Chapter 3: Stoichiometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Types of Chemical Reactions and Solution Stoichiometry
Types of Chemical Reactions 4 and Solution Stoichiometry Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes • Strong Electrolytes • Weak Electrolytes • Nonelectrolytes 4.3 The Composition of Solutions • Dilution 4.4 Types of Chemical Reactions 4.5 Precipitation Reactions 4.6 Describing Reactions in Solution 4.7 Stoichiometry of Precipitation Reactions 4.8 Acid–Base Reactions • Acid–Base Titrations 4.9 Oxidation–Reduction Reactions • Oxidation States • The Characteristics of Oxidation–Reduction Reactions 4.10 Balancing Oxidation– Reduction Equations • The Half-Reaction Method for Balancing Oxidation–Reduction Reactions in Aqueous Solutions Yellow lead(II) iodide is produced when lead(II) nitrate is mixed with potassium iodide. 126 Much of the chemistry that affects each of us occurs among substances dissolved in water. For example, virtually all the chemistry that makes life possible occurs in an aqueous environment. Also, various medical tests involve aqueous reactions, depending heavily on analyses of blood and other body fluids. In addition to the common tests for sugar, cholesterol, and iron, analyses for specific chemical markers allow detection of many diseases before obvious symptoms occur. Aqueous chemistry is also important in our environment. In recent years, contami- nation of the groundwater by substances such as chloroform and nitrates has been widely publicized. Water is essential for life, and the maintenance of an ample supply of clean water is crucial to all civilization. To understand the chemistry that occurs in such diverse places as the human body, the atmosphere, the groundwater, the oceans, the local water treatment plant, your hair as you shampoo it, and so on, we must understand how substances dissolved in water react with each other. -
Chapter 17: Electrochemistry
4/12/2021 17.1 Electrochemistry Chapter 17: Deals with chemical reactions that produce electricity and the changes associated Electrochemistry with the passage of charge through matter. Reactions involve electron transfer – oxidation/reduction (redox) Example: A typical AA alkaline battery is rated at 1.5 V. This means the electrical potential difference between the +/– terminals is 1.5 V. It is the chemical reactions in the battery that give rise to this difference. 1 2 1 2 Redox Recap Assigning oxidation numbers Oxidation number rules: 1.) Ox. # = 0 for an atom in pure, elemental state 2+ 2.) Ox. # = <charge> for monatomic ion: Ox. # = 2 for Ca Oxidation number: +1 –1 3.) Sum of all Ox. #’s for atoms in polyatomic ion = charge on polyatomic ion Total contribution to charge: +2 –2 = 0 4.) Sum of all Ox. #’s = charge on species: H2O Ox.(H) = 1, Ox(O) = –2 Oxidation number: +1 +6 –2 Total contribution to charge: +2 +6 –8 = 0 3 4 3 4 1 4/12/2021 Redox terminology Redox terminology applied Oxidation – the loss of electrons OIL RIG – “oxidation is losing, Reduction – the gain of electrons reduction is gaining” 0 +2 –1 +2 –1 0 “Substance X undergoes oxidation.” – X lost electrons 0 +2 –2 +2 –2 0 “Substance Y was reduced.” – Y gained electrons Oxidizing agent – the species that undergoes reduction What was oxidized? Zn Oxidizing agent = CuCl2 Reducing agent – the species that undergoes oxidation What was reduced? Cu2+ Reducing agent = Zn “Substance Z is the oxidizing agent.” – Z gains electrons What is the spectator ion? Cl– (Think: Travel agent – allows someone else to travel) 5 6 5 6 17.1 Balancing redox reactions Example: Balancing redox reaction in acidic solution 1.) Assign oxidation states to all atoms. -
Gas Stoichiometry 84 Mins
Chemistry 20 Unit 4 Lesson 3 - Gas Stoichiometry 84 mins Gas Stoichiometry - gas volume, pressure and temperature, molar If 275 g of propane burns in a gas barbecue, what volume, and the ideal gas law volume of oxygen measured at STP is required for the reaction? PV = nRT C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g) 760.000 mmHg = 101.325 kPa = 1.00000 atm 275 g V = ?? R = 8.31451 LkPa/molK 44.11g/mol 32.00 g/mol STP = 0.00 °C, 101.325 kPa 1 mol nC3H8 = 275g × = 6.23 mol 44.11g/mol SATP = 25.00 °C, 100.00 kPa 5 mol of O2 nO2 = 6.23 mol × = 31.2 mol 1 mol of C3H8 nRT 31.2 mol ×8.31451×273.15K VO2 = = = 699 L P 101.325 kP a Gravimetric and Gas Stoichiometry Overview 1. Write a balanced chemical equation and list the A typical Alberta home heated with natural gas (assume measurements, unknown quantity symbol, and methane, CH4(g)) consumes 2.00 ML of natural gas conversion factors for the measured and required during the month of December. What volume of oxygen substances. at SATP is required to burn 2.00 ML of methane 2. Convert the measured quantity to a chemical measured at 0 °C and 120 kPa? amount using the appropriate conversion factor. 3. Calculate the chemical amount of the required CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) substance using the mole ratio from the balanced 2.00 ML V = ??? equation. = M = 4. Convert the calculated chemical amount to the 2.00 × 106L 32.00g/mol final quantity requested using the appropriate M = 16.05 conversion factor. -
Chapter 20 Electrochemistry
Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method of half-reactions. Sketch a voltaic cell and identify its cathode, anode, and the directions in which electrons and ions move. o Calculate standard emfs (cell potentials), E cell, from standard reduction potentials. Use reduction potentials to predict whether a redox reaction is spontaneous. o o Relate E cell to DG and equilibrium constants. Calculate emf under nonstandard conditions. Identify the components of common batteries. Describe the construction of a lithium-ion battery and explain how it works. Describe the construction of a fuel cell and explain how it generates electrical energy. Explain how corrosion occurs and how it is prevented by cathodic protection. Describe the reactions in electrolytic cells. Relate the amounts of products and reactants in redox reactions to electrical charge. Electrochemistry Electrochemistry is the study of the relationships between electricity and chemical reactions. • It includes the study of both spontaneous and nonspontaneous processes. 1 Redox reactions: assigning oxidation numbers Oxidation numbers help keep track of what species loses electrons and what species gains them. • An element is oxidized when the oxidation number increases • An element is reduced when the oxidation number decreases • an oxidizing agent causes another element to be oxidized • a reducing agent causes another element to be reduced. Assigning oxidation numbers (sect. 4.4) 1. Elemental form, each atom has ox. # = 0. Zn O2 O3 I2 S8 P4 2. Simple ions, = charge on ion. -1 for Cl-, +2 for Mg2+ 3. -
Introduction to Chemistry
Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable. -
Stoichiometry: Predicting Amounts in Reactions
Name: Per: 4-4c: Stoichiometry: Predicting Amounts in Reactions Stoichiometry is the process of determining how much product is made or how much reactant is needed during a chemical reaction. As we know, in chemical reactions atoms are conserved. We show this in a balanced chemical equation. The balanced chemical equation tells us two things: 1. Which substances begin with (reactants) and end with (products) during the rearrangement process. 2. The ratio of particles involved. This ratio can be seen either as a ratio of individual particles OR as a ratio of moles. In the lab it is only practical to work with moles of substances rather than individual atoms or molecules, and so we interpret our equations as a ratio of moles, or a mole ratio. Example: 2 Mg + 1O2 → 2 MgO means for every 2 moles of Mg burned, 1 mole of O2 is required to produce 2 moles of MgO, or a ratio of 2 moles Mg : 1 mole O2 : 2 moles MgO We can use this mole ratio relationship to make predictions about how much we need of something, or how much we can make from what we have. Making Predictions In every reaction, there are three stages we need to consider to make good predictions: 1. Before: What we have before the reaction takes place. 2. Change: How much of each substance is formed (products) or rearranged (reactants) 3. After: How much of each substance is present after the reaction is complete. (difference between the Before and the Change) Some good organization can help us in making good predictions. -
Stoichiometry's PCK of University Chemistry Professors Abstract Keywords -...DR ANDONI GARRITZ RUIZ
Stoichiometry’s PCK of University Chemistry Professors Kira Padilla and Andoni Garritz Facultad de Química, Universidad Nacional Autónoma de México Ciudad Universitaria, Avenida Universidad 3000 04510 México, Distrito Federal, México Phone: (5255) 56223711 Fax: (5255) 56223439 Emails: [email protected]; [email protected] Abstract The purpose of this paper is to document the Pedagogical Content Knowledge (PCK) for a set of four university chemistry professors teaching Stoichiometry; i.e. the study of the mass and amount of substance ratios between two or more substances undergoing a chemical change or, in brief, ‘the science of chemical calculations’. This topic can be taught with a simple algorithmic purpose (going for immediate procedures without much understanding about what to do and/or why doing it) or it can be used to reinforce crucial concepts on the chemical reaction or even the particulate constitution of matter. A discussion is presented on the approach given by these four professors in their General Chemistry classes, which has been classified as Conceptual, Representational, Contextual and Procedural. Results are conclusive on the various pedagogical focuses on three of the approaches (Representational, Contextual and Procedural), and the equivalence of the four professors Conceptual approach. Results also reveal a link between Conceptual and Procedural knowledge. Keywords Pedagogical content knowledge, Content Representation, Conceptual profile zones, Stoichiometry, University level Introduction Shulman (1986, 1987) introduced the term pedagogical content knowledge (PCK) in order to draw attention to the value of the special amalgam of content and pedagogical knowledge that a teacher needs to be an outstanding one. Stoichiometry is a specific topic of the College General Chemistry course which PCK deserves to be documented and commented, as it has been pointed out by De Jong, Veal & Van Driel (2002). -
0.4314 Moles Pentane 2.157 Moles CO2 94.93 Grams of CO2 Produced
Stoichiometry Worksheet 1. In the combustion reaction of pentane with gaseous oxygen, CO2 and water vapor are produced. Ex: CH3CH2CH2CH2CH3 (l) + 8O2 (g) 5CO2 (g) + 6H2O (g) If you are given 31.125g of pentane to burn, how many grams of CO2 gas will be produced (assuming O2 (g) is in excess)? -the first step in a stoichiometry problem is to determine the number of moles of our reactants. We know that O2 is in excess, so we only need to convert pentane to moles. First we must find the molecular weight (MW) of pentane: MW of pentane: 72.15 grams/mole Now that we know the MW we can find the moles of pentane. Grams of pentane = 31.125g 0.4314 moles pentane MW of pentane = 72.15 g/mole Next, we will use the molar ratios to determine the moles of CO2 produced. CH3CH2CH2CH2CH3 (l) + 8O2 (g) 5CO2 (g) + 6H2O (g) Comparing the moles of pentane to that of CO2, it can be seen that the molar ratio is 1:5 pentane:carbon dioxide. -Multiply moles of pentane by the molar ratio to calculate the moles of CO2. 0.4314 moles pentane * 5 moles CO2 2.157 moles CO2 1 moles pentane -Lastly, the moles of CO2 must be converted to grams, this can be done through the use of the MW of CO2 = 44.01 g/mole. 2.157 moles of CO2 * MW of CO2 44.01 g/mole = 94.93 grams of CO2 produced 2. a) If you react 19.8 g of lead(II) nitrate with 12.4 g of sodium iodide, how much lead(II) iodide is formed? -Because we were given two amounts of our reactants, we know this is a limiting reactant problem and must first determine which reactant is limiting. -
Battle of the Acids Weak Acids and Bases SCIENTIFIC
Battle of the Acids Weak Acids and Bases SCIENTIFIC Introduction Not all acids are created equal. This demonstration compares the “frothing and foaming” activity of different acids with calcium carbonate and examines their behavior in the presence of their conjugate bases to distinguish strong versus weak acids. The use of a “rainbow acid” universal indicator produces a rainbow spectrum of color changes as the mixtures react. Concepts • Strong acid • Weak acid • Conjugate base • pH Materials (for each demonstration) Acetic acid, CH3COOH, 1 M, 400 mL Water, distilled or deionized Calcium carbonate, CaCO3, 40 g Demonstration tray, large Hydrochloric acid, HCl, 1 M, 400 mL Graduated cylinder, 250-mL “Rainbow acid” universal indicator, 5 mL Hydrometer cylinders, 600-mL, 4 (includes accompanying color chart) Pipet, Beral-type Sodium acetate, NaCH3CO2, 16 g Weighing dishes or small beakers, 6 Sodium chloride, NaCl, 12 g Safety Precautions Hydrochloric acid and acetic acid solutions are toxic and corrosive. Avoid contact with skin and eyes. “Rainbow-acid” universal indicator solution is an alcohol-based solution and is flammable. Avoid contact with flames or other ignition sources. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Preparation To save time in the presentation, pre-measure the amounts of solids needed for the demonstration. Weigh out 12 g of sodium chloride, 16 g of sodium acetate, and 4 × 10-g samples of calcium carbonate in separate, labeled weighing dishes or small beakers. Procedure 1. Obtain 4 large hydrometer cylinders or tall-form beakers and place them on a large demonstration tray. -
Stoichiometry of Chemical Reactions 175
Chapter 4 Stoichiometry of Chemical Reactions 175 Chapter 4 Stoichiometry of Chemical Reactions Figure 4.1 Many modern rocket fuels are solid mixtures of substances combined in carefully measured amounts and ignited to yield a thrust-generating chemical reaction. (credit: modification of work by NASA) Chapter Outline 4.1 Writing and Balancing Chemical Equations 4.2 Classifying Chemical Reactions 4.3 Reaction Stoichiometry 4.4 Reaction Yields 4.5 Quantitative Chemical Analysis Introduction Solid-fuel rockets are a central feature in the world’s space exploration programs, including the new Space Launch System being developed by the National Aeronautics and Space Administration (NASA) to replace the retired Space Shuttle fleet (Figure 4.1). The engines of these rockets rely on carefully prepared solid mixtures of chemicals combined in precisely measured amounts. Igniting the mixture initiates a vigorous chemical reaction that rapidly generates large amounts of gaseous products. These gases are ejected from the rocket engine through its nozzle, providing the thrust needed to propel heavy payloads into space. Both the nature of this chemical reaction and the relationships between the amounts of the substances being consumed and produced by the reaction are critically important considerations that determine the success of the technology. This chapter will describe how to symbolize chemical reactions using chemical equations, how to classify some common chemical reactions by identifying patterns of reactivity, and how to determine the quantitative relations between the amounts of substances involved in chemical reactions—that is, the reaction stoichiometry. 176 Chapter 4 Stoichiometry of Chemical Reactions 4.1 Writing and Balancing Chemical Equations By the end of this section, you will be able to: • Derive chemical equations from narrative descriptions of chemical reactions. -
Hydrogen Peroxide Formation and Stoichiometry of Hydroxylation Reactions Catalyzed by Highly Purified Liver Microsomal Cytochrome P-450’
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 180, 343-347 (1977) Hydrogen Peroxide Formation and Stoichiometry of Hydroxylation Reactions Catalyzed by Highly Purified Liver Microsomal Cytochrome P-450’ GERALD D. NORDBLOM AND MINOR J. COON Department of Biological Chemistry, Medical School, The University of Michigan, Ann Arbor, Michigan 48109 Received July 23, 1976 The stoichiometry of hydroxylation reactions catalyzed by cytochrome P-450 was studied in a reconstituted enzyme system containing the highly purified cytochrome from phenobarbital-induced rabbit liver microsomes. Hydrogen peroxide was shown to be formed in the reconstituted system in the presence of NADPH and oxygen; the amount of peroxide produced varied with the substrated added. NADPH oxidation, oxygen consumption, and total product formation (sum of hydroxylated compound and hydrogen peroxide) were shown to be equimolar when cyclohexane, benzphetamine, or dimethylaniline served as the substrate. The stoichiometry observed represents the sum of two activities associated with cytochrome P-450. These are (1) hydroxylase activity: NADPH + H+ + O2 + RH + NADP+ + H,O + ROH; and (2) oxidase activity: NADPH + H+ + O2 + NADP+ + H,O,. Benzylamphetamine (desmethylbenzphetamine) acts as a pseudosubstrate in that it stimulates peroxide formation to the same extent as the parent compound (benzphetamine), but does not undergo hydroxylation. Accordingly, when benzylamphetamine alone is added in control experiments to correct for the NADPH and O2 consumption not associated with benzphetamine hydroxylation, the expected 1:l:l stoichiometry for NADPH oxidation, O2 consumption, and formaldehyde formation in the hydroxylation reaction is observed. Cytochrome P-450, the terminal oxidase purified enzyme fractions, the addition of of the liver microsomal mixed-function ox- catalase reduced the oxygen uptake to the idase system, catalyzes the NADPH-de- expected value (9). -
15-1 SECTION 15 ELECTROCHEMISTRY Electrochemistry: the Branch of Chemistry That Covers the Relative Strengths of Oxidants and R
15-1 SECTION 15 ELECTROCHEMISTRY Some systems involving redox reactions can be designed so that the reactants (and products) are partially separated from each other, and the reaction leads to an electric current being produced in an external circuit, and which can be used for many useful purposes. Batteries and their many uses are the obvious examples. Electrical energy can also be used to drive non-spontaneous chemical reactions to produce desired products in processes known as electrolysis. This section introduces the language and concepts of these processes collectively known as electrochemistry. Electrochemistry: The branch of chemistry that covers the relative strengths of oxidants and reductants, the production of electric current from chemical reactions, and the use of electricity to produce chemical change. Electrochemical cell: A system made up of two electrodes in contact with an electrolyte. Electrode: A conductor of electricity, commonly a metal or graphite in contact with an electrolyte in an electrochemical cell. Electrolyte: A medium (phase) which conducts electricity by the movement of ions [e.g. a molten salt] or a substance which dissolves in a solvent to give a conducting solution [e.g. aqueous sodium chloride, NaCl or any other soluble ionic compound]. Electrode reaction: A chemical reaction occurring at an electrode involving gain or loss of electrons. It is called a half-reaction. [e.g. Cu2++ 2e– → Cu; Zn → Zn2+ + 2e– ] (See page 12-4.) Redox couple: The two species of a half- reaction involving oxidation or reduction. (See 2+ – page 12-3.) Represented as oxidised species/reduced species [e.g. Cu /Cu; Cl2/Cl ; Fe3+/Fe2+].