can be used up to 500 MHz with a cautionary note of reduced performance. The so named UHF connector from the past is not really suitable for use above 300 MHz at all. Perhaps the exception to this would be when a cheap and rugged system is required where loss and good signal to noise ratio is of little concern. However, even for frequencies as low as 144 MHz, if low loss and good signal to noise ratio are very desirable, the use of UHF type connectors is not recommended. The UHF connector still has a place in many applications where a robust but economical RF connector is required, but for serious applications its use should be limited to below 100 MHz. The N type is far superior in performance, and it should also be noted the BNC type connector is similar in performance to the N type, but has the disadvantage of being less rugged.
    [Show full text]
  • MICROWAVE COAXIAL CONNECTOR TECHNOLOGY: a CONTINUING EVOLUTION Mario A
    MAURY MICROWAVE 13 Dec 2005 CORPORATION Originally published as a Feature Article in the Microwave Journal 1990 State of the Art Reference, September 1990; Updated December 2005 MICROWAVE COAXIAL CONNECTOR TECHNOLOGY: A CONTINUING EVOLUTION Mario A. Maury, Jr. Maury Microwave Corporation (a) Introduction Coaxial connectors are one of the fundamental tools of microwave technology and yet they appear to be taken for granted in many instances. Unfortunately, many engineers tend to overlook the lowly connec- tor with resulting performance compromises in their applications. A good understanding of connectors, both electrically and mechanically, is required to utilize them properly and derive their full benefit. It should be remembered that performance starts at the (b) connector. Figure 1: Precision coaxial connectors in use today; Coaxial connectors provide a means to connect and (a) 7mm and 14mm sexless connectors and (b) 3.5mm female disconnect transmission lines, components and sys- and male, type N female and male. tems at microwave frequencies. They allow accessing circuits, modularizing, testing, assembling, inter- This paper provides a brief history of coaxial connec- connecting and packaging components into systems. tors, gives an overview of coaxial connector technology today, cites sources of further informa- There is a broad variety of coaxial connectors avail- tion and takes a look into the future as connectors able today due to the various design trade-offs and continue to evolve. applications that exist at microwave frequencies, including impedance (usually 50 ohms), frequency IEEE P287 Committee of operation, power handling, insertion loss, reflec- tion performance, environmental requirements, size, In 1988, the sub-committee P287 for precision co- weight and cost.
    [Show full text]
  • Cables and Connectors
    TACTICAL-TECH QUICK REFERENCE GUIDE AKA the New Speak pictionary 2nd Edition, October 2019 This publication is a compilation of several open source websites, facts and figures meant for a quick, printed out reference . This publication was not made for retail sale or distribution. 2 Tactical‐Tech Quick Reference Book Contents DescripID Preface: ........................................................... 2 HN Connector ....................................................... 19 Cables and Connectors.................................................... 2 MiniUHF ................................................................ 20 Connectors ...................................................................... 3 MiniSMB ............................................................... 20 Modular Connectors ................................................... 4 MCX ....................................................................... 20 4P4C – 4 position, 4 conductors (and 4P2C) ........... 5 PAL ........................................................................ 21 6P6C – 6 position, 6 conductor (and 6P4C, 6P2C) .. 5 MMCX ................................................................... 21 10P10C – 10 position, 10 conductor ....................... 6 SC .......................................................................... 22 8P8C – 8 position, 8 conductors ............................. 6 QMA ...................................................................... 22 Audio, Video, and Communication connectors .......... 7 NType ...................................................................
    [Show full text]
  • RF Connectors
    RF Connectors There are many different types of RF connectors for coaxial cable, but the three most common for amateur use are the UHF, Type N and BNC families. The type of connector used for a specific job depends on the size of the cable, the frequency of operation and the power levels involved. The so-called UHF connector is found on most HF and some VHF equipment. It is the only connector many hams will ever see on coaxial cable. PL-259 is another name for the UHF male, and the female is also known as the SO-239. These connectors are rated for full legal amateur power at HF. They are poor for UHF work because they do not present a constant impedance, so the UHF label is a misnomer. PL-259 connectors are designed to fit RG-8 and RG-11 size cable (0.405-inch OD). Adapters are available for use with smaller RG-58, RG-59 and RG-8X size cable. UHF connectors are not weatherproof. Fig 22.17 shows how to install the solder type of PL-259 on RG-8 cable. Proper preparation of the cable end is the key to success. Follow these simple steps. Measure back about 3/4-inch from the cable end and slightly score the outer jacket around its circumference. With a sharp knife, cut through the outer jacket, through the braid, and through the dielectric, right down to the center conductor. Be careful not to score the center conductor. Cutting through all outer layers at once keeps the braid from separating.
    [Show full text]
  • A&AKCON ELECTRONIC CO., LTD. Manufacturer and Exporter of Auto
    Taiwan, Electrical Connector, RCA Connectors, BNC conne...nectors, modular jack manufacturer, supplier, exporter. Electronics Audio/Video Computer Parts New design with patent ~0SINCE Z1980 ~ - COMPUTER MULTI- - SMB - MCX -MIC APERTURED CONNECTOR CONNECTOR CONNECTOR CONNECTOR -AUTO CIGARETTE -FUSE COMPUTER CARAMIC MODULAR PLUG&SOCKET HOLDER CABLE LAMPHOLDER E-MAIL: [email protected] E-MAIL: [email protected] TEL:886-6-2677751~3 FAX:886-6-2696498.2697632 http://www.a-adcon.com Taiwan Head office: NO 42-1, 17TH STREET CHUNG TEO, TAINAN CITY TAIWAN A & AKCON ELECTRONIC COMPANY LIMITED NO 1 LANE 86 yonghong diyangcao jiangbei ningbo china Http://www.a-ahcon.com Email:[email protected] [email protected] TEL:86-574-87226908 87227908 87221708 FAX:86-574-87222568 pro.html Yi Wai Industrial Co., Ltd. has been manufacturing a wide range of electronic products including RCA plugs, banana plugs, binding posts, switches, RF connectors, etc... It began business in 1980 with the mission of providing the best products with the most competitive price. Yi Wai is equipped with precise manufacturing equipment such as HIGH SPEED MACHINES and HIGH PRECISION MACHINING CNC AUTOMATIC LATHE MACHINES. We provide superior products and service for customers throughout the world with 100% quality guarantees. We can also manufacture specific products according to our customers' needs. Maintaining a product's high quality is one of the main reasons contributing to the success of Yi Wai. A commitment to quality, price, and lead time have seen Yi Wai become one of the leading manufacturers and exporters of electronic connectors in Taiwan.
    [Show full text]
  • RF Connectors Amphenol® Overview
    Amphenol® The Company of a broad product line and a leader- Amphenol's ability to provide fully Amphenol Corporation is one of the ship role in product innovation. integrated solutions even extends largest manufacturers of interconnect into the arena of smart card tech- products in the world. The company As the information super highway nology, where microchips and designs, manufactures and markets expands, the demand for intercon- sophisticated chip card acceptor RF/microwave connectors; flat rib- nect solutions continues to grow into devices are being combined for a bon cable and interconnect systems; new and exciting areas. Amphenol is growing number of applications from CATV cable and connectors; elec- a leading producer of broadband banking, to security, to medicine, to tronic connectors; and fiber-optic coaxial cable, connectors and fiber voice recognition systems. connectors. The primary end mar- optic interconnect components. kets for Amphenol products are Amphenol is uniquely capable of Maintaining this position as a leader communications and information supplying the complete Hybrid in the field of communications processing, including cable televi- Fiber/Coaxial (HFC) interconnect sys- requires close interaction with a sion, cellular telephone, data com- tems which form the backbone of worldwide customer base through munications and instrumentation; the information super highway. As a international management teams, aerospace and military electronics; result, every household, business, distributed manufacturing, global automotive, rail and other transporta- private and government institution is quality assurance programs and tion; and industrial applications. a potential customer and will depend sophisticated distribution networks. on Amphenol’s commitment to quali- By remaining totally committed to the Amphenol Corporation is a world ty and product innovation.
    [Show full text]
  • Ham Radio Terms
    GLOSSARY HAM RADIO TERMS This is glossary contains general definitions of typical amateur radio terms. Not all of the defini- tion listed may apply to your specific model of radio. Consult the manufacture for further clarifi- cation of model-specific terms. A ACC (ACCessory) Antenna matching When the antenna’s impedance at resonance is at Adaptive filter optimum performance for your transmitter output cir- Digital filter associated with Digital Signal Process- cuit. ing. Antenna tuner Adjacent-channel interference Device used to match an antenna to the output im- When a receiver is tuned to a specific frequency and pedance of a transmitter. interference is received on a nearby frequency. APC (Automatic Power Control) AF (Audio Frequency) Current limiting of power amplifier to prevent dam- age to finals in high SWR conditions. AFC (Automatic Frequency Control) Automatically compensate frequency drift. APRS (Automatic Position Reporting System) In conjunction with a GPS and TNC provide position AFSK reporting. Audio Frequency Shift Keying, a form of digital sig- nalling. ARES (Amateur Radio Emergency Service) ARES is a public-service organization of the ARRL. AGC (Automatic Gain Control) Automatically optimize receiver amplifier gain. ARRL (The American Radio Relay League) The National Association for Amateur Radio in the ALC (Automatic Level Control) US. Limits RF drive level to power amplifier during trans- mit to prevent distortion. ASCII ( American National Standard Code for Informa- tion Interchange) AM (Amplitude Modulation) A seven-unit digital code for the transmission of tel- Amplifier eprinter data. A device used to increase the output power of a de- ATT (ATTenuator) vice. A network designed to reduce the amplitude of a sig- AMSAT (AMateur SATellite) nal.
    [Show full text]
  • Electronics Tips: Connectors
    Electronics Tips: Connectors Electronics Tips: Connectors Previous Page_ _Next Page To Alpha. Index To Manuf. Index To Category Index Part No. Index WEB SPECIALS NEW PRODUCTS VIEW CART Back to Tips Index Connectors INTRODUCTION In electronics, connectors are one of those things we tend to take for granted. They're just something hanging off the end of a cable so we can plug and unplug power or signals on some circuit. So what's there to think about connectors? The answer is "plenty"! Besides the obvious, such as having the right number of pins, there are several things to consider when choosing a connector: Cost: Nobody wants to spend more than they have to. But using the cheapest connector you can find may not, in the end, be cost effective if it fails to do its job. Ruggedness: Is it going to be plugged and unplugged once a year, or ten times a day? Environment: Will it be exposed to the weather, such as on an outdoors antenna? How about salt water, such as on a boat? Will it be subject to vibration, such as on a machine? Is someone likely to step on it? Signals Type: Is it for power and ground? For analog or digital signals? If analog, what frequency? Is it audio or RF? If digital, what clock speed or bit rate? Power Level: If it's for power, is it for 24 Volts? Or 240 Volts? Or 2,400 Volts? Will it carry 0.25 Amps? Or 2.5 Amps? Or 25 Amps? Higher currents require larger, thicker pins.
    [Show full text]