Inhibitory Receptor Agonists: the Future of Autoimmune Disease Therapeutics?

Total Page:16

File Type:pdf, Size:1020Kb

Inhibitory Receptor Agonists: the Future of Autoimmune Disease Therapeutics? Available online at www.sciencedirect.com ScienceDirect Inhibitory receptor agonists: the future of autoimmune disease therapeutics? 1,2 1 Stephanie Grebinoski and Dario AA Vignali + Central and peripheral tolerance both contribute to protection Tregs, implying that >30% of CD4 effectors could be against autoimmunity. The pathogenesis of autoimmunity, autoreactive [2 ]. Critical deficits or limitations in toler- however, can result from critical deficits or limitations in ance mechanisms, rather than complete failure, can con- peripheral and/or central tolerance mechanisms, presenting an tribute to autoimmunity (Figure 1). Evidence suggests opportunity for therapeutic intervention. Recent advances that the majority of these deficits affect peripheral toler- highlight the substantial impact of inhibitory receptors (IRs), ance, presenting an opportunity for therapeutic interven- which mediate peripheral tolerance, in autoimmunity. Deletion tion [1]. and blockade studies in mice, IR disruption in humans, and correlation with positive disease outcomes all highlight Recent advances in cancer immunotherapy indicate that IR potential clinical benefits of enhancing IR signaling modulation affects T cell function and disease outcome, (agonism) — specifically CTLA4, PD1, LAG3, TIM3 and which merited the 2018 Nobel Prize in Medicine [3]. IRs TIGIT — to treat autoimmune disease. Although critical mediateperipheral tolerance byantagonizing T cell receptor questions remain, IR agonists represent an unappreciated and (TCR) signaling and/or signal propagation in autoreactive T untapped opportunity for the treatment of autoimmune and cells, resulting in a dysfunctional state [4]. Evolutionarily, inflammatory diseases. IRs are upregulated in response TCR signaling to dampen the immune response post infection or upon recognition of Addresses self-antigen(Figure1). Under chronic conditions, IR expres- 1 Department of Immunology, University of Pittsburgh School of sion is heightened and T cell effector function is inhibited Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA 2 [5]. Furthermore, evidence suggests that IRs are often Graduate Program of Microbiology and Immunology, University of upregulated as a module (i.e. multiple IRs at the same time), Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15213, USA implying cooperative and/or synergistic activity [6 ]. IRs have multiple ligands and different signaling mechanisms Corresponding author: Vignali, Dario AA ([email protected]) (reviewed in [7–9]), but overall result in dampening immune activation. An increasing appreciation for the role of IRs in Current Opinion in Immunology 2020, 67:xx–yy autoimmunity suggests that IR agonism (increasing inhibi- tory signaling and its downstream consequences) may help This review comes from a themed issue on Autoimmunity prevent and manage autoimmune disease (Tables 1–3). Edited by Antonio LaCava Such evidence is exemplified by deletion or blockade stud- ies in mice, outcomes of IR disruption in humans, and positive correlation of IR expression with favorable disease https://doi.org/10.1016/j.coi.2020.06.001 outcomes. This review briefly summarizes the current state of the field in understanding the role ofIRsin autoimmunity, 0952-7915/ã 2020 Elsevier Ltd. All rights reserved. with a focus on the IRs currently in clinical research: cyto- toxic T-lymphocyte-associated protein 4 (CTLA4), Pro- gramed cell death protein 1 (PD1), Lymphocyte Activating Gene 3 (LAG3), T cell immunoglobulin and mucin domain- containing protein 3 (TIM3), and T cell immunoreceptor Introduction with Ig and ITIM domains (TIGIT). Multiple mechanisms of self-tolerance protect against autoimmunity, including central and peripheral toler- Genetic deletion and antibody blockade ance. While central tolerance is critical to delete cells studies in mice expressing autoreactive B and T cell receptors, it is often Some of the most compelling evidence for the role of IRs imperfect [1]. Peripheral tolerance mechanisms, includ- in autoimmunity comes from genetic deletion or antibody ing ignorance, anergy or apoptosis, and regulatory T cells blockade studies. Under non-autoimmune prone condi- (Tregs), are therefore necessary to restrain autoreactivity tions, genetic ablation of either CTLA4 or PD1 results in + À [1]. Recent reports estimate up to 30% CD4 Foxp3 development of spontaneous autoimmune symptoms, cells in healthy mice are able to respond to ‘self’ but are albeit with slightly different manifestations. Mice defi- restrained by Tregs, and posits a compensatory role for cient in CTLA4 rapidly develop severe lymphoprolifera- inhibitory receptor (IR) expression in their model lacking tive disease resulting in death by 3–4 weeks of age, www.sciencedirect.com Current Opinion in Immunology 2020, 67:1–9 2 Autoimmunity Figure 1 Current Opinion in Immunology The role of IRs under normal conditions is to limit TCR signaling and terminate an immune response post-infection or to self-antigen. In autoimmune conditions, IRs are present and limit autoimmunity, but are ultimately insufficient to completely prevent autoimmunity, opening up an opportunity for therapeutic intervention. If IR expression or signaling and subsequent downstream effects is enforced therapeutically, autoimmunity may be prevented or managed more easily by patients. whereas PD1-deficient mice develop lupus-like symp- deleting IRs exacerbates disease in autoimmune-prone toms over time, implying non-redundant functions in backgrounds or induced disease models (reviewed in maintenance of immune tolerance [10–12]. These data [15]). For example, in the non-obese diabetic (NOD) illustrate that simply eliminating PD1 or CTLA4 is mouse model of autoimmune diabetes, a spontaneous sufficient to disrupt baseline immune homeostasis model in which 80% of female mice develop diabetes and maintenance of peripheral tolerance. Alternatively, between 10 and 30 weeks of age, treatment with anti- while genetic ablation of either LAG3, TIGIT or TIM3 PD1 or anti-LAG3 induces autoimmune diabetes with in mice does not precipitate spontaneous autoimmu- 100% penetrance within only a few weeks post administra- nity, LAG3/PD1 double-knockout (KO) mice experi- tion, regardless of timing [16]. Similar results are obtained ence multiple organ autoimmunity that manifests more in global PD1, LAG3 or CTLA4 KOs on a NOD back- aggressively than PD1 KO alone, suggesting a syner- ground [16–20]. Conceptually, these results are mirrored on gistic effect in limiting autoimmunity [13,14]. This the MRL-lpr background, which is susceptible to sponta- difference in disease progression and manifestation neous lupus-like autoimmunity. On the MRL-lpr back- highlights the complexity of targeting each IR in a ground, PD1, CTLA4 and B-lymphocyte and T-lympho- disease setting, the hierarchy of importance in limiting cyte attenuator (BTLA) have been shown to limit disease autoreactivity beginning with CTLA4 and PD1, and progression in studies with KO mice and/or antibody possible synergistic effects of ‘tertiary’ IRs such as blockade [15,21]. LAG3, TIGIT and TIM3. Additionally, IR blockade or deletion worsens autoimmu- Regardless of their role in baseline immune homeostasis or nity in inducible settings. Studies using the experimental spontaneous autoimmunity, blocking or genetically autoimmune encephalomyelitis model (EAE; a mouse Current Opinion in Immunology 2020, 67:1–9 www.sciencedirect.com Inhibitory receptor agonists Grebinoski and Vignali 3 Table 1 Table 2 IR agonists showing therapeutic efficacy in mouse models of IR reinforcement studies that will be translated to treat autoim- autoimmunity. mune patients. Enforcing IR engagement in autoimmune mouse models in vivo Observations that may be translated to autoimmune disease IR Method of Disease setting Ref. IR Method of Setting studied Ref. targeted reinforcement targeted reinforcement PD1 Dendritic cells Improved EAE outcomes [53] LAG3 FGL1-Ig suppresses T Treatment with FGL1-ig [63] transduced to expressed cell proliferation in prevents Lag3+ T cell MHC carrying MOG, vitro activation PDL1, and Trail. Crosslinking LAG3 Cross-linking prevents [64] Adenovirus expressing Suppresses lupus [54] with CD3 prevented T activation of human PBMC PDL1 + ICOS inhibitor symptoms in disease cell activation prone BXSB mice LAG3 agonist Prevents activation of [65] Adenovirus expressing Ameliorates DSS Colitis [55] antibody IMP761 human PBMC, and delayed PDL1-Fc type hypersensitivity in PDL1-Ig Fusion Ameliorates T cell [55] cynomolgus macaque recombinant proteins mediated Colitis TIGIT Agonist anti-TIGIT Decreases proliferation and [66] PDL1-Fc fusion protein PDL1-fc prevented [56] cytokine production in vitro activation in synovial from CD4+ T cells collected fluid mononuclear cells from MS patients of RA patients and FGL1, fibrinogen-like protein 1; PBMC, peripheral blood mononuclear ameliorated CIA cells; MS, multiple sclerosis. PDL1-Ig fusion protein Ameliorated CIA [57] PDL1-Ig fusion protein Improves Islet [58] + anti-CD154 transplantation tolerance Treg-restricted deletion of LAG3 improves disease out- CTLA4 Transgenic mouse Protects NOD mice from [59] comes in autoimmune diabetes, as LAG3 was shown to expressing membrane autoimmune diabetes bound agonist anti- onset limit Treg proliferation in this disease setting [29 ]. CTLA4 on B cells TIM3 Galectin-9 (ligand for Ameliorates CIA [60] Finally, the timing of IR blockade administration or induc- TIM3) was administered tion of IR deletion can give rise to differing disease
Recommended publications
  • ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
    ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon
    [Show full text]
  • Deciphering the Functions of Ets2, Pten and P53 in Stromal Fibroblasts in Multiple
    Deciphering the Functions of Ets2, Pten and p53 in Stromal Fibroblasts in Multiple Breast Cancer Models DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Julie Wallace Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Michael C. Ostrowski, PhD, Advisor Gustavo Leone, PhD Denis Guttridge, PhD Dawn Chandler, PhD Copyright by Julie Wallace 2013 Abstract Breast cancer is the second most common cancer in American women, and is also the second leading cause of cancer death in women. It is estimated that nearly a quarter of a million new cases of invasive breast cancer will be diagnosed in women in the United States this year, and approximately 40,000 of these women will die from breast cancer. Although death rates have been on the decline for the past decade, there is still much we need to learn about this disease to improve prevention, detection and treatment strategies. The majority of early studies have focused on the malignant tumor cells themselves, and much has been learned concerning mutations, amplifications and other genetic and epigenetic alterations of these cells. However more recent work has acknowledged the strong influence of tumor stroma on the initiation, progression and recurrence of cancer. Under normal conditions this stroma has been shown to have protective effects against tumorigenesis, however the transformation of tumor cells manipulates this surrounding environment to actually promote malignancy. Fibroblasts in particular make up a significant portion of this stroma, and have been shown to impact various aspects of tumor cell biology.
    [Show full text]
  • A1068-CD86 Polyclonal Antibody
    BioVision 05/16 For research use only CD86 Polyclonal Antibody CATALOG NO: A1068-100 ALTERNATIVE NAMES: T-lymphocyte activation antigen CD86, Activation B7-2 antigen, B70, BU63, CTLA-4 counter-receptor B72, FUN-1, CD86, CD86, CD28LG2 Western blot analysis of CD86 in NCI-H292 cell line lysate AMOUNT: 100 µl IMMUNOGEN: KLH conjugated synthetic peptide between 269-298 amino acids from the C-terminal region of human CD86. MOLECULAR WEIGHT: 37 kDa HOST/ISOTYPE: Rabbit IgG SPECIES REACTIVITY: Human PURIFICATION: This antibody is purified through a protein A column, followed by peptide affinity purification. FORM: Liquid FORMULATION: Supplied in PBS with 0.09% (W/V) sodium azide. STORAGE CONDITIONS: Maintain refrigerated at 2-8°C for up to 6 months. For long term RELATED PRODUCTS storage store at -20°C in small aliquots to prevent freeze-thaw cycles. DESCRIPTION: This gene encodes a type I membrane protein that is a member of the immunoglobulin superfamily. This protein is expressed by Human CellExp™ B7-2 /CD86, human recombinant (Cat. No. 7496-10, -50) antigen-presenting cells, and it is the ligand for two proteins at the CD86 (Human) ELISA Kit (Cat. No. K4175-100) cell surface of T cells, CD28 antigen and cytotoxic T-lymphocyte- Human CellExp™LAG3 /CD223, human recombinant (Cat. No. 7278-10, -50) associated protein 4. Binding of this protein with CD28 antigen is a costimulatory signal for activation of the T-cell. Binding of this CD223 (LAG3) Polyclonal Antibody (Cat. No. A1067-100) protein with cytotoxic T-lymphocyte-associated protein 4 negatively regulates T-cell activation and diminishes the immune response.
    [Show full text]
  • Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples
    Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples Qiang Liu Chinese Academy of Medical Sciences & Peking Union Medical College Yihang Qi ( [email protected] ) Chinese Academy of Medical Sciences and Peking Union Medical College https://orcid.org/0000-0001- 7589-0333 Jie Zhai Chinese Academy of Medical Sciences & Peking Union Medical College Xiangyi Kong Chinese Academy of Medical Sciences & Peking Union Medical College Xiangyu Wang Chinese Academy of Medical Sciences & Peking Union Medical College Yi Fang Chinese Academy of Medical Sciences & Peking Union Medical College Jing Wang Chinese Academy of Medical Sciences & Peking Union Medical College Research Keywords: Cancer immunotherapy, CD223, LAG3, Immune response, Inammatory activity Posted Date: June 19th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-36422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Despite the promising impact of cancer immunotherapy targeting CTLA4 and PD1/PDL1, a large number of cancer patients fail to respond. LAG3 (Lymphocyte Activating 3), also named CD233, is a protein Coding gene served as alternative inhibitory receptors to be targeted in the clinic. The impact of LAG3 on immune cell populations and co-regulation of immune response in breast cancer remained largely unknown. Methods To characterize the role of LAG3 in breast cancer, we investigated transcriptome data and associated clinical information derived from a total of 2994 breast cancer patients. Results We observed that LAG3 was closely correlated with major molecular and clinical characteristics, and was more likely to be enriched in higher malignant subtype, suggesting LAG3 was a potential biomarker of triple-negative breast cancer.
    [Show full text]
  • Diabetes in the Absence of LAG-3 Cutting Edge
    Cutting Edge: Accelerated Autoimmune Diabetes in the Absence of LAG-3 Maria Bettini, Andrea L. Szymczak-Workman, Karen Forbes, Ashley H. Castellaw, Mark Selby, Xiaoyu Pan, This information is current as Charles G. Drake, Alan J. Korman and Dario A. A. Vignali of September 24, 2021. J Immunol 2011; 187:3493-3498; Prepublished online 26 August 2011; doi: 10.4049/jimmunol.1100714 http://www.jimmunol.org/content/187/7/3493 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/08/26/jimmunol.110071 Material 4.DC1 http://www.jimmunol.org/ References This article cites 25 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/187/7/3493.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Cutting Edge: Accelerated Autoimmune Diabetes in the Absence of LAG-3 Maria Bettini,* Andrea L.
    [Show full text]
  • Point Mutation in CD19 Facilitates Immune Escape of B Cell Lymphoma from CAR-­T Cell Therapy
    Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-001150 on 6 October 2020. Downloaded from Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR- T cell therapy 1 1 1 1 1 1 Zhen Zhang, Xinfeng Chen, Yonggui Tian, Feng Li , Xuan Zhao, Jinyan Liu, 1 1,2,3,4 Chang Yao, Yi Zhang To cite: Zhang Z, Chen X, ABSTRACT relapses after CD19 CAR-T cell therapy are Tian Y, et al. Point mutation Background Tumor relapse due to mutation in CD19 can attributed to the antigen loss, indicating an in CD19 facilitates immune hinder the efficacy of chimeric antigen receptor (CAR)- T urgent need for investigating the mechanisms escape of B cell lymphoma from cell therapy. Herein, we focused on lymphoma patients CAR- T cell therapy. Journal underlying recurrence and for improving whose B cells exhibited a point mutation in CD19 of B cells 4 5 for ImmunoTherapy of Cancer the efficacy of CAR- T cell therapy. Inter- 2020; :e001150. doi:10.1136/ after CAR-T cell infusion. 8 + estingly, one of the specific mechanisms jitc-2020-001150 Methods The CAR- T and CD19 B cells from peripheral blood or bone marrow were assessed using flow of tumor escape that has been reported cytometry. Genome sequencing was conducted to identify suggests that exon mutations affecting the ► Additional material is + published online only. To view, the molecular characteristics of CAR- T and CD19 B cells CD19 gene and its splicing isoforms, leading please visit the journal online from pre-rela pse and postrelapse samples.
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • SLPI and Soluble BTLA As Immunological Markers in Severe Bacterial Infections
    SLPI and soluble BTLA as immunological markers in severe bacterial infections To my family Örebro Studies in Medicine 211 ANNA LANGE SLPI and soluble BTLA as immunological markers in severe bacterial infections © Anna Lange, 2020 Title: SLPI and soluble BTLA as immunological markers in severe bacterial infections Publisher: Örebro University 2020 www.oru.se/publikationer Print: Örebro University, Repro 04/2020 ISSN 1652-4063 ISBN 978-91-7529-335-6 Abstract Anna Lange (2020): SLPI and soluble BTLA as immunological markers in severe bacterial infections. Örebro Studies in Medicine 211. Clinical presentation, and outcome of infections are affected by host-, and etiology- (focus of infection and pathogen) related factors. The im- mune response is controlled by a network of regulating pathways. This thesis focuses on Secretory Leukocyte Protease Inhibitor (SLPI), a protease inhibitor with anti-inflammatory properties, and the previously non-studied soluble isoform of B and T lymphocyte attenuator (sBTLA), a membrane-associated regulatory protein. Plasma concentrations of SLPI and sBTLA were assessed in relation to etiology, severity, mortality, and markers of inflammation and immunosuppression, in i) community- acquired pneumonia (CAP) (SLPI), ii) intensive care unit (ICU) treated severe sepsis and septic shock (sBTLA), and iii) dynamically in BSI (SLPI and sBTLA). Main findings were: higher expression of SLPI in pneumonia, com- pared to other sources, higher initial concentrations in Streptococcus pneumoniae, and Staphylococcus aureus BSI, compared to Escherichia coli BSI, and higher SLPI concentrations in sepsis compared to non-septic BSI. Interestingly, men with pneumonia had higher plasma levels of SLPI, both in CAP and BSI. Likewise, sBTLA was associated with severity, but preferentially at higher organ failure scores.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • View Dendritic Cell Development Poster
    Overview of Dendritic Cell Development Lineage–, CD45+, Common CD117 (c-kit) Common MHCII+, CD11c+ – + CD207 (Langerin) Myeloid CD117 (c-kit) Lineage , CD45 , Myeloid Progenitor MHCII (HLA-DR)+, CD11c+ Progenitor CD324 (E-Cadherin) Human Mouse CD326 (EpCAM) CD207 (Langerin) TGFb1 Cells CD11b, CD115 Cells CD14 Monocyte CD324 (E-Cadherin) Monocyte M-CSF CD11b – + Ly6C Langerhans CD24 Lineage , CD45 , M-CSF CD326 (EpCAM) MHCII (HLA-DR)+, CD11c+ Langerhans CD11blo Zbtb46– Cells CD172a (Sirp-α) CD16 CD1ahi, CD1c CD205 (DEC-205) Cells CSF F4/80 CD64 CD172a (Sirp-α) Lineage–, CD45+, FLT3L TLR3, TLR11 CD1a, CD1c Inflammatory CD369 (Dectin-1/CLEC7A) MHCII+, CD11c+ +/– CSF IL-15 CD8–, CD14– CD11b, CD14 CD371 (CLEC12A) CD64 Monocyte- FLT3L Inflammatory CD370 (Clec9a)– CD172a (Sirp-α) IL-15 CLEC6A CD11b derived lo Monocyte- CD206, CD209 (DC-SIGN) TLR1, TLR2, TLR3 , TLR6 CD209a (DC-SIGN) CD367 (DCIR/CLEC4A) DCs CD14– CD272 (BTLA)lo derived CD369 (Dectin-1/CLEC7A) DCs Common Ly-6C – + CD371 (CLEC12A) CD117 (c-kit) Lineage , CD45 , IL-1β, IL-6, IL-10, TLR1-6, TLR7-8, TLR10 Dendritic + lo CLEC6A – – CD135/FLT3 MHCII , CD11c IL-12, IL-23, TNF CD8a , CD14 IL-1β, IL-6 IL-10, Precursor TLR3lo, TLR4, TLR7, TLR8 CD45R (B220) IL-12, IL-23, TNF Plasmacytoid CD207 (Langerin)– Cells CD317 (BST-2) Common Lineage–, CD45+, FLT3L DCs Lineage–, CD45+, + Ly6C + lo/– CD207 IFN Type I + + Dendritic CD135/FLT3 MHCII (HLA-DR) , CD11c Lineage–, CD45+, IRF7, IRF8, BATF3hi Siglec-H MHCII (HLA-DR) , CD11c hi – + CD123 + + Dermal SpiB, Zbtb46 CD1a, CD64 CD1a Precursor CD117 (c-kit)
    [Show full text]
  • Opposing Regulatory Functions of the TIM3 (HAVCR2)
    Opposing regulatory functions of the TIM3 (HAVCR2) signalosome in primary effector T cells as revealed by quantitative interactomics Yunhao Zhai, Javier Celis-Gutierrez, Guillaume Voisinne, Daiki Mori, Laura Girard, Odile Burlet-Schiltz, Anne Gonzalez de Peredo, Romain Roncagalli, Bernard Malissen To cite this version: Yunhao Zhai, Javier Celis-Gutierrez, Guillaume Voisinne, Daiki Mori, Laura Girard, et al.. Opposing regulatory functions of the TIM3 (HAVCR2) signalosome in primary effector T cells as revealed by quantitative interactomics. Cellular and molecular immunology, Nature Publishing Group/Chinese Society of Immunology, In press, 10.1038/s41423-020-00575-7. hal-03086942 HAL Id: hal-03086942 https://hal-amu.archives-ouvertes.fr/hal-03086942 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Cellular & Molecular Immunology www.nature.com/cmi CORRESPONDENCE OPEN Opposing regulatory functions of the TIM3 (HAVCR2) signalosome in primary effector T
    [Show full text]
  • The Role of Ubiquitination in NF-Κb Signaling During Virus Infection
    viruses Review The Role of Ubiquitination in NF-κB Signaling during Virus Infection Kun Song and Shitao Li * Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; [email protected] * Correspondence: [email protected] Abstract: The nuclear factor κB (NF-κB) family are the master transcription factors that control cell proliferation, apoptosis, the expression of interferons and proinflammatory factors, and viral infection. During viral infection, host innate immune system senses viral products, such as viral nucleic acids, to activate innate defense pathways, including the NF-κB signaling axis, thereby inhibiting viral infection. In these NF-κB signaling pathways, diverse types of ubiquitination have been shown to participate in different steps of the signal cascades. Recent advances find that viruses also modulate the ubiquitination in NF-κB signaling pathways to activate viral gene expression or inhibit host NF-κB activation and inflammation, thereby facilitating viral infection. Understanding the role of ubiquitination in NF-κB signaling during viral infection will advance our knowledge of regulatory mechanisms of NF-κB signaling and pave the avenue for potential antiviral therapeutics. Thus, here we systematically review the ubiquitination in NF-κB signaling, delineate how viruses modulate the NF-κB signaling via ubiquitination and discuss the potential future directions. Keywords: NF-κB; polyubiquitination; linear ubiquitination; inflammation; host defense; viral infection Citation: Song, K.; Li, S. The Role of 1. Introduction Ubiquitination in NF-κB Signaling The nuclear factor κB (NF-κB) is a small family of five transcription factors, including during Virus Infection. Viruses 2021, RelA (also known as p65), RelB, c-Rel, p50 and p52 [1].
    [Show full text]