Earth Exploration-Satellite Service

Total Page:16

File Type:pdf, Size:1020Kb

Earth Exploration-Satellite Service Earth Exploration – Satellite Service Handbook Earth Exploration–Satellite Service *36546* Printed in Switzerland Geneva, 2011 English Edition 2011 ISBN 92-61-13761-X Radiocommunication Bureau Photo credits: Shutterstock - ITU Handbook THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: brmail@itu.int Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Fax: +41 22 730 5194 E-mail: sales@itu.int The Electronic Bookshop of ITU: www.itu.int/publications ¤ ITU 2011 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Handbook Earth Exploration-Satellite Service English Edition 2011 Radicommunication Bureau THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: brmail@itu.int Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Fax: +41 22 730 5194 E-mail: sales@itu.int The Electronic Bookshop of ITU: www.itu.int/publications ITU 2011 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. iii PREFACE The International Telecommunication Union (ITU) is the leading United Nations agency for information and communication technology issues and the global focal point for governments and the private sector in developing networks and services. The Radiocommunication Sector of the ITU (ITU-R) plays a vital role in the global management of the radio-frequency spectrum – a limited natural resource which is increasingly in demand from a large and growing number of services including science services such as the Earth Exploration-Satellite Service (EESS). The EESS makes use of specific frequency allocations as documented in the ITU Radio Regulations (RR). Use of EESS frequency allocations is further refined in the RS Series (for remote sensing) and the SA Series (for space applications, in particular for data communications to and from science satellites) of the ITU-R Recommendations, based on technical characteristics and operational procedures. Historically, on account of its specificity, the development of EESS has been considered by a narrow circle of specialists. This stems primarily from the fact that the main users have been various security agencies or scientific institutions dealing with the fundamentals of space and the Earth. However, as a result of technological development in this sphere, science services are giving rise to a large number of applications for which there is significant demand, as they are indispensable and extremely important in humankind’s quest to combat various natural and climatic disasters and mitigate their effects. In particular, it has been stated at the World Radiocommunication Conference 2007 that “the collection and exchange of Earth observation data are essential for maintaining and improving the accuracy of weather forecasts that contribute to the protection of life, preservation of property and sustainable development throughout the world”. At the same time, more and more applications, such as remote sensing imagery products, are emerging that respond to commercial demands. This Handbook gives to readers a full and comprehensive information on development of EESS systems. Specifically, it provides basic definitions, sheds light on the technical principles underlying the operation of systems and presents their main applications to assist administrations in spectrum planning, engineering and deployment aspects of these systems. François Rancy Director Radiocommunication Bureau The Earth Exploration-Satellite Service Preface v TABLE OF CONTENTS Page PREFACE ............................................................................................................................................ iii TABLE OF CONTENTS ..................................................................................................................... v FOREWORD ........................................................................................................................................ vii CHAPTER 1 – INTRODUCTION TO THE EARTH EXPLORATION-SATELLITE SERVICE ..... 1 CHAPTER 2 – EARTH EXPLORATION-SATELLITE TELEMETRY, TRACKING, AND COMMAND FUNCTIONS AND TECHNICAL IMPLEMENTATIONS ............................. 7 CHAPTER 3 – EARTH EXPLORATION-SATELLITE SERVICE SCIENCE DATA DOWNLINK FUNCTIONS AND TECHNICAL IMPLEMENTATION............................... 17 CHAPTER 4 – SPACEBORNE ACTIVE MICROWAVE SENSORS OPERATING IN THE EARTH EXPLORATION-SATELLITE SERVICE (ACTIVE) ............................................. 25 CHAPTER 5 – SPACEBORNE PASSIVE MICROWAVE SENSORS OPERATING IN THE EARTH EXPLORATION-SATELLITE SERVICE (PASSIVE) ............................................ 49 CHAPTER 6 – SOCIETAL BENEFITS OF THE EARTH EXPLORATION-SATELLITE SERVICE ................................................................................................................................. 63 APPENDIX 1 – ITU-R RECOMMENDATIONS RELEVANT TO THE EARTH EXPLORATION -SATELLITE SERVICE .......................................................................................................... 81 The Earth Exploration-Satellite Service Table of Contents vii FOREWORD The Earth exploration-satellite service (EESS) is an integral part of our every day life. It does not show directly when you think about satellites, your first thought may be about your TV dish or the GPS receiver in your car, however the question is what would be life without the applications of the Earth exploration- satellite service. It would be difficult to get precise weather forecast for instance, not because of the lack of meteorological images (they are part of the meteorological-satellite service) but because of the large quantity of information that are gathered by Earth exploration-satellite sensors. This data helps us to understand the dynamics of our atmosphere, its interaction with the ocean and land masses and thus are essential in building the prediction model that are used everyday in forecasting the weather. Long term effects on the climate can only be guessed from outer-space using active or passive sensors by measuring the wave height, the water temperature, the salinity, the ozone concentration – all kinds of data that capture the behavior of our environment. It is a common statement to say that Earth has become a global village. You want to get somewhere you don't know, it is so easy to Google its location and discover the place, its topography just at the click of your mouse. Without satellites taking pictures of our entire planet and transmitting them every day that would not be possible. The Earth exploration-satellite is also an essential tool in comprehending the enormous forces that makes Earth a living world. The geological features are clearly visible from space; even the ocean topography measured with centimeter accuracy mimics the relief of the ocean floor, revealing trenches and volcanic ranges. Benefits to mankind in assessing biological resources, preventing natural disasters are just too common these days that it would be virtually impossible not to use them anymore. This Handbook describes the ins and outs of the Earth exploration-satellite service, its technical characteristics, its applications, its spectrum requirements or lists its benefits for all of us on the good Earth. It will give the reader an excellent overview of the subject, references to the works done by the ITU will allow the interested reader to go further if needed. As Chairman of the Radiocommunication Study Group 7∗ (SG 7), it is my great pleasure to present this Handbook to all interested people, and to the frequency management community at large who will, I am sure, find it an important reference tool in their own work. The Handbook could not have been completed without the contributions from many
Recommended publications
  • Executive Summary of the ICAO Position for ITU WRC-15 Radio
    Executive Summary of the ICAO Position for ITU WRC-15 Radio frequency spectrum is a scarce natural resource with finite capacity for which demand is constantly increasing. The requirements of civil aviation as well as other spectrum users continue to grow at a fast pace, thus creating an ever-increasing pressure to an already stretched resource. International competition between radio services obliges all spectrum users, aeronautical and non- aeronautical alike, to continually defend and justify retention of existing or addition of new frequency bands. The ICAO Position aims at protecting aeronautical frequency spectrum for all radiocommunication and radionavigation systems used for ground facilities and on board aircraft. The ICAO Position addresses all radioregulatory aspects on aeronautical matters on the agenda for the WRC-15. The items of main concern to aviation include the following: identification of additional frequency bands for the International Mobile Telecommunications (IMT). Under this agenda item, the telecommunications industry is seeking up to 1200 MHz of additional spectrum in the 300 MHz to 6 GHz range for mobile and broadband applications. It is expected that a number of aeronautical frequency bands will come under pressure for potential repurposing, especially some of the Primary Surveillance Radar (PSR) bands. Existing frequency allocations which are vital for the operation of aeronautical very small aperture terminal (VSAT) ground-ground communication networks, especially in tropical regions, are also expected to come under pressure. Due to decisions made by a previous WRC, this has already become a problematic issue in Africa. WRC-15 agenda items 1.1 and 9.1.5 refer; potential radioregulatory means to facilitate the use of non-safety satellite service frequency bands for a very safety-critical application, the command and control link for remotely piloted aircraft systems (RPAS) in non-segregated airspace.
    [Show full text]
  • Space Communications
    Space Radiocommunication Services and Frequency Allocations Dr. Francis Lau Dr. Francis CM Lau, Associate Professor, EIE, PolyU 1 Space Radiocommunication Services • Fixed Satellite Service (FSS) • Mobile Satellite Service (MSS) – Maritime Mobile Satellite Service (MMS) – Aeronautical Mobile Satellite Service (AMS) – Land Mobile Satellite Service (LMS) • Broadcasting Satellite Service (BSS) • Earth Exploration Satellite Service (EES) Dr. Francis CM Lau, Associate Professor, EIE, PolyU 2 Space Radiocommunication Services • Space Research Service (SRS) • Space Operation Service (SOS) • Radiodetermination Satellite Service (RSS) • Inter-Satellite Service (ISS) • Amateur Satellite Service (ASS) Dr. Francis CM Lau, Associate Professor, EIE, PolyU 3 Space Radiocommunication Services Type of link Applications Space radio- (•= uplink, communications ¯= downlink) services Broadcasting ¯ Time signals FSS Data BSS Sound programs BSS Television programmes BSS Links with •¯ Land MSS (LMS) mobiles Maritime MSS (MMS) Aeronautical MSS (AMS) Radio location •¯ Navigation RSS Downlink ¯ Radiolocation and RSS transmission navigation of a radio Earth atmosphere SRS, EES beacon monitoring Dr. Francis CM Lau, Associate Professor, EIE, PolyU 4 Frequency Allocations • Frequency allocations to a given service can depend on the region – Region 1: Europe, Africa, the Middle East and the countries of the former USSR – Region 2: The Americas – Region 3: Asia except the Middle East and the countries of the former USSR, Oceania • bands allocated can be exclusive or shared Dr. Francis CM Lau, Associate Professor, EIE, PolyU 5 Frequency Allocations • Fixed satellite service links – C band or 6/4 GHz • around 6GHz for the uplink and around 4GHz for the downlink • occupied by the oldest systems and tend to be saturated – X band or 8/7 GHz • reserved for government use Dr.
    [Show full text]
  • Federal Communications Commission FCC 02-23
    Federal Communications Commission FCC 02-23 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Amendment of Parts 2, 25 and 97 of the ) Commission's Rules with Regard to the ) ET Docket No. 98-142 Mobile-Satellite Service Above 1 GHz ) REPORT AND ORDER Adopted: January 28, 2002 Released: February 7, 2002 By the Commission: TABLE OF CONTENTS Paragraph I. INTRODUCTION............................................................................................................................ 1 II. EXECUTIVE SUMMARY............................................................................................................... 2 III. BACKGROUND .............................................................................................................................. 6 IV. DISCUSSION ................................................................................................................................ 11 A. NGSO MSS Feeder Uplinks at 5091-5250 MHz ........................................................................11 1. Current Use.........................................................................................................................11 2. Proposal..............................................................................................................................13 3. Comments...........................................................................................................................14 4. Decision..............................................................................................................................16
    [Show full text]
  • The Legal Ordering of Satellite Telecommunication: Problems and Alternatives
    Indiana Law Journal Volume 44 Issue 3 Article 1 Spring 1969 The Legal Ordering of Satellite Telecommunication: Problems and Alternatives Delbert D. Smith University of Wisconsin Follow this and additional works at: https://www.repository.law.indiana.edu/ilj Part of the Air and Space Law Commons, and the Communications Law Commons Recommended Citation Smith, Delbert D. (1969) "The Legal Ordering of Satellite Telecommunication: Problems and Alternatives," Indiana Law Journal: Vol. 44 : Iss. 3 , Article 1. Available at: https://www.repository.law.indiana.edu/ilj/vol44/iss3/1 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Indiana Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact rvaughan@indiana.edu. INDIANA LAW JOURNAL Volume 44 Spring 1969 Number 3 THE LEGAL ORDERING OF SATELLITE TELECOMMUNICATION: PROBLEMS AND ALTERNATIVES DELBERT D. SMITHt The use of satellites in outer space to provide a means of transmission for international telecommunication could be viewed as simply a tech- nological advancement neither necessitating basic structural changes in the international control institutions nor requiring alteration of the control theories designed to regulate unauthorized transmissions. How- ever, the magnitude of the changes involved, coupled with increased governmental concern, has resulted in a number of politico-legal problems. It is the purpose of this article to examine on several levels of analysis the implications of utilizing satellites as a means of telecom- munication transmission. Introductory material on the development of communications satellite technology stresses the need for international organization and co-operation to oversee the launching and maintenance of a global communications system and indicates the pressures for the implementation of control measures over transmissions originating in outer space.
    [Show full text]
  • Space Science and Meteorology Spectrum Allocations in the UK
    Introduction ‘Space science’ is an umbrella term that covers both Earth observation and space related scientific research. Earth observation (EO) satellites observe the earth and its atmosphere, using visible light or radio spectrum from a unique vantage point. The information it provides is used for a wide range of purposes including weather forecasting, environmental monitoring, climate change research as well as a number of commercial activities. Radio astronomy and space research contribute to our knowledge of space and the evolution of the universe. The following services fall under this category: • Earth Exploration Satellite Service (EESS) Space Research Service (SRS) Space Operation Service (SOS) Radio Astronomy Service (RAS) Meteorological Satellite Service (MetSat) Meteorological Aids Service (Met-Aids) Radiolocation Service Note: this only for wind profiler and weather radars) Standard Time and Frequency signals) These services can be split in two broad categories: passive services (RAS, EESS and Space Research Service), that measure naturally- occurring radiation often at very low power levels. This information provides useful data to help further understand the Earth and universe. The frequency bands are often determined by the specific physical properties being investigated (e.g. molecular resonance). active services that make use of a variety of technologies (e.g. radiodetermination) to carryout measurements, observations or transfer the collected data. These active applications are relatively less sensitive to interference compared to passive sensors. Given the low levels of radiation being monitored these services often use very sensitive receivers. In most cases the equipment is not able to discriminate between these natural radiations and man-made radiations. For this reason, a number of bands have been harmonised across the world for the use by passive services only.
    [Show full text]
  • International Air Transport Association Position for the World Radiocommunication Conference (WRC - 12)
    International Air Transport Association Position for the World Radiocommunication Conference (WRC - 12) September 2009 Objectives of IATA Position The IATA Position) for the World Radiocommunication Conference (WRC 12) seeks to guarantee appropriate, secure radio spectrum to support current and planned CNS technologies and systems essential to meeting future growth in a safe and efficient manner. Due to the safety and global harmonization of airline operations, allocations for such radio spectrum are made at WRC’s, the outcomes of which have international treaty status. IATA believes such international coordination is essential and opposes the application of new, more market driven, regulatory measures to the spectrum aviation uses. The broad objectives of the IATA position are: • to maintain protection for the spectrum used for aeronautical radiocommunication and radionavigation systems required for current and future safety-of-life applications; • to ensure that spectrum is available for new technologies; • to ensure that the application of new regulatory measures does not impact on global operations or result in social or economic penalty to aviation without providing benefit. IATA has 226 member airlines carrying 93% of world’s international scheduled traffic (Available Seat Kilometres). In 2008, IATA’s members carried 1.6 billion passengers (scheduled) of which 708 million were international and 42.3 million tones of freight of which 28 million tonnes were international Introduction Aviation uses globally harmonised spectrum allocations for communications, navigation and surveillance in order to provide a safe and efficient global transport system. Hence the spectrum used by aviation must be free from harmful interference to guarantee the integrity of its systems.
    [Show full text]
  • ITU Regulations Concerning Registration of Small Satellites
    ITU Regulatory procedures for small satellite filings Chuen Chern Loo Space Services Department Radiocommunication Bureau Legal Framework for Spectrum Access/Use Radio Regulations . Intergovernmental Treaty governing the use of spectrum/orbit resources by administrations . Define the rights and obligations of Member States in respect of the use of these resources . Recording of a frequency assignment in the Master Register (MIFR) provides international recognition and protection . Updated every 3-4 years by World Radiocommunication Conferences . Completed by the Rules of Procedure 2 Radio Regulations – examples of some useful sections Article 1 Definitions Article 5 Table of Frequency Allocations Article 9 and 11 Procedures for the advance publication (API), coordination (CR/C) and notification Article 21/22 Power limits Article 25 Amateur and Amateur-satellite service Article 29A Radio services related to Earth observation Appendix 1 Classification of emissions Appendix 4 Data required for satellite filings 3 ART. 5 frequency allocations - 1 .No. 5.2 - For the allocation of frequencies the world has been divided into three “radiocommunication” Regions 170° 170° 160° 140° 120° 100° 80° 60° 40° 20° 0° 20° 40° 60° 80° 100° 120° 140° 160° 180° C B A 75° 75° 60° REGION 1 60° REGION 2 40° 40° 30° 30° 20° 20° 0° 0° 20° 20° 30° 30° 40° 40° REGION 3 REGION 3 C B A 60° 60° 160° 140° 120° 100° 80° 60° 40° 20° 0° 20° 40° 60° 80° 100° 120° 140° 160° 180° 170° 170° Exclusive allocations, which are favoured in cases5-01 that involve broad international use of equipment Shared frequency allocations, which are applied to maximize the use of the available spectrum when two or more radiocommunication services can effectively utilize the same frequency band 4 ART.
    [Show full text]
  • RSPG Sub-Group on Scientific Use of Radio Spectrum
    Progress report RSPG OPINION on ¨a coordinated EU Spectrum approach for scientific use of radio spectrum¨ 1. Introduction This paper represents the Radio Spectrum Policy Group’s (RSPG) progress report to the request from France and The Netherlands for an Opinion on spectrum used by scientific services. (document RSPG05-67 and RSPG 05-82). Many fields of science depend on the use of radio spectrum. This spectrum could also be used for other purposes, which in certain cases leads to pressure on the spectrum used by the scientific community. These developments have led to concerns about the long-term availability of spectrum for scientific use. Although these alternative applications may represent significant economic value, scientific usage of spectrum also has significant social and economic benefits. The RSPG agreed to formulate an opinion on the scientific use of spectrum in order to get an overview of all important aspects of the spectrum-based activities of the scientific community and to issue recommendations. 2. Overview of Scientific Use 2.1 Introduction Spectrum is used by several scientific services. These services use radio emissions to register naturally occurring physical phenomena or to communicate information between different locations. The following services are identified in the Radio Regulations: the Meteorological Aids Service, the Earth Exploration Satellite Service (EESS), the Meteorological-Satellite Service, the Space Research Service (SRS), and the Radio Astronomy Service (RAS). Also the Space Operation Service, the Radiolocation Service (RLS) and the Radionavigation Satellite Service are used for scientific applications1. This chapter gives a description of the various scientific activities. It is to be noted that these activities do not always coincide with the definitions of services used by the ITU in the Radio Regulations.
    [Show full text]
  • Class of Stations
    CLASS OF STATION FOR FIXED AND MOBILE NOTIFICATION Service code Station Description/Definition Fixed FX Fixed Station Station in the Fixed Service Station in the mobile service not intended to be used while FL Land station Generic Mobile in motion Station in the mobile service intended to be used while in MO Mobile station motion or during halts at unspecified points FB Base station Land station in the land mobile service Land Mobile ML Land mobile station Mobile station in the land mobile service FC Coast station Land station in the maritime mobile service FP Port station Coast station in the port operations service Maritime Mobile MS Ship station Mobile station in the maritime mobile service OE Oceanographic data interrogation station Oceanographic data interrogation station OD Oceanographic data station Oceanographic data station Generic FA Aeronautical station Land station in the aeronautical mobile service Aeronautical mobile MA Aircraft station Mobile station in the aeronautical mobile service Aeronautical mobile Route FD Aeronautical station Land station in the aeronautical mobile (R) service Aeronautical mobile Off FG Aeronautical station Land station in the aeronautical mobile (OR) service Route RN Radionavigation land station Land station in the radionavigation service Generic Radionavigation NR Radionavigation mobile station Mobile station in the radionavigation service NL Maritime radionavigation land station Land station in the maritime radionavigation service Maritime Radionavigation RM Maritime radionavigation mobile station
    [Show full text]
  • REGULATORY PROCEDURES for Small Satellites
    REGULATORY PROCEDURES for Small Satellites Space Service Department Radiocommunication Bureau International Telecommunication Union www.itu.int Contents ITU in Brief Legal Framework for Spectrum Access/Use Radio Regulations Small Satellites Regulatory Procedures WRC-19 Useful Information Q & A 2 ITU at a glance ITU is the United Nations specialized agency for information and communication technologies (ICTs) Our membership 193 +700 +150 INDUSTRY & MEMBER INTERNATIONAL ACADEMIA STATES ORGANIZATIONS MEMBERS 3 ITU in Brief For a century and a half since 1865, the International Telecommunication Union (ITU) has been at the centre of advances in communications – from telegraphy through to the modern world of satellites, mobile phones and the Internet. The story of ITU is one of international cooperation, among governments, private companies and other stakeholders. The continuing mission is to achieve the best practical solutions for integrating new technologies as they develop, and to spread their benefits to all. Headquartered in Geneva, Switzerland, currently has a membership of 193 Member States and over 700 private-sector entities, associates and over 150 academic institutions. Beyond this, many other individuals and organizations are welcomed to contribute their views at events such as the WSIS Forum. The rights and obligations of the ITU membership in the domain of international frequency management of the spectrum/orbit resources are incorporated in the Constitution (CS) and Convention (CV), as well as in the Radio Regulations (RR) with the Rules of Procedures (RoP), and Recommendations (REC). https://www.itu.int 4 ITU Membership • Member states • Sector Members • Associates SERVICES: • Academia • Global Directory: Basic information on ITU membership, as well as detailed information on Focal Points within the organizations associated with ITU.​ • TIES Services: User account to access documents, reports, mailing lists, etc.
    [Show full text]
  • WMO Position Onwrc-15 Agenda (March 2014)
    WORLD WEATHER WATCH COMMISSION FOR BASIC SYSTEMS WMO Position onWRC-15 Agenda (March 2014) 1 Introduction Timely warning of impending natural and environmental disasters, accurate climate prediction and detailed understanding of the status of global water resources: these are all critically important everyday issues for the global community. National Meteorological and Hydrological Services (NMHS) around the world are responsible for providing this information, which is required for the protection of the environment, economic development (transport, energy, agriculture,..) and the safety of life and property. Radio-frequencies represent scarce and key resources used by National Meteorological and Hydrological Services to measure and collect the observation data upon which analyses and predictions, including warnings, are based or processed, and to disseminate this information to governments, policy makers, disaster management organisations, commercial interests and the general public. Nowadays radio-based remote sensors (active and passive) are the main tools for environment and climate monitoring, disaster prediction, detection and mitigating negative effects of disasters. These sensors obtain environmental data by measuring level and parameters of natural and artificial radio waves that inherently contain information about the environment with which they have been in contact. Terrestrial and space-born remote sensing applications form the backbone of the WMO Integrated Global Observing System. WMO information systems also make extensive use of radiocommunication systems and radio- frequency spectrum, and although they are also using commercially provided services such as communication satellites, meteorological related radiocommunication systems are an essential and indispensable component of WMO’s critical data collection and distribution systems (e.g. Earth-to- space and space-to-Earth transmissions).
    [Show full text]
  • Preliminary Proposals for Wrc-19 // Propuestas
    ORGANIZACION DE LOS ESTADOS AMERICANOS ORGANIZATION OF AMERICAN STATES Comisión Interamericana de Telecomunicaciones Inter-American Telecommunication Commission 30 MEETING OF PERMANENT OEA/Ser.L/XVII.4.2.30 CONSULTATIVE COMMITTEE II: CCP.II-RADIO-30/doc. 4357/17 RADIOCOMMUNICATIONS 13 March 2018 November 27 to December 1, 2017 Original: Textual Barranquilla, Colombia PRELIMINARY PROPOSALS FOR WRC-19 Output document of the 30th Meeting of the PCC.II (Item on the Agenda: 3.1) (Documents submitted by the Coordinators) CITEL, 1889 F ST. NW., WASHINGTON, D.C. 20006, U.S.A. TEL: +1 202 370 4713 FAX: +1 202 458 6854 e-mail: citel@oas.org Web page: http://www.citel.oas.org TABLE OF CONTENTS AGENDA ITEM 1.8 ..................................................................................................................................... 2 AGENDA ITEM 1.16 ................................................................................................................................. 16 AGENDA ITEM 7, ISSUE E ..................................................................................................................... 19 AGENDA ITEM 9.1, ISSUE 9.1.7 ............................................................................................................. 21 CCPII-2017-30-4357_i 15.03.18 1 30 MEETING OF PERMANENT OEA/Ser.L/XVII.4.2.30 CONSULTATIVE COMMITTEE II: CCP.II-RADIO-30/doc. 30-4357-1-8/17 RADIOCOMMUNICATIONS 30 November 2017 November 27 to December 1, 2017 Original: English Barranquilla, Colombia PRELIMINARY PROPOSAL (PP) FOR
    [Show full text]