Coaxial Cable

Total Page:16

File Type:pdf, Size:1020Kb

Coaxial Cable ANALOG ELECTRICAL and DIGITAL VIDEO FORMATS and CONNECTORS Analog Electrical Formats/Connectors Component Video Component video is a type of video information that is transmitted or stored as two or more separate signals (as opposed to composite video, such as NTSC or PAL, which is a single signal). Most component video systems are variations of the red, green and blue signals that make up a television image. The simplest type, RGB, consists of the three discrete red, green and blue signals sent down three wires. This type is commonly used in Europe through SCART connectors. Outside Europe, it is generally used for computer monitors, but rarely for TV-type applications. Another type consists of R-Y, B-Y and Y, delivered the same way. This is the signal type that is usually meant when people talk of component video today. Y is the luminance channel, B-Y (also called U or Cb) is the blue component minus the luminance information, and R-Y (also called V or Cr) is the red component minus the luminance information. Variants of this format include YUV, YCbCr, YPbPr and YIQ. In component systems, the synchronization pulses can either be transmitted in one or usually two separate wires, or embedded in the blanking period of one or all of the components. In computing, the common standard is for two extra wires to carry the horizontal and vertical components, whereas in video applications it is more usual to embed the sync signal in the green or Y component. The former is known as sync-on-green. Component digital video signals are sometimes referred to as 4:2:2, meaning that for every 4 bits that are dedicated to the Y component, 2 bits each are dedicated to the U & V components on both even (second 2) and odd lines (third 2) of the image. The luminance or Y channel carries most of the image detail and is, therefore, assigned more bits. Another common method, 4:2:0, is used on DVDs. In this case, only the even lines have color information; for the odd lines it is approximated by interpolation. This signal is often converted to 4:2:2 inside the player before it is sent out to other devices. Composite Video Composite video is the format of an analog television signal before it is modulated onto an RF carrier. It is usually in a standard format such as NTSC, PAL or SECAM. It is a composite of three source signals called Y, U and V (together referred to as YUV) with sync pulses. Y represents the brightness or luminance of the picture and includes synchronizing pulses, so that by itself it could be displayed as a monochrome picture. U and V between them carry the colour information. They are first mixed with two orthogonal phases of a colour carrier signal to form a signal called the chrominance. Y and UV are then added together. Since Y is a baseband signal and UV has been mixed with a carrier, this addition is equivalent to frequency-division multiplexing. Composite video can easily be directed to any broadcast channel simply by modulating the proper RF carrier frequency with it. Most home video equipment records a signal in composite format: VCRs and laserdiscs both work this way, and then give the user the option of outputting the raw signal, or mixing it with RF to appear on a selected TV channel. In the United States, the composite video signal is typically connected using an RCA jack, normally yellow (often accompanied with red and white for right and left audio channels, respectively). In Europe, this is sometimes replaced by a coax or SCART connector. BNC connectors are used for commercial variations of video media. Some devices that connect to a TV, such as videogame consoles (and the ubiquitous home computers of the 1980s), naturally output a composite signal. This may then be converted to RF with an external box known as an RF modulator that generates the proper carrier (often for channel 3 or 4 in North America). The RF modulator is preferably left outside the console so the RF doesn't interfere with the components inside the machine. VCRs and similar devices already have to deal with RF signals in their tuners, so the modulator is located inside the box. Also, most home computers usually employed an internal RF modulator. Yellow is the default color for composite video cables. The process of modulating RF with the original video signal, and then demodulating the original signal again in the TV, introduces several losses into the signal. RF is also "noisy" because of all of the video and radio signals already being broadcast, so this conversion also typically adds noise or interference to the signal as well. For these reasons, it's typically best to use composite connections over RF connections if possible. Almost all modern video equipment has composite connectors, so this typically isn't a problem. However, just as the modulation and demodulation of RF loses quality, the mixing of the various signals into the original composite signal does the same. This has led to a proliferation of systems such as S-Video and component video to separate out one or more of the mixed signals. Composite video is often designated by the CVBS acronym, meaning either "Color, Video, Blank and Sync" or "Composite Video Baseband Signal" or "Composite Video Burst Signal" or "Composite Video with Burst and Sync". Coaxial cable Coaxial cable is an electrical cable consisting of a round conducting wire, surrounded by an insulating spacer, surrounded by a cylindrical conducting sheath, usually surrounded by a final insulating layer. It is used as a high-frequency transmission line to carry a high- frequency or broadband signal. Sometimes DC power (called bias) is added to the signal to supply the equipment at the other end, as in direct broadcast satellite receivers. Because the electromagnetic field carrying the signal exists (ideally) only in the space between the inner and outer conductors, it cannot interfere with or suffer interference from external electromagnetic fields. Coaxial cables may be rigid or flexible. Rigid types have a solid sheath, while flexible types have a braided sheath, both usually of thin copper wire. The inner insulator, also called the dielectric, has a significant effect on the cable's properties, such as its characteristic impedance and its attenuation. The dielectric may be solid or perforated with air spaces. Connections to the ends of coaxial cables are usually made with RF connectors (usually F Connectors), though other connectors are possible (BNC, etc). Signal propagation Open wire transmission lines have the property that the electromagnetic wave propagating down the line extends into the space surrounding the parallel wires. These lines have low loss, but also have undesirable characteristics. They cannot be bent, twisted or otherwise shaped without changing their characteristic impedance. They also cannot be run along or attached to anything conductive, as the extended fields will induce currents in the nearby conductors causing unwanted radiation and detuning of the line. Coaxial lines solve this problem by confining the electromagnetic wave to the area inside the cable, between the center conductor and the shield. The transmission of energy in the line occurs totally through the dielectric inside the cable between the conductors. Coaxial lines can therefore be bent and twisted (subject to limits) without negative effects, and they can be strapped to conductive supports without inducing unwanted currents in them. The inner conductor can be made of braid and the outer conductor can be made of corrugated tube for greater flexibility, but this comes at the cost of increased ohmic losses and lower phase velocity. The outer conductor can also be made of (in order of increasing leakage) wound foil, woven tape, or braid. Coaxial cables require an internal structure of an insulating (dielectric) material to maintain the spacing between the center conductor and shield. Unfortunately, all dielectrics have loss associated with them, which causes most coaxial lines to have more loss than open wire lines. Most cables have a solid dielectric; others have a foam dielectric which contains as much air as possible to reduce the losses. Foam coax will have about 15% less attenuation but can absorb moisture — especially at its many surfaces — in humid environments, increasing the loss. Stars or spokes are even better, but more expensive. Furthermore the lower dielectric constant of air allows for a greater inner diameter at the same impedance and a greater outer diameter at the same cutoff frequency, lowering ohmic losses. Connectors From the signal point of view, a connector can be viewed as a short, rigid cable. The connector usually has the same impedance as the related cable and probably has a similar cutoff frequency although its dielectric may be different. High-quality connectors are usually gold or rhodium plated, with lower-quality connectors using nickel or tin plating. Silver is occasionally used in some high- end connectors due to its excellent conductivity, but it usually requires extra plating of another metal since silver readily oxidizes in the presence of air. One increasing development has been the wider adoption of micro-miniature coaxial cable in the consumer electronics sector in recent years. Wire and cable companies such as Tyco, Sumitomo Electric, Hitachi Cable, Fujikura and LS Cable all manufacture these cables, which can be used in cellular phones. Important parameters to Co-Ax • The characteristic impedance in ohms (Ω) is calculated from the ratio of the inner and outer diameters and the dielectric constant. Assuming the dielectric properties of the material inside the cable do not vary appreciably over the operating range of the cable, this impedance is frequency independent.
Recommended publications
  • Power Mac G4 (Digital Audio): Setting up (Manual)
    Setting Up Your Power Mac G4 Includes setup and expansion information for Power Mac G4 and Macintosh Server G4 computers K Apple Computer, Inc. © 2001 Apple Computer, Inc. All rights reserved. Under the copyright laws, this manual may not be copied, in whole or in part, without the written consent of Apple. The Apple logo is a trademark of Apple Computer, Inc., registered in the U.S. and other countries. Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws. Every effort has been made to ensure that the information in this manual is accurate. Apple is not responsible for printing or clerical errors. Apple Computer, Inc. 1 Infinite Loop Cupertino, CA 95014-2084 408-996-1010 http://www.apple.com Apple, the Apple logo, AppleShare, AppleTalk, FireWire, the FireWire logo, Mac, Macintosh, the Mac logo, PlainTalk, Power Macintosh, QuickTime, and Sherlock are trademarks of Apple Computer, Inc., registered in the U.S. and other countries. AirPort, the Apple Store, Finder, iMovie, and Power Mac are trademarks of Apple Computer, Inc. PowerPC and the PowerPC logo are trademarks of International Business Machines Corporation, used under license therefrom. Manufactured under license from Dolby Laboratories. “Dolby” and the double-D symbol are trademarks of Dolby Laboratories. Confidential Unpublished Works. © 1992–1997 Dolby Laboratories, Inc. All rights reserved. Other company and product names mentioned herein are trademarks of their respective companies. Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation.
    [Show full text]
  • Analog/SDI to SDI/Optical Converter with TBC/Frame Sync User Guide
    Analog/SDI to SDI/Optical Converter with TBC/Frame Sync User Guide ENSEMBLE DESIGNS Revision 6.0 SW v1.0.8 This user guide provides detailed information for using the BrightEye™1 Analog/SDI to SDI/Optical Converter with Time Base Corrector and Frame Sync. The information in this user guide is organized into the following sections: • Product Overview • Functional Description • Applications • Rear Connections • Operation • Front Panel Controls and Indicators • Using The BrightEye Control Application • Warranty and Factory Service • Specifications • Glossary BrightEye-1 BrightEye 1 Analog/SDI to SDI/Optical Converter with TBC/FS PRODUCT OVERVIEW The BrightEye™ 1 Converter is a self-contained unit that can accept both analog and digital video inputs and output them as optical signals. Analog signals are converted to digital form and are then frame synchronized to a user-supplied video reference signal. When the digital input is selected, it too is synchronized to the reference input. Time Base Error Correction is provided, allowing the use of non-synchronous sources such as consumer VTRs and DVD players. An internal test signal generator will produce Color Bars and the pathological checkfield test signals. The processed signal is output as a serial digital component television signal in accordance with ITU-R 601 in both electrical and optical form. Front panel controls permit the user to monitor input and reference status, proper optical laser operation, select video inputs and TBC/Frame Sync function, and adjust video level. Control and monitoring can also be done using the BrightEye PC or BrightEye Mac application from a personal computer with USB support.
    [Show full text]
  • Offshore Wind Submarine Cable Spacing Guidance
    Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use The authors gratefully acknowledge permission of the Crown Estate to base parts of this report on their study “Principles of Cable Routing and Spacing (2012)”, Reference ID 8 in this report Document Control Responsible for Job Title Name Date Signature Chris Sturgeon Cables specialist Jim Hodder Cables specialist Colin Poat Cables specialist Content 2014-12-15 Cables specialist Steven Drew Principal Environmental Consultant Rachel McCall EHS Senior Consultant Tanjia Maynard Checked EHS Senior Consultant Tanjia Maynard 2014-12-15 Approval Principal Engineer Jim Doane 2014-12-15 Copyright: PMSS © Document Reference: 734300670/140708 Signatures in this approval box have checked this document in line with the requirements of QP16 This report has been prepared by TÜV SÜD PMSS and Red Penguin Associates with all reasonable skill and care, within the terms of the contract with the Client. The report contains information from sources and data which we believe to be reliable but we have not confirmed that reliability and make no representation as to their accuracy or completeness. The draft report is confidential to the Client and TÜV SÜD PMSS accepts no responsibility to any third party to whom information in this report may be disclosed. No part of this document may be reproduced without the prior written approval of TÜV SÜD PMSS © TÜV SÜD PMSS 2014 Offshore Wind Submarine Cable Spacing Guidance 1 Bureau of Safety and Environmental Enforcement Table of Contents Abbreviations 2 1.
    [Show full text]
  • About the Power Mac G4 Cube (Manual)
    About the Power Mac G4 Cube Includes setup and expansion information for Power Mac G4 Cube computers K Apple Computer, Inc. © 2000 Apple Computer, Inc. All rights reserved. Under the copyright laws, this manual may not be copied, in whole or in part, without the written consent of Apple. The Apple logo is a trademark of Apple Computer, Inc., registered in the U.S. and other countries. Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws. Every effort has been made to ensure that the information in this manual is accurate. Apple is not responsible for printing or clerical errors. Apple Computer, Inc. 1 Infinite Loop Cupertino, CA 95014-2084 408-996-1010 http://www.apple.com Apple, the Apple logo, AppleShare, AppleTalk, FireWire, the FireWire logo, Mac, Macintosh, the Mac logo, Power Macintosh, and QuickTime are trademarks of Apple Computer, Inc., registered in the U.S. and other countries. AirPort, the Apple Store, Finder, iMovie, iTools, Power Mac, and Sherlock are trademarks of Apple Computer, Inc. PowerPC and the Power PC logo are trademarks of International Business Machines Corporation, used under license therefrom. Manufactured under license from Dolby Laboratories. “Dolby” and the double-D symbol are trademarks of Dolby Laboratories. Confidential Unpublished Works. © 1992–1997 Dolby Laboratories, Inc. All rights reserved. Other company and product names mentioned herein are trademarks of their respective companies. Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation.
    [Show full text]
  • XO2 and XO3: Low Jitter CD Clock Oscillators
    Mounting instructions for: XO2 and XO3: low jitter CD clock oscillators Congratulations! You just bought a high quality, low jitter master clock oscillator. This document gives guidance to mounting and connecting it in your CD player. Introduction XO2 and XO3 are equal, except the reclocking option for XO3. XO2 and XO3 S Need to be supplied from a DC voltage of 9 to 35V, approximately 30mA. S Generate a new clock, which needs to be fed to the input of the original oscillator XO3 additionally needs: S to be fed with the original SPDIF signal (generated by the decoder chip) S the newly generated SPDIF signal to be connected to the original, or new digital output Mounting Mounting your XO is not that difficult. However some experience is needed to: S recognise and locate components S find specific connections and IC pin numbers S measure voltages using a multimeter S careful soldering of small parts If you feel lack of skills and or experience in some of the above listed subjects, please ask someone else to support you. Know your connections What is on the PCB XO, heart of the circuit Low noise adjustment - do not touch ! Supply (9-35Vdc/30 mA) SPDIF in Clock out SPDIF outputs The supply and SPDIF in (XO3 only) and clock out (XO2 and XO3) are already equipped with wiring. The supply wire may be extended using normal gauge wire, the others may not. If longer wiring is required, the use of coax is advised. Please contact me. Guido Tent can be contacted for questions and orders at: [email protected] 1 How to connect XO2 or XO3 in your player General Read these full instructions below, before starting any work.
    [Show full text]
  • Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group
    OFFSHOREoverview WIND SUBMARINE CABLING Fisheries Technical Working Group Final Report | Report Number 21-14 | April 2021 NYSERDA’s Promise to New Yorkers: NYSERDA provides resources, expertise, and objective information so New Yorkers can make confident, informed energy decisions. Our Vision: New York is a global climate leader building a healthier future with thriving communities; homes and businesses powered by clean energy; and economic opportunities accessible to all New Yorkers. Our Mission: Advance clean energy innovation and investments to combat climate change, improving the health, resiliency, and prosperity of New Yorkers and delivering benefits equitably to all. Courtesy, Equinor, Dudgeon Offshore Wind Farm Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group Final Report Prepared for: New York State Energy Research and Development Authority Albany, NY Morgan Brunbauer Offshore Wind Marine Fisheries Manager Prepared by: Tetra Tech, Inc. Boston, MA Brian Dresser Director of Fisheries Programs NYSERDA Report 21-14 NYSERDA Contract 111608A April 2021 Notice This report was prepared by Tetra Tech, Inc. in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter “NYSERDA”). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report.
    [Show full text]
  • Digital Visual Interface (DVI)
    Digital Visual Interface 1 Digital Visual Interface Digital Visual Interface (DVI) A male DVI-D (single link) connector. Type Digital computer video connector Production history Designer Digital Display Working Group Designed April 1999 Produced 1999 to present Superseded by DisplayPort General specifications Hot pluggable Yes External Yes Video signal Digital video stream: (Single) WUXGA (1,920 × 1,200) @ 60 Hz (Dual) Limited by copper bandwidth limitations, DVI source limitations, and DVI sync limitations. Analog RGB video (−3 dB at 400 MHz) Pins 29 Data Data signal RGB data, clock, and display data channel Bitrate (Single link) 3.96 Gbit/s (Dual link) Limited only by copper bandwidth limitations, DVI source limitations, and DVI sync limitations. Max. devices 1 Protocol 3 × transition minimized differential signaling data and clock Pin out A female DVI-I socket from the front Pin 1 TMDS data 2− Digital red− (link 1) Pin 2 TMDS data 2+ Digital red+ (link 1) Digital Visual Interface 2 Pin 3 TMDS data 2/4 shield Pin 4 TMDS data 4− Digital green− (link 2) Pin 5 TMDS data 4+ Digital green+ (link 2) Pin 6 DDC clock Pin 7 DDC data Pin 8 Analog vertical sync Pin 9 TMDS data 1− Digital green− (link 1) Pin 10 TMDS data 1+ Digital green+ (link 1) Pin 11 TMDS data 1/3 shield Pin 12 TMDS data 3- Digital blue− (link 2) Pin 13 TMDS data 3+ Digital blue+ (link 2) Pin 14 +5 V Power for monitor when in standby Pin 15 Ground Return for pin 14 and analog sync Pin 16 Hot plug detect Pin 17 TMDS data 0− Digital blue− (link 1) and digital sync Pin 18 TMDS data 0+ Digital blue+ (link 1) and digital sync Pin 19 TMDS data 0/5 shield Pin 20 TMDS data 5− Digital red− (link 2) Pin 21 TMDS data 5+ Digital red+ (link 2) Pin 22 TMDS clock shield Pin 23 TMDS clock+ Digital clock+ (links 1 and 2) Pin 24 TMDS clock− Digital clock− (links 1 and 2) C1 Analog red C2 Analog green C3 Analog blue C4 Analog horizontal sync C5 Analog ground Return for R, G, and B signals Digital Visual Interface (DVI) is a video display interface developed by the Digital Display Working Group (DDWG).
    [Show full text]
  • Advanced PAL Comb Filter-II (APCF-II) MC141627
    MOTOROLA Order this document SEMICONDUCTOR TECHNICAL DATA by MC141627/D MC141627 Product Preview Advanced PAL Comb Filter-II FT SUFFIX (APCF-II) QFP PACKAGE CASE 898 The Advanced PAL Comb Filter–II is a video signal processor for VCRs, 48 1 LDPs, and TVs. It separates the Luminance Y and Chrominance C signal from the NTSC/PAL composite signal by using digital signal processing techniques ORDERING INFORMATION which minimize dot–crawl and cross–color. The built–in 4xFSC PLL circuit MC141627FT Quad Flat Package (QFP) allows a subcarrier signal input, which generates 4xFSC clock for video signal processing. This filter allows a video signal input of an extended frequency bandwidth by using a 4xFSC clock. The built–in vertical enhancer circuit reduces noise and dot crawl on the Luminance Y signal. The built–in A/D and D/A converters allow easy connection to analog video circuits. • Built–In High Speed 8–Bit A/D Converter • Four Line Memories (4540 Bytes) • Advanced Comb–II Process • Built–In Vertical Enhancer • Vertical Dot Reduction Process • Two Built–In High Speed 8–Bit D/A Converters • Built–In 4xFSC PLL Circuit • Built–In Clamp Circuit • Digital Interface Mode • On–Chip Reference Voltage for A/D Converter PIN ASSIGNMENT D5 D6 D7 C0 C1 D4 C3 C2 C4 C5 C6 C7 36 25 D3 37 24 TE1 D2 TE0 D1 MODE1 D0 MODE0 BYPASS CLK(AD) VH GND(D) GND(D) NC VCC(D) CLC FSC CLout N/M Vin PAL/NTSC RBT RTP Comb/BPF 48 13 1 12 out out CC bias Y C PCO BIAS I FILIN OV CC(DA) CC(AD) V REF(DA) V GND(AD) GND(DA) NC = NO CONNECTION This document contains information on a product under development.
    [Show full text]
  • Ultrasonic Transducers WEDGES, CABLES, TEST BLOCKS
    PANAMETRICS Ultrasonic Transducers WEDGES, CABLES, TEST BLOCKS • Contact • Dual Element • Angle Beam • Shear Wave • Delay Line • Protected Face • Immersion • TOFD • High FrequencyHigh Frequency • Atlas European Standard Atlas European Standard 920-041E-EN The Company Olympus Corporation is an international company operating in industrial, medical and consumer markets, specializing in optics, electronics and precision engineering. Olympus instruments contribute to the quality of products and add to the safety of infrastructure and facilities. Olympus is a world-leading manufacturer of innovative nondestructive testing and measurement instruments that are used in industrial and research applications ranging from aerospace, power generation, petrochemical, civil infrastructure and automotive to consumer products. Leading edge testing technologies include ultrasound, ultrasound phased array, eddy current, eddy current array, microscopy, optical metrology, and X-ray fluorescence. Its products include flaw detectors, thickness gages, industrial NDT systems and scanners, videoscopes, borescopes, high-speed video cameras, microscopes, portable x-ray analyzers, probes, and various accessories. Olympus NDT is based in Waltham, Massachusetts, USA, and has sales and service centers in all principal industrial locations worldwide. Visit www.olympus-ims.com for applications and sales assistance. Panametrics Ultrasonic Transducers Panametrics ultrasonic transducers are available in more than 5000 variations in frequency, element diameter, and connector styles. With more than forty years of transducer experience, Olympus NDT has developed a wide range of custom transducers for special applications in flaw detection, Visit www.olympus-ims.com to receive your free weld inspection, thickness gaging, and materials analysis. Ultrasonic Transducer poster. Table of Contents Transducer Selection . 2 Immersion Transducers .........................20 Part Number Configurations ......................4 Standard................................
    [Show full text]
  • Datapath-Fx4 Spec Sheet
    Fx4 One box. Four outputs. Millions of possibilities. HIGH PERFORMANCE CONTROLLER FEATURES Advancements in digital signage allow much greater freedom in creating Infinite creative configurations and deploying any scale signage projects. At the forefront of this is the UHD / 4K60 input, four HD 1080p outputs Datapath Fx4, a multi-faceted stand alone display controller. The Fx4 Rotates, crops, scales, mirrors and bezel corrects supports a choice of inputs, high bandwidth loop-through as well as 4 genlocked outputs in either DisplayPort or HDMI. Multiple inputs for flexible connectivity (Dual HDMI1.4 or single DisplayPort1.2 inputs) The Fx4 features a DisplayPort1.2 main input alongside two HDMI1.4 inputs HDCP1.4 support on all inputs and outputs offering 4K 4096 x 2160p at 60fps. The intuitive user interface allows users to determine which input is used. True stand-alone operation: Fx4 can adapt to changes in inputs by adjusting all scale factors Network or USB interfaces allow platform independent control (MAC OSX 10.6 & later) Pre-load an image for use when signal is not detected Engineering the world’s best visual solutions Next generation display wall controller ADDITIONAL FEATURES WALL DESIGNER Each output monitor can take its input from any region of the input image Datapath’s hugely popular multi-screen design tool, Wall Designer has also as all of the required cropping, scaling, rotation and frame-rate conversion been updated to incorporate Fx4. Wall Designer allows users to add displays is handled by the Fx4 hardware. These regions can overlap to allow any from the ever expanding database of monitors, visualise their content by output to replicate another or can be configured to support any creative adding inputs and adjusting display regions and finally instantly program splice of the source material.
    [Show full text]
  • Common Coaxial Connectors
    Common Coaxial Connectors Below, I present a digest of important information about coaxial connectors. Most of these are for RF and microwave frequencies, but a few of the more common ones used for lower frequencies are included for completeness. Why different connectors? Many coaxial connector types are available in the audio, video, digital, RF and microwave industries, each designed for a specific purpose and application. Much of the development of the smaller connectors that perform well into the GHz and millimeter wave range has been conducted by test equipment measurement companies. One of their considerations is the number of connect-disconnect cycles that a connector pair can withstand while still performing as expected. Why different sizes and frequencies? The frequency range of any connector is limited by the excitation of the first circular waveguide propagation mode in the coaxial structure. Decreasing the diameter of the outer conductor increases the highest usable frequency. Filling the airspace with dielectric lowers the highest frequency and increases losses. The mating process typically changes the geometry of the mating surfaces and resistance loss at those interfaces as well as geometric changes result in variation of impedance and loss. Some RF connectors are sexless (such as the HP/Amphenol APC-7 and the General Radio GR874 and GR900BT). Most connectors have female structures with slotted fingers that introduce a small inductance. The fingers accommodate tolerance variations, but reduce repeatability and may ultimately break after 1000 connections. There are slotless versions of connectors available, but they are, for the most part, relegated to instrument interfaces. Slotless female connectors are very difficult to clean and require very careful connection and disconnection.
    [Show full text]
  • Type N Amphenol®
    Type N Amphenol® Description Named for Paul Neill of Bell Labs and developed in the 1940’s. The Type N offered the first true microwave performance. Type N connector was developed to satisfy the need for a durable, weatherproof medium size RF connector with consistent performance through 11 GHz. There are two families of Type N connectors: • Standard N (Coaxial Cable) • Helical N (Corrugated Cable) Primary applications are the termination of medium to miniature size coaxial cable: RG-8 and RG-225 RG-58 and RG-141 Type N Specifications 226 Features/Benefits • Accommodates a wide range of medium to Cable Plugs 227 miniature sized RG coaxial cables in a rugged Right Angle Plugs 228 medium size design. Provides customer flexibility Jacks 229-232 in their design and manufacturing with a durable Receptacles, Accessories 234-235 connector. Adapters 236 • Broad line of Military (M39012 prefix), Industrial (UG prefix), and Commercial Grade (RFX suffix) products available. Gives customer choices in Helical N Corrugated weighing cost versus performance benefits. Cable Connectors N Type • Available in many styles: Plugs (Straight and Specifications 239 Right Angle) and Jacks (Panel Mount, Bulkhead Plugs 240-241 Mount, Receptacle). Meets many customer application demands. Jacks 242-243 Application • Antennas • Radar • Base Stations • Radios • Broadcast • Satcom • Cable Assemblies • Surge Protection • Components • WLAN • Instrumentation • Mil-Aero Amphenol Corporation Tel: 800-627-7100 www.amphenolrf.com 225 Type N Amphenol® Specifications ELECTRICAL MECHANICAL ENVIRONMENTAL Impedance 50 ohms Mating 5/8-24 threaded Temperature range TFE -65°C to + 165°C Frequency range 0-11 GHz coupling Copolymer of Styrene: - 55°C to + 85°C Voltage rating 1,500 volts peak Cable affixment All crimps: hex braid (braid or jacket) crimp.
    [Show full text]