LAG-3: from Molecular Functions to Clinical Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon -
(PDCO) Minutes of the Meeting on 29 January - 01 February 2019
1 March 2019 EMA/PDCO/56017/2019 Inspections, Human Medicines Pharmacovigilance and Committees Division Paediatric Committee (PDCO) Minutes of the meeting on 29 January - 01 February 2019 Chair: Dirk Mentzer – Vice-Chair: Koenraad Norga 29 January 2019, 14:00- 19:00, room 3A 30 January 2019, 08:30- 19:00, room 3A 31 January 2019, 08:30- 19:00, room 3A 01 February 2019, 08:30- 13:00, room 3A Disclaimers Some of the information contained in this set of minutes is considered commercially confidential or sensitive and therefore not disclosed. With regard to intended therapeutic indications or procedure scopes listed against products, it must be noted that these may not reflect the full wording proposed by applicants and may also vary during the course of the review. Additional details on some of these procedures will be published in the PDCO Committee meeting reports (after the PDCO Opinion is adopted), and on the Opinions and decisions on paediatric investigation plans webpage (after the EMA Decision is issued). Of note, this set of minutes is a working document primarily designed for PDCO members and the work the Committee undertakes. Further information with relevant explanatory notes can be found at the end of this document. Note on access to documents Some documents mentioned in the minutes cannot be released at present following a request for access to documents within the framework of Regulation (EC) No 1049/2001 as they are subject to on-going procedures for which a final decision has not yet been adopted. They will become public when adopted or considered public according to the principles stated in the Agency policy on access to documents (EMA/127362/2006). -
A1068-CD86 Polyclonal Antibody
BioVision 05/16 For research use only CD86 Polyclonal Antibody CATALOG NO: A1068-100 ALTERNATIVE NAMES: T-lymphocyte activation antigen CD86, Activation B7-2 antigen, B70, BU63, CTLA-4 counter-receptor B72, FUN-1, CD86, CD86, CD28LG2 Western blot analysis of CD86 in NCI-H292 cell line lysate AMOUNT: 100 µl IMMUNOGEN: KLH conjugated synthetic peptide between 269-298 amino acids from the C-terminal region of human CD86. MOLECULAR WEIGHT: 37 kDa HOST/ISOTYPE: Rabbit IgG SPECIES REACTIVITY: Human PURIFICATION: This antibody is purified through a protein A column, followed by peptide affinity purification. FORM: Liquid FORMULATION: Supplied in PBS with 0.09% (W/V) sodium azide. STORAGE CONDITIONS: Maintain refrigerated at 2-8°C for up to 6 months. For long term RELATED PRODUCTS storage store at -20°C in small aliquots to prevent freeze-thaw cycles. DESCRIPTION: This gene encodes a type I membrane protein that is a member of the immunoglobulin superfamily. This protein is expressed by Human CellExp™ B7-2 /CD86, human recombinant (Cat. No. 7496-10, -50) antigen-presenting cells, and it is the ligand for two proteins at the CD86 (Human) ELISA Kit (Cat. No. K4175-100) cell surface of T cells, CD28 antigen and cytotoxic T-lymphocyte- Human CellExp™LAG3 /CD223, human recombinant (Cat. No. 7278-10, -50) associated protein 4. Binding of this protein with CD28 antigen is a costimulatory signal for activation of the T-cell. Binding of this CD223 (LAG3) Polyclonal Antibody (Cat. No. A1067-100) protein with cytotoxic T-lymphocyte-associated protein 4 negatively regulates T-cell activation and diminishes the immune response. -
Selectins in Cancer Immunity
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Selectins in cancer immunity Borsig, Lubor Abstract: Selectins are vascular adhesion molecules that mediate physiological responses such as inflam- mation, immunity and hemostasis. During cancer progression, selectins promote various steps enabling the interactions between tumor cells and the blood constituents, including platelets, endothelial cells and leukocytes. Selectins are carbohydrate-binding molecules that bind to sialylated, fucosylated glycan structures. The increased selectin ligand expression on tumor cells correlates with enhanced metastasis and poor prognosis for cancer patients. While, many studies focused on the role of selectin as a mediator of tumor cell adhesion and extravasation during metastasis, there is evidence for selectins to activate signaling cascade that regulates immune responses within a tumor microenvironment. L-Selectin binding induces activation of leukocytes, which can be further modulated by selectin-mediated interactions with platelets and endothelial cells. Selectin ligand on leukocytes, PSGL-1, triggers intracellular signaling in leukocytes that are induced through platelet’s P-selectin or endothelial E-selectin binding. In this review, I summarize the evidence for selectin-induced immune modulation in cancer progression that represents a possible target for controlling tumor immunity. DOI: https://doi.org/10.1093/glycob/cwx105 Posted at the Zurich Open Repository and -
Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples
Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples Qiang Liu Chinese Academy of Medical Sciences & Peking Union Medical College Yihang Qi ( [email protected] ) Chinese Academy of Medical Sciences and Peking Union Medical College https://orcid.org/0000-0001- 7589-0333 Jie Zhai Chinese Academy of Medical Sciences & Peking Union Medical College Xiangyi Kong Chinese Academy of Medical Sciences & Peking Union Medical College Xiangyu Wang Chinese Academy of Medical Sciences & Peking Union Medical College Yi Fang Chinese Academy of Medical Sciences & Peking Union Medical College Jing Wang Chinese Academy of Medical Sciences & Peking Union Medical College Research Keywords: Cancer immunotherapy, CD223, LAG3, Immune response, Inammatory activity Posted Date: June 19th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-36422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Despite the promising impact of cancer immunotherapy targeting CTLA4 and PD1/PDL1, a large number of cancer patients fail to respond. LAG3 (Lymphocyte Activating 3), also named CD233, is a protein Coding gene served as alternative inhibitory receptors to be targeted in the clinic. The impact of LAG3 on immune cell populations and co-regulation of immune response in breast cancer remained largely unknown. Methods To characterize the role of LAG3 in breast cancer, we investigated transcriptome data and associated clinical information derived from a total of 2994 breast cancer patients. Results We observed that LAG3 was closely correlated with major molecular and clinical characteristics, and was more likely to be enriched in higher malignant subtype, suggesting LAG3 was a potential biomarker of triple-negative breast cancer. -
Innovent Biologics (1801
22 Jul 2021 CMB International Securities | Equity Research | Company Initiation Innovent Biologics (1801 HK) BUY (Initiation) Growing into a global biopharma company Target Price HK$120.91 Up/Downside +43.00% Current Price HK$84.55 Rich innovative drug pipelines. Innovent is a leading integrated biopharma company with comprehensive innovative pipelines including monoclonal antibodies (mAbs), bispecific antibodies (bsAbs), small molecules and CAR- China Healthcare Sector T therapies, covering oncology, autoimmune and metabolic diseases. Besides five marketed products (sintilimab, three biosimilars and pemigatinib), Jill Wu, CFA Innovent has six innovative drugs in pivotal clinical stage, including IBI306 (852) 3900 0842 (PCSK9 antibody), IBI310 (CTLA-4 antibody), IBI376 (PI3Kδ inhibitor), IBI326 [email protected] (BCMA-CART), taletrectinib (ROS1/NTRK inhibitor) and HQP1351 (olverembatinib, third-generation BCR-ABL TKI). In addition, Innovent has Sam Hu, PhD established a comprehensive innovative portfolio covering next-generation (852) 3900 0882 immuno-oncology (I/O) targets, including CD47/SIRPα, TIGT, LAG3, 4-1BB, [email protected] etc. It’s worth noting that Innovent is an early mover in CD47-SIRPα pathway with three assets under development, including clinical-stage IBI188 (a CD47 Jonathan Zhao antibody) and IBI322 (a PD-L1/CD47 bispecific antibody), and preclinical (852) 6359 1614 stage IBI397 (AL008, a SIRPα antibody). [email protected] Tyvyt being an early mover in large indications. After the approval for r/r- cHL in Dec 2018, Tyvyt has been approved by the NMPA for 1L ns-NSCLC, Mkt. Cap. (HK$ mn) 123,312 1L s-NSCLC and 1L HCC in 2021. These three large indications may be Avg. -
Diabetes in the Absence of LAG-3 Cutting Edge
Cutting Edge: Accelerated Autoimmune Diabetes in the Absence of LAG-3 Maria Bettini, Andrea L. Szymczak-Workman, Karen Forbes, Ashley H. Castellaw, Mark Selby, Xiaoyu Pan, This information is current as Charles G. Drake, Alan J. Korman and Dario A. A. Vignali of September 24, 2021. J Immunol 2011; 187:3493-3498; Prepublished online 26 August 2011; doi: 10.4049/jimmunol.1100714 http://www.jimmunol.org/content/187/7/3493 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/08/26/jimmunol.110071 Material 4.DC1 http://www.jimmunol.org/ References This article cites 25 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/187/7/3493.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Cutting Edge: Accelerated Autoimmune Diabetes in the Absence of LAG-3 Maria Bettini,* Andrea L. -
5.01.591 Immune Checkpoint Inhibitors
MEDICAL POLICY – 5.01.591 Immune Checkpoint Inhibitors Effective Date: Sept. 1, 2021 RELATED POLICIES/GUIDELINES: Last Revised: Aug. 10, 2021 5.01.543 General Medical Necessity Criteria for Companion Diagnostics Related Replaces: N/A to Drug Approval 5.01.589 BRAF and MEK Inhibitors Select a hyperlink below to be directed to that section. POLICY CRITERIA | DOCUMENTATION REQUIREMENTS | CODING RELATED INFORMATION | EVIDENCE REVIEW | REFERENCES | HISTORY ∞ Clicking this icon returns you to the hyperlinks menu above. Introduction Chemotherapy, often called chemo, is cancer treatment that uses drugs. Radiation and surgery treat one area of cancer. But chemo usually travels through the bloodstream to treat the whole body. Treating the whole body is called a systemic treatment. Immunotherapy is a new type of cancer treatment that helps the body’s immune cells fight the cancer more effectively. Cancer cells sometimes “hide” from the body’s cells that are designed to search for cells that don’t belong, like cancer cells or bacteria. Immune checkpoint inhibitors are drugs that block the way that cancer cells do this and so help the immune cells find them so they can be stopped. It is one of the ways we can make the environment less friendly to the cancer and slow its growth. Current immunotherapy drugs are complex molecules that must be given through a vein (intravenous). In the future, some may be given by a shot (injection) the patient could inject without help. This policy gives information about immunotherapy drugs and the criteria for when they may be medically necessary. Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. -
Point Mutation in CD19 Facilitates Immune Escape of B Cell Lymphoma from CAR-T Cell Therapy
Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-001150 on 6 October 2020. Downloaded from Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR- T cell therapy 1 1 1 1 1 1 Zhen Zhang, Xinfeng Chen, Yonggui Tian, Feng Li , Xuan Zhao, Jinyan Liu, 1 1,2,3,4 Chang Yao, Yi Zhang To cite: Zhang Z, Chen X, ABSTRACT relapses after CD19 CAR-T cell therapy are Tian Y, et al. Point mutation Background Tumor relapse due to mutation in CD19 can attributed to the antigen loss, indicating an in CD19 facilitates immune hinder the efficacy of chimeric antigen receptor (CAR)- T urgent need for investigating the mechanisms escape of B cell lymphoma from cell therapy. Herein, we focused on lymphoma patients CAR- T cell therapy. Journal underlying recurrence and for improving whose B cells exhibited a point mutation in CD19 of B cells 4 5 for ImmunoTherapy of Cancer the efficacy of CAR- T cell therapy. Inter- 2020; :e001150. doi:10.1136/ after CAR-T cell infusion. 8 + estingly, one of the specific mechanisms jitc-2020-001150 Methods The CAR- T and CD19 B cells from peripheral blood or bone marrow were assessed using flow of tumor escape that has been reported cytometry. Genome sequencing was conducted to identify suggests that exon mutations affecting the ► Additional material is + published online only. To view, the molecular characteristics of CAR- T and CD19 B cells CD19 gene and its splicing isoforms, leading please visit the journal online from pre-rela pse and postrelapse samples. -
Fundamental Mechanisms of Immune Checkpoint Blockade Therapy
Published OnlineFirst August 16, 2018; DOI: 10.1158/2159-8290.CD-18-0367 REVIEW Fundamental Mechanisms of Immune Checkpoint Blockade Therapy Spencer C. Wei 1 , Colm R. Duffy 1 , and James P. Allison 1 , 2 ABSTRACT Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effec- tive and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged signifi cantly behind. Such understanding will be essential for the rational design of next-generation immunothera- pies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge. signifi cance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1–18. ©2018 AACR. INTRODUCTION dogma and recent conceptual advances related to the mecha- nisms of action of anti–PD-1 and anti-CTLA4 therapies Immune checkpoint blockade therapies are now FDA in the context of antitumor immunity. These discussions approved for the treatment of a broad range of tumor types highlight the importance of understanding the underlying ( Table 1 ), with approval likely for additional indications fundamental biological phenomena for effective transla- in the near future. -
9.0 Bn 23 000 200 +
42 | Novartis Annual Report 2017 Innovation The Novartis Institutes for BioMedical Research works in concert with our Global Drug Development group to bring innovative treatments to patients around the world. In 2017, we advanced our drug discovery and development efforts by encouraging greater collaboration and out-of-the-box thinking, exploring new approaches that could improve how we work, and investing in promising tools and technologies. We made progress in priority disease areas with high unmet medical needs. We also marked several key milestones, including US FDA approval – the first of its kind – for a type of personalized cell therapy that could change the course of cancer care. 9.0 bn 23 000 200 + Research and development Scientists, physicians and business Projects in clinical development spending in 2017, amounting to professionals working in research 18.3% of net sales (USD) and development worldwide Collaborative Efficient, effective Progress in important science drug development disease areas We are increasing collaboration We are using digital technology We highlight areas of our work where in research as we try to leverage and data analysis to make drug we are driving significant innovation, innovation from a variety of sources. development swifter and more or where we can potentially have an We are also exploring ways to effective. And we are taking steps important impact on patients and harness digital technology in drug to strengthen our pipeline. public health. discovery, as well as new therapeutic k page 46 k Immuno-oncology page 48 approaches such as cell therapies. k Multiple sclerosis page 50 k page 43 k Liver disease page 52 k Ophthalmology page 53 k Asthma page 55 k Malaria page 56 INNOVATION Novartis Annual Report 2017 | 43 Discovery For new treatments, the journey from laboratory to patient Promoting open innovation starts in the discovery phase where researchers try to Our efforts to increase the flow of ideas between identify potentially groundbreaking therapies. -
Cytogenetic and Molecular Genetic Alterations in Hepatocellular Carci- Noma
Acta Pharmacologica Sinica 2005 Jun; 26 (6): 659–665 Invited review Cytogenetic and molecular genetic alterations in hepatocellular carci- noma Sze-hang LAU, Xin-yuan GUAN1 Department of Clinical Oncology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China Key words Abstract hepatocellular carcinoma; chromosome Specific chromosome aberrations are frequently detected during the development aberrations; oncogenes; tumor suppressor of hepatocellular carcinoma. Molecular cytogenetic approaches such as com- genes parative genomic hybridization and loss of heterozygosity analyses have pro- vided fruitful information on changes in HCC cases at the genomic level. Map- 1 Correspondence to Dr Xin-yuan GUAN. ping of chromosome gains and losses have frequently resulted in the identifica- Fax 852-2816-9126. E-mail [email protected] tion of oncogenes and tumor suppressors, respectively. In this review, we sum- marize some frequently detected chromosomal aberrations reported for hepatocel- Received 2005-02-17 lular carcinoma cases using comparative genomic hybridization and loss of het- Accepted 2005-03-25 erozygosity studies. Focus will be on gains of 1q, 8q, and 20q, and losses of 4q, doi: 10.1111/j.1745-7254.2005.00126.x 8p, 13q, 16q, and 17p. We then examine the candidate oncogenes and tumor suppressors located within these regions, and explore their possible functions in hepatocarcinogenesis. Finally, the impact of microarray-based screening platforms will be discussed. Introduction based on the observation of chromosome deletion del(13) (q14) in retinoblastoma[6] and the proto-oncogene myc was Hepatocellular carcinoma (HCC) is one of the most com- shown to be involved in the chromosome translocation t(8; mon human malignant neoplasms, with a particularly high 14) in human Burkett’s lymphoma[7].