VLIW DSP Vs. Superscalar Implementation of a Baseline H.263

Total Page:16

File Type:pdf, Size:1020Kb

VLIW DSP Vs. Superscalar Implementation of a Baseline H.263 VLIW DSP VS. SUPERSCALAR IMPLEMENTATION OF A BASELINE H.263 VIDEO ENCODER Serene Banerjee, Hamid R. Sheikh, Lizy K. John, Brian L. Evans, and Alan C. Bovik Dept. of Electrical and Computer Engineering The University of Texas at Austin, Austin, TX 78712-1084 USA fserene,sheikh,ljohn,b evans,b [email protected] ABSTRACT sum-of-absolute di erences SAD calculations. SAD provides a measure of the closeness between a 16 AVery Long Instruction Word VLIW pro cessor and 16 macroblo ck in the current frame and a 16 16 a sup erscalar pro cessor can execute multiple instruc- macroblo ck in the previous frame. Other computa- tions simultaneously. A VLIW pro cessor dep ends on tional complex op erations are image interp olation, im- the compiler and programmer to nd the parallelism age reconstruction, and forward discrete cosine trans- in the instructions, whereas a sup erscaler pro cessor de- form DCT. termines the parallelism at runtime. This pap er com- In this pap er, we evaluate the p erformance of the pares TI TMS320C6700 VLIW digital signal pro cessor C source co de for a research H.263 co dec develop ed at DSP and SimpleScalar sup erscalar implementations the University of British Columbia UBC [4] on two of a baseline H.263 video enco der in C. With level pro cessor architectures. The rst architecture is a very two C compiler optimization, a one-way issue sup er- long instruction word VLIW digital signal pro cessor scalar pro cessor is 7.5 times faster than the VLIW DSP DSP represented by the TI TMS320C6701 [5, 6]. The for the same pro cessor clo ck sp eed. The sup erscalar second is an out-of-order sup erscalar architecture rep- sp eedup from one-way to four-way issue is 2.88:1, and resented by the SimpleScalar simulator [7]. from four-way to 256-way issue is 2.43:1. To reduce Weevaluate the p erformance of the sup erscalar pro- the execution time on the C6700, we write assembly cessor vs. the maximum number of simultaneous in- routines for sum-of-absolute-di erence, interp olation, structions executed. We compare the p erformance of and reconstruction, and place frequently used co de and the C source co de on b oth pro cessor architectures. For data into on-chip memory. We use TI's discrete co- the VLIW DSP implementation, we demonstrate that sine transform assembly routines. The hand optimized manual placement of frequently used data and co de VLIW DSP implementation is 61x faster than the C into on-chip memory provides a 29x sp eedup, whereas version compiled with level two optimization. Most hand co ding ve of the most computational complex of the improvementwas due to the ecient placement routines gives a 4x sp eedup. Our hand-co ded SAD, of data and programs in memory. The hand optimized clipping, interp olation, and ll data C6700 assembly VLIW implementation is 14 faster than a 256-way su- routines and our SimpleScalar settings are available p erscalar implementation without hand optimizations. from 1. INTRODUCTION http://www.ece.utexas.edu/~sheikh/h263/ Two factors limit the use of real-time video communi- cations: network bandwidth and pro cessing resources. 2. BACKGROUND The ITU-T H.263 standard [1, 2, 3] for video commu- nication over wireless and wireline networks has high 2.1. TMS320C6700 VLIW DSP Family computational complexity. An H.263 enco der includes the H.263 deco der minus the variable length deco d- The TMS320C6700 is a oating-p oint subfamily within ing in a feedback path. The H.263 enco der is roughly the C6000 VLIW DSP family. The C6000 family has three times more complex than an H.263 deco der. 32-bit data words and 256-bit instructions. The 256- In the H.263 enco der, the most computational com- bit instruction consists of eight 32-bit instructions that plex op eration is motion estimation, even when using may b e executed at the same time. The C6000 dep ends ecient search algorithms. The b ottleneck is in the on the compiler to nd the parallelism in the co de. The C6000 family has two parallel 32-bit data paths. of the pro cessor core, memory hierarchy and branch Each data path has 16 32-bit registers, and can only predictor can be sp eci ed by using command-line ar- communicate one 32-bit word to the other data path guments. The clo ck sp eed of typical sup erscalar pro- p er instruction cycle. Each data path has four 32-bit cessors is as high as 1 GHz. Power dissipation is a few RISC units: one adder, one 16 16 multiplier, one tens of Watts, and the transistor countmayvary from shifter, and one load/store unit. Each 32-bit RISC a few tens to a hundreds of millions. unit has a throughput of one cycle, but its result is delayed by one cycle for 16 16 multiplication, zero 2.3. UBC's H.263 Video Enco der cycles for logical and arithmetic op erations, four cycles The H.263 Version 2 H.263+ video enco der [1] con- for load/store instructions, and ve cycles for branch tains 23,000 lines 720 kbytes of C co de. It was writ- instructions. Every instruction may be conditionally ten for desktop PC applications and increases memory executed. Conditional execution avoids the delay of usage for faster execution. It incorp orates the base- a branch instruction and avoids interrupts from b eing line H.263 enco der with many optional H.263+ mo des. disabled b ecause a branch is in the pip eline. Our goal was to optimize the baseline H.263 enco der The C6000 family has one bank of program mem- only for emb edded applications, where the amountof ory and multiple banks of data memory. Each data available memory is muchlower. This enco der irregu- memory bank is single-p orted and twobytes wide, and larly uses oating p ointvariables and arithmetic. So, has one cycle data access throughput. Accessing one wecho ose the oating-p oint TMS320C6701 instead of data memory bank twice in the same cycle results in the xed-p oint TMS320C6201 as the VLIW DSP rep- a pip eline stall and increased cycle counts. The C6701 resentative. In the p erformance evaluation, we enco de has 64 kbytes of program memory and 64 kbytes of sub-QCIF 128 96 frames. A related pap er optimizes data memory. The program memory bank has 2k of the MPEG-2 deco der on the TMS320C6000 [9]. 256-bit instruction words, and may b e op erated as an instruction cache. Each of the 16 data memory banks has 2k of 16-bit halfwords. 3. VLIW DSP IMPLEMENTATION On the C6700, the pip eline is 11{17 stages, dep end- The most demanding op erations in a typical video ing on the instruction. The clo ck sp eed varies from 100 enco der are motion estimation, motion comp ensation, to 200 MHz. Power dissipation is typically 1.5{2.0 W, discrete cosine transform, half-pixel interp olation, and and the transistor count is less than 0.5 million. All reconstruction, as shown in Table 1. We hand opti- simulation results for the C6700 were obtained by run- mize these routines to sp eed up the enco der. The entire ning the co de on a 100-MHz C6701 Evaluation Mo dule H.263+ enco der, which needs 340 kB of program mem- b oard. The C6700 simulator do es not rep ort pip eline ory and 2.2 MB of data memory, do es not t in internal stalls or memory bank con icts, so running the co de on RAM on the C6701. We used memory placement and the b oard gives the true p erformance. co de optimizations to reduce cycle count. 2.2. SimpleScalar Sup erscalar Pro cessor 3.1. Memory Placement The SimpleScalar has a sup erscalar architecture de- Placing the co de and data in slow external RAM wastes rived from the MIPS-IV. The architecture prefetches at least four times the numb er of instructions to b e ex- many cycles, esp ecially for frequently accessed data and co de. We therefore p erformed manual placement ecuted and nds the parallelism between instructions of co de and data into fast on-chip program and data at run time. All instructions have a xed length of 64 bits and xed format, which promotes fast instruction memory resp ectively. Computationally intensive rou- tines for motion estimation, interp olation, DCT, SAD, deco ding. It supp orts out-of-order issue and execution, based on the Register Up date Unit RUU [8]. The and reconstruction routines were placed in the on-chip program memory. Commonly used runtime functions RUU uses a reorder bu er for register renaming and from TI's libraries suchas memcpy, memcmp and mem- holds the results of p ending instructions. The memory system employs a load/store queue to supp ort sp ecu- set were linked into internal program memory. A total of 43 kB out of the 340 kB of needed program memory lative execution. The results of a sp eculative store are was placed in the internal program memory. placed in the store queue. If the address of all previ- ous stores are known, then loads are dispatched to the Of the 2.2 MB of data memory, the lo okup ta- memory. The six pip eline stages are issue, dispatch, ble for quantization consumed 1.6 MB.
Recommended publications
  • Data-Level Parallelism
    Fall 2015 :: CSE 610 – Parallel Computer Architectures Data-Level Parallelism Nima Honarmand Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Data Parallelism vs. Control Parallelism – Data Parallelism: parallelism arises from executing essentially the same code on a large number of objects – Control Parallelism: parallelism arises from executing different threads of control concurrently • Hypothesis: applications that use massively parallel machines will mostly exploit data parallelism – Common in the Scientific Computing domain • DLP originally linked with SIMD machines; now SIMT is more common – SIMD: Single Instruction Multiple Data – SIMT: Single Instruction Multiple Threads Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Many incarnations of DLP architectures over decades – Old vector processors • Cray processors: Cray-1, Cray-2, …, Cray X1 – SIMD extensions • Intel SSE and AVX units • Alpha Tarantula (didn’t see light of day ) – Old massively parallel computers • Connection Machines • MasPar machines – Modern GPUs • NVIDIA, AMD, Qualcomm, … • Focus of throughput rather than latency Vector Processors 4 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 5 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 6 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 7 Instr.
    [Show full text]
  • Lecture 14: Gpus
    LECTURE 14 GPUS DANIEL SANCHEZ AND JOEL EMER [INCORPORATES MATERIAL FROM KOZYRAKIS (EE382A), NVIDIA KEPLER WHITEPAPER, HENNESY&PATTERSON] 6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE SPRING 2013 Today’s Menu 2 Review of vector processors Basic GPU architecture Paper discussions 6.888 Spring 2013 - Sanchez and Emer - L14 Vector Processors 3 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 4 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 5 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 6 Instr. Operands Operation Comment VADD.VV V1,V2,V3 V1=V2+V3 vector + vector VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector VMUL.VV V1,V2,V3 V1=V2*V3 vector x vector VMUL.SV V1,R0,V2 V1=R0*V2 scalar x vector VLD V1,R1 V1=M[R1...R1+63] load, stride=1 VLDS V1,R1,R2 V1=M[R1…R1+63*R2] load, stride=R2
    [Show full text]
  • Vector Vs. Scalar Processors: a Performance Comparison Using a Set of Computational Science Benchmarks
    Vector vs. Scalar Processors: A Performance Comparison Using a Set of Computational Science Benchmarks Mike Ashworth, Ian J. Bush and Martyn F. Guest, Computational Science & Engineering Department, CCLRC Daresbury Laboratory ABSTRACT: Despite a significant decline in their popularity in the last decade vector processors are still with us, and manufacturers such as Cray and NEC are bringing new products to market. We have carried out a performance comparison of three full-scale applications, the first, SBLI, a Direct Numerical Simulation code from Computational Fluid Dynamics, the second, DL_POLY, a molecular dynamics code and the third, POLCOMS, a coastal-ocean model. Comparing the performance of the Cray X1 vector system with two massively parallel (MPP) micro-processor-based systems we find three rather different results. The SBLI PCHAN benchmark performs excellently on the Cray X1 with no code modification, showing 100% vectorisation and significantly outperforming the MPP systems. The performance of DL_POLY was initially poor, but we were able to make significant improvements through a few simple optimisations. The POLCOMS code has been substantially restructured for cache-based MPP systems and now does not vectorise at all well on the Cray X1 leading to poor performance. We conclude that both vector and MPP systems can deliver high performance levels but that, depending on the algorithm, careful software design may be necessary if the same code is to achieve high performance on different architectures. KEYWORDS: vector processor, scalar processor, benchmarking, parallel computing, CFD, molecular dynamics, coastal ocean modelling All of the key computational science groups in the 1. Introduction UK made use of vector supercomputers during their halcyon days of the 1970s, 1980s and into the early 1990s Vector computers entered the scene at a very early [1]-[3].
    [Show full text]
  • Design and Implementation of a Multithreaded Associative Simd Processor
    DESIGN AND IMPLEMENTATION OF A MULTITHREADED ASSOCIATIVE SIMD PROCESSOR A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kevin Schaffer December, 2011 Dissertation written by Kevin Schaffer B.S., Kent State University, 2001 M.S., Kent State University, 2003 Ph.D., Kent State University, 2011 Approved by Robert A. Walker, Chair, Doctoral Dissertation Committee Johnnie W. Baker, Members, Doctoral Dissertation Committee Kenneth E. Batcher, Eugene C. Gartland, Accepted by John R. D. Stalvey, Administrator, Department of Computer Science Timothy Moerland, Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... viii LIST OF TABLES ............................................................................................................. xi CHAPTER 1 INTRODUCTION ........................................................................................ 1 1.1. Architectural Trends .............................................................................................. 1 1.1.1. Wide-Issue Superscalar Processors............................................................... 2 1.1.2. Chip Multiprocessors (CMPs) ...................................................................... 2 1.2. An Alternative Approach: SIMD ........................................................................... 3 1.3. MTASC Processor ................................................................................................
    [Show full text]
  • Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
    Computer Architecture A Quantitative Approach, Fifth Edition Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures Copyright © 2012, Elsevier Inc. All rights reserved. 1 Contents 1. SIMD architecture 2. Vector architectures optimizations: Multiple Lanes, Vector Length Registers, Vector Mask Registers, Memory Banks, Stride, Scatter-Gather, 3. Programming Vector Architectures 4. SIMD extensions for media apps 5. GPUs – Graphical Processing Units 6. Fermi architecture innovations 7. Examples of loop-level parallelism 8. Fallacies Copyright © 2012, Elsevier Inc. All rights reserved. 2 Classes of Computers Classes Flynn’s Taxonomy SISD - Single instruction stream, single data stream SIMD - Single instruction stream, multiple data streams New: SIMT – Single Instruction Multiple Threads (for GPUs) MISD - Multiple instruction streams, single data stream No commercial implementation MIMD - Multiple instruction streams, multiple data streams Tightly-coupled MIMD Loosely-coupled MIMD Copyright © 2012, Elsevier Inc. All rights reserved. 3 Introduction Advantages of SIMD architectures 1. Can exploit significant data-level parallelism for: 1. matrix-oriented scientific computing 2. media-oriented image and sound processors 2. More energy efficient than MIMD 1. Only needs to fetch one instruction per multiple data operations, rather than one instr. per data op. 2. Makes SIMD attractive for personal mobile devices 3. Allows programmers to continue thinking sequentially SIMD/MIMD comparison. Potential speedup for SIMD twice that from MIMID! x86 processors expect two additional cores per chip per year SIMD width to double every four years Copyright © 2012, Elsevier Inc. All rights reserved. 4 Introduction SIMD parallelism SIMD architectures A. Vector architectures B. SIMD extensions for mobile systems and multimedia applications C.
    [Show full text]
  • Vector Processors
    VECTOR PROCESSORS Computer Science Department CS 566 – Fall 2012 1 Eman Aldakheel Ganesh Chandrasekaran Prof. Ajay Kshemkalyani OUTLINE What is Vector Processors Vector Processing & Parallel Processing Basic Vector Architecture Vector Instruction Vector Performance Advantages Disadvantages Applications Conclusion 2 VECTOR PROCESSORS A processor can operate on an entire vector in one instruction Work done automatically in parallel (simultaneously) The operand to the instructions are complete vectors instead of one element Reduce the fetch and decode bandwidth Data parallelism Tasks usually consist of: Large active data sets Poor locality Long run times 3 VECTOR PROCESSORS (CONT’D) Each result independent of previous result Long pipeline Compiler ensures no dependencies High clock rate Vector instructions access memory with known pattern Reduces branches and branch problems in pipelines Single vector instruction implies lots of work Example: for(i=0; i<n; i++) c(i) = a(i) + b(i); 4 5 VECTOR PROCESSORS (CONT’D) vadd // C code b[15]+=a[15] for(i=0;i<16; i++) b[i]+=a[i] b[14]+=a[14] b[13]+=a[13] b[12]+=a[12] // Vectorized code b[11]+=a[11] set vl,16 b[10]+=a[10] vload vr0,b b[9]+=a[9] vload vr1,a b[8]+=a[8] vadd vr0,vr0,vr1 b[7]+=a[7] vstore vr0,b b[6]+=a[6] b[5]+=a[5] b[4]+=a[4] Each vector instruction b[3]+=a[3] holds many units of b[2]+=a[2] independent operations b[1]+=a[1] 6 b[0]+=a[0] 1 Vector Lane VECTOR PROCESSORS (CONT’D) vadd // C code b[15]+=a[15] 16 Vector Lanes for(i=0;i<16; i++) b[14]+=a[14] b[i]+=a[i]
    [Show full text]
  • Instruction Set Innovations for Convey's HC-1 Computer
    Instruction Set Innovations for Convey's HC-1 Computer THE WORLD’S FIRST HYBRID-CORE COMPUTER. Hot Chips Conference 2009 [email protected] Introduction to Convey Computer • Company Status – Second round venture based startup company – Product beta systems are at customer sites – Currently staffing at 36 people – Located in Richardson, Texas • Investors – Four Venture Capital Investors • Interwest Partners (Menlo Park) • CenterPoint Ventures (Dallas) • Rho Ventures (New York) • Braemar Energy Ventures (Boston) – Two Industry Investors • Intel Capital • Xilinx Presentation Outline • Overview of HC-1 Computer • Instruction Set Innovations • Application Examples Page 3 Hot Chips Conference 2009 What is a Hybrid-Core Computer ? A hybrid-core computer improves application performance by combining an x86 processor with hardware that implements application-specific instructions. ANSI Standard Applications C/C++/Fortran Convey Compilers x86 Coprocessor Instructions Instructions Intel® Processor Hybrid-Core Coprocessor Oil & Gas& Oil Financial Sciences Custom CAE Application-Specific Personalities Cache-coherent shared virtual memory Page 4 Hot Chips Conference 2009 What Is a Personality? • A personality is a reloadable set of instructions that augment x86 application the x86 instruction set Processor specific – Applicable to a class of applications instructions or specific to a particular code • Each personality is a set of files that includes: – The bits loaded into the Coprocessor – Information used by the Convey compiler • List of
    [Show full text]
  • The RISC-V Instruction Set Manual Volume I: User-Level ISA Document Version 2.2
    The RISC-V Instruction Set Manual Volume I: User-Level ISA Document Version 2.2 Editors: Andrew Waterman1, Krste Asanovi´c1;2 1SiFive Inc., 2CS Division, EECS Department, University of California, Berkeley [email protected], [email protected] May 7, 2017 Contributors to all versions of the spec in alphabetical order (please contact editors to suggest corrections): Krste Asanovi´c,Rimas Aviˇzienis,Jacob Bachmeyer, Christopher F. Batten, Allen J. Baum, Alex Bradbury, Scott Beamer, Preston Briggs, Christopher Celio, David Chisnall, Paul Clayton, Palmer Dabbelt, Stefan Freudenberger, Jan Gray, Michael Hamburg, John Hauser, David Horner, Olof Johansson, Ben Keller, Yunsup Lee, Joseph Myers, Rishiyur Nikhil, Stefan O'Rear, Albert Ou, John Ousterhout, David Patterson, Colin Schmidt, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn, Ray VanDeWalker, Megan Wachs, Andrew Waterman, Robert Wat- son, and Reinoud Zandijk. This document is released under a Creative Commons Attribution 4.0 International License. This document is a derivative of \The RISC-V Instruction Set Manual, Volume I: User-Level ISA Version 2.1" released under the following license: c 2010{2017 Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovi´c. Creative Commons Attribution 4.0 International License. Please cite as: \The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2", Editors Andrew Waterman and Krste Asanovi´c,RISC-V Foundation, May 2017. Preface This is version 2.2 of the document describing the RISC-V user-level architecture. The document contains the following versions of the RISC-V ISA modules: Base Version Frozen? RV32I 2.0 Y RV32E 1.9 N RV64I 2.0 Y RV128I 1.7 N Extension Version Frozen? M 2.0 Y A 2.0 Y F 2.0 Y D 2.0 Y Q 2.0 Y L 0.0 N C 2.0 Y B 0.0 N J 0.0 N T 0.0 N P 0.1 N V 0.2 N N 1.1 N To date, no parts of the standard have been officially ratified by the RISC-V Foundation, but the components labeled \frozen" above are not expected to change during the ratification process beyond resolving ambiguities and holes in the specification.
    [Show full text]
  • GPU Architecture and Programming
    GPU Architecture and Programming Andrei Doncescu inspired by NVIDIA Traditional Computing Von Neumann architecture: instructions are sent from memory to the CPU Serial execution: Instructions are executed one after another on a single Central Processing Unit (CPU) Problems: • More expensive to produce •More expensive to run •Bus speed limitation Parallel Computing Official-sounding definition: The simultaneous use of multiple compute resources to solve a computational problem. Benefits: • Economical – requires less power !!! and cheaper to produce • Better performance – bus/bottleneck issue Limitations: • New architecture – Von Neumann is all we know! • New debugging difficulties – cache consistency issue Processes and Threads • Traditional process – One thread of control through a large, potentially sparse address space – Address space may be shared with other processes (shared mem) – Collection of systems resources (files, semaphores) • Thread (light weight process) – A flow of control through an address space – Each address space can have multiple concurrent control flows – Each thread has access to entire address space – Potentially parallel execution, minimal state (low overheads) – May need synchronization to control access to shared variables Threads • Each thread has its own stack, PC, registers – Share address space, files,… Flynn’s Taxonomy Classification of computer architectures, proposed by Michael J. Flynn •SISD – traditional serial architecture in computers. •SIMD – parallel computer. One instruction is executed many times
    [Show full text]
  • CSC506 Lecture 7 Vector Processors
    Vector Processors A vector processor is a pipelined processor with special instructions designed to keep the (floating point) execution unit pipeline(s) full. These special instructions are vector instructions. Terminology: ¨ Scalar – a single quantity (number). ¨ Vector – an ordered series of scalar quantities – a one-dimensional array. Scalar Quantity Data Vector Quantity Data Data Data Data Data Data Data Data Five basic types of vector operations: 1. V ß V Example: Complement all elements 2. S ß V Examples: Min, Max, Sum 3. V ß V x V Examples: Vector addition, multiplication, division 4. V ß V x S Examples: Multiply or add a scalar to a vector 5. S ß V x V Example: Calculate an element of a matrix One instruction says, in effect, do the same thing on all the elements of the vector(s). Vector Processors Architecture of Parallel Computers Page 1 The generic vector processor: Stream A Pipelined Processor Stream B Multiport Memory System Stream C = A x B Many large-scale scientific and engineering problems can be solved by operations on large vectors or matrices of floating point numbers. Vector processors are designed to efficiently work on these problems. Performance of these machines is measured in: ¨ FLOPS – Floating Point Operations per Second, ¨ MegaFLOPS – a million FLOPS, or ¨ GigaFLOPS – a billion FLOPS. The extremely high performance is achieved only for problems that can be expressed as operations on large vectors. These processors are also called supercomputers, popularized by the CRAY series. The cost/performance ratio of vector processors can be impressive, but the initial cost is high (few of them are built).
    [Show full text]
  • Computer Architecture and Design
    0885_frame_C05.fm Page 1 Tuesday, November 13, 2001 6:33 PM 5 Computer Architecture and Design 5.1 Server Computer Architecture .......................................... 5-2 Introduction • Client–Server Computing • Server Types • Server Deployment Considerations • Server Architecture • Challenges in Server Design • Summary 5.2 Very Large Instruction Word Architectures ................... 5-10 What Is a VLIW Processor? • Different Flavors of Parallelism • A Brief History of VLIW Processors • Defoe: An Example VLIW Architecture • The Intel Itanium Processor • The Transmeta Crusoe Processor • Scheduling Algorithms for VLIW 5.3 Vector Processing.............................................................. 5-22 Introduction • Data Parallelism • History of Data Parallel Machines • Basic Vector Register Architecture • Vector Jean-Luc Gaudiot Instruction Set Advantages • Lanes: Parallel Execution University of Southern California Units • Vector Register File Organization • Traditional Vector Computers versus Microprocessor Multimedia Extensions • Siamack Haghighi Memory System Design • Future Directions • Conclusions Intel Corporation 5.4 Multithreading, Multiprocessing..................................... 5-32 Binu Matthew Introduction • Parallel Processing Software Framework • University of Utah Parallel Processing Hardware Framework • Concluding Remarks • To Probe Further • Acknowledgments Krste Asanovic 5.5 Survey of Parallel Systems ............................................... 5-48 MIT Laboratory for Computer Introduction • Single Instruction
    [Show full text]
  • Chapter 16 - Instruction-Level Parallelism and Superscalar Processors
    Chapter 16 - Instruction-Level Parallelism and Superscalar Processors Luis Tarrataca [email protected] CEFET-RJ Luis Tarrataca Chapter 16 - Superscalar Processors 1 / 90 Table of Contents 1 Overview Scalar Processor Superscalar Processor Superscalar vs. Superpipelined Constraints Luis Tarrataca Chapter 16 - Superscalar Processors 2 / 90 Table of Contents 2 Design Issues Machine Parallelism Instruction Issue Policy In-order issue with in-order completion In-order issue with out-of-order completion Out-of-Order issue with Out-Of-Order Completion Register Renaming 3 Superscalar Execution Overview 4 References Luis Tarrataca Chapter 16 - Superscalar Processors 3 / 90 Overview Scalar Processor The first processors were known as scalar: What is a scalar processor? Any ideas? Luis Tarrataca Chapter 16 - Superscalar Processors 4 / 90 Overview Scalar Processor Scalar Processor The first processors were known as scalar: What is a scalar processor? Any ideas? In a scalar organization, a single pipelined functional unit exists for: • Integer operations; • And one for floating-point operations; Functional unit: • Part of the CPU responsible for calculations; Luis Tarrataca Chapter 16 - Superscalar Processors 5 / 90 Overview Scalar Processor Scalar Processor In a scalar organization, a single pipelined functional unit exists for: • Integer operations; • And one for floating-point operations; Figure: Scalar Organization (Source: [Stallings, 2015]) Luis Tarrataca Chapter 16 - Superscalar Processors 6 / 90 Overview Scalar Processor But why do we
    [Show full text]