Design and Implementation of a Multithreaded Associative Simd Processor

Total Page:16

File Type:pdf, Size:1020Kb

Design and Implementation of a Multithreaded Associative Simd Processor DESIGN AND IMPLEMENTATION OF A MULTITHREADED ASSOCIATIVE SIMD PROCESSOR A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kevin Schaffer December, 2011 Dissertation written by Kevin Schaffer B.S., Kent State University, 2001 M.S., Kent State University, 2003 Ph.D., Kent State University, 2011 Approved by Robert A. Walker, Chair, Doctoral Dissertation Committee Johnnie W. Baker, Members, Doctoral Dissertation Committee Kenneth E. Batcher, Eugene C. Gartland, Accepted by John R. D. Stalvey, Administrator, Department of Computer Science Timothy Moerland, Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... viii LIST OF TABLES ............................................................................................................. xi CHAPTER 1 INTRODUCTION ........................................................................................ 1 1.1. Architectural Trends .............................................................................................. 1 1.1.1. Wide-Issue Superscalar Processors............................................................... 2 1.1.2. Chip Multiprocessors (CMPs) ...................................................................... 2 1.2. An Alternative Approach: SIMD ........................................................................... 3 1.3. MTASC Processor ................................................................................................. 5 1.4. Dissertation Organization ...................................................................................... 5 CHAPTER 2 ASSOCIATIVE COMPUTING ................................................................... 7 2.1. Background ............................................................................................................ 7 2.1.1. Associative Memories ................................................................................... 8 2.1.2. Associative Processors ................................................................................ 10 2.1.3. STARAN..................................................................................................... 11 2.1.4. Massively Parallel Processor (MPP) ........................................................... 12 2.2. The Associative Computing Model (ASC) .......................................................... 12 2.2.1. Associative Search ...................................................................................... 14 2.2.2. Responder Detection ................................................................................... 15 2.2.3. Responder Selection/Iteration ..................................................................... 15 2.2.4. Maximum/Minimum Search ....................................................................... 16 2.2.5. PE Interconnection Network ....................................................................... 17 2.2.6. MASC ......................................................................................................... 17 2.3. ASC Processor Prototypes ................................................................................... 19 2.3.1. First Processor ............................................................................................. 19 2.3.2. Scalable Processor ...................................................................................... 19 2.3.3. Pipelined Processor ..................................................................................... 20 2.3.4. MASC Processor ......................................................................................... 20 2.3.5. MTASC and Previous ASC Processors ...................................................... 21 iii 2.4. Summary .............................................................................................................. 21 CHAPTER 3 PIPELINING .............................................................................................. 22 3.1. Background .......................................................................................................... 22 3.1.1. Pipelining Basics ......................................................................................... 23 3.1.2. Hazards ....................................................................................................... 24 3.2. Pipelining a SIMD Processor ............................................................................... 27 3.2.1. SIMD Instruction Types ............................................................................. 27 3.2.2. Pipelining Instruction Execution ................................................................. 28 3.2.3. Pipelining the Broadcast and Reduction Networks .................................... 29 3.2.4. SIMD-Specific Pipeline Hazards ................................................................ 30 3.3. MTASC Pipeline .................................................................................................. 31 3.3.1. Unified Pipeline .......................................................................................... 32 3.3.2. Hazards in the Unified Pipeline .................................................................. 32 3.3.3. Diversified Pipeline .................................................................................... 34 3.3.4. Hazards in the Diversified Pipeline ............................................................ 35 3.3.5. Comparison of Unified and Diversified Pipelines ...................................... 36 3.4. Summary .............................................................................................................. 37 CHAPTER 4 MULTITHREADING ................................................................................ 39 4.1. Background .......................................................................................................... 39 4.2. Thread Scheduling ............................................................................................... 42 4.2.1. Simple Scheduler ........................................................................................ 42 4.2.2. Dependency-Aware Scheduler .................................................................... 44 4.2.3. Semaphore-Aware Scheduler...................................................................... 47 4.3. Summary .............................................................................................................. 48 CHAPTER 5 MTASC: A MULTITHREADED ASSOCIATIVE SIMD PROCESSOR 50 5.1. Instruction Set Architecture ................................................................................. 50 5.1.1. Registers ...................................................................................................... 51 5.1.2. Instruction Formats ..................................................................................... 53 5.1.3. ALU Instructions ........................................................................................ 54 5.1.4. Load/Store Instructions ............................................................................... 54 5.1.5. Branch and Jump Instructions ..................................................................... 55 iv 5.1.6. Enable Stack Instructions ............................................................................ 55 5.1.7. Reduction Instructions ................................................................................ 56 5.1.8. Semaphore Instructions ............................................................................... 57 5.2. Organization ......................................................................................................... 57 5.2.1. Control Unit ................................................................................................ 57 5.2.2. Scalar Execution Unit ................................................................................. 59 5.2.3. Processing Elements (PEs) ......................................................................... 60 5.2.4. Broadcast/Reduction Network .................................................................... 63 5.2.5. PE Interconnection Network ....................................................................... 64 5.3. MTASC Assembler .............................................................................................. 64 5.4. MTASC Simulator ............................................................................................... 65 5.5. Summary .............................................................................................................. 66 CHAPTER 6 MULTITHREADED ASSOCIATIVE BENCHMARKS .......................... 67 6.1. Algorithmic Conventions ..................................................................................... 67 6.2. Associativity ........................................................................................................ 68 6.3. Benchmarks.......................................................................................................... 69 6.3.1. Jarvis March ................................................................................................ 69 6.3.2. Minimum Spanning Tree ............................................................................ 71 6.3.3. Matrix-Vector Multiplication.....................................................................
Recommended publications
  • Data-Level Parallelism
    Fall 2015 :: CSE 610 – Parallel Computer Architectures Data-Level Parallelism Nima Honarmand Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Data Parallelism vs. Control Parallelism – Data Parallelism: parallelism arises from executing essentially the same code on a large number of objects – Control Parallelism: parallelism arises from executing different threads of control concurrently • Hypothesis: applications that use massively parallel machines will mostly exploit data parallelism – Common in the Scientific Computing domain • DLP originally linked with SIMD machines; now SIMT is more common – SIMD: Single Instruction Multiple Data – SIMT: Single Instruction Multiple Threads Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Many incarnations of DLP architectures over decades – Old vector processors • Cray processors: Cray-1, Cray-2, …, Cray X1 – SIMD extensions • Intel SSE and AVX units • Alpha Tarantula (didn’t see light of day ) – Old massively parallel computers • Connection Machines • MasPar machines – Modern GPUs • NVIDIA, AMD, Qualcomm, … • Focus of throughput rather than latency Vector Processors 4 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 5 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 6 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 7 Instr.
    [Show full text]
  • Unit – I Computer Architecture and Operating System – Scs1315
    SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRONICS AND COMMMUNICATION ENGINEERING UNIT – I COMPUTER ARCHITECTURE AND OPERATING SYSTEM – SCS1315 UNIT.1 INTRODUCTION Central Processing Unit - Introduction - General Register Organization - Stack organization -- Basic computer Organization - Computer Registers - Computer Instructions - Instruction Cycle. Arithmetic, Logic, Shift Microoperations- Arithmetic Logic Shift Unit -Example Architectures: MIPS, Power PC, RISC, CISC Central Processing Unit The part of the computer that performs the bulk of data-processing operations is called the central processing unit CPU. The CPU is made up of three major parts, as shown in Fig.1 Fig 1. Major components of CPU. The register set stores intermediate data used during the execution of the instructions. The arithmetic logic unit (ALU) performs the required microoperations for executing the instructions. The control unit supervises the transfer of information among the registers and instructs the ALU as to which operation to perform. General Register Organization When a large number of registers are included in the CPU, it is most efficient to connect them through a common bus system. The registers communicate with each other not only for direct data transfers, but also while performing various microoperations. Hence it is necessary to provide a common unit that can perform all the arithmetic, logic, and shift microoperations in the processor. A bus organization for seven CPU registers is shown in Fig.2. The output of each register is connected to two multiplexers (MUX) to form the two buses A and B. The selection lines in each multiplexer select one register or the input data for the particular bus. The A and B buses form the inputs to a common arithmetic logic unit (ALU).
    [Show full text]
  • Lecture 14: Gpus
    LECTURE 14 GPUS DANIEL SANCHEZ AND JOEL EMER [INCORPORATES MATERIAL FROM KOZYRAKIS (EE382A), NVIDIA KEPLER WHITEPAPER, HENNESY&PATTERSON] 6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE SPRING 2013 Today’s Menu 2 Review of vector processors Basic GPU architecture Paper discussions 6.888 Spring 2013 - Sanchez and Emer - L14 Vector Processors 3 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 4 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 5 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 6 Instr. Operands Operation Comment VADD.VV V1,V2,V3 V1=V2+V3 vector + vector VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector VMUL.VV V1,V2,V3 V1=V2*V3 vector x vector VMUL.SV V1,R0,V2 V1=R0*V2 scalar x vector VLD V1,R1 V1=M[R1...R1+63] load, stride=1 VLDS V1,R1,R2 V1=M[R1…R1+63*R2] load, stride=R2
    [Show full text]
  • S.D.M COLLEGE of ENGINEERING and TECHNOLOGY Sridhar Y
    VISVESVARAYA TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY A seminar report on CUDA Submitted by Sridhar Y 2sd06cs108 8th semester DEPARTMENT OF COMPUTER SCIENCE ENGINEERING 2009-10 Page 1 VISVESVARAYA TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE ENGINEERING CERTIFICATE Certified that the seminar work entitled “CUDA” is a bonafide work presented by Sridhar Y bearing USN 2SD06CS108 in a partial fulfillment for the award of degree of Bachelor of Engineering in Computer Science Engineering of the Visvesvaraya Technological University, Belgaum during the year 2009-10. The seminar report has been approved as it satisfies the academic requirements with respect to seminar work presented for the Bachelor of Engineering Degree. Staff in charge H.O.D CSE Name: Sridhar Y USN: 2SD06CS108 Page 2 Contents 1. Introduction 4 2. Evolution of GPU programming and CUDA 5 3. CUDA Structure for parallel processing 9 4. Programming model of CUDA 10 5. Portability and Security of the code 12 6. Managing Threads with CUDA 14 7. Elimination of Deadlocks in CUDA 17 8. Data distribution among the Thread Processes in CUDA 14 9. Challenges in CUDA for the Developers 19 10. The Pros and Cons of CUDA 19 11. Conclusions 21 Bibliography 21 Page 3 Abstract Parallel processing on multi core processors is the industry’s biggest software challenge, but the real problem is there are too many solutions. One of them is Nvidia’s Compute Unified Device Architecture (CUDA), a software platform for massively parallel high performance computing on the powerful Graphics Processing Units (GPUs).
    [Show full text]
  • Lecture 6: Instruction Set Architecture and the 80X86
    Lecture 6: Instruction Set Architecture and the 80x86 Professor Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Review From Last Time • Given sales a function of performance relative to competition, tremendous investment in improving product as reported by performance summary • Good products created when have: – Good benchmarks – Good ways to summarize performance • If not good benchmarks and summary, then choice between improving product for real programs vs. improving product to get more sales=> sales almost always wins • Time is the measure of computer performance! • What about cost? RHK.S96 2 Review: Integrated Circuits Costs IC cost = Die cost + Testing cost + Packaging cost Final test yield Die cost = Wafer cost Dies per Wafer * Die yield Dies per wafer = p * ( Wafer_diam / 2)2 – p * Wafer_diam – Test dies Die Area Ö 2 * Die Area Defects_per_unit_area * Die_Area Die Yield = Wafer yield * { 1 + } 4 Die Cost is goes roughly with area RHK.S96 3 Review From Last Time Price vs. Cost 100% 80% Average Discount 60% Gross Margin 40% Direct Costs 20% Component Costs 0% Mini W/S PC 5 4.7 3.8 4 3.5 Average Discount 3 2.5 Gross Margin 2 1.8 Direct Costs 1.5 1 Component Costs 0 Mini W/S PC RHK.S96 4 Today: Instruction Set Architecture • 1950s to 1960s: Computer Architecture Course Computer Arithmetic • 1970 to mid 1980s: Computer Architecture Course Instruction Set Design, especially ISA appropriate for compilers • 1990s: Computer Architecture Course Design of CPU, memory system, I/O system, Multiprocessors RHK.S96 5 Computer Architecture? . the attributes of a [computing] system as seen by the programmer, i.e.
    [Show full text]
  • Low-Power Microprocessor Based on Stack Architecture
    Girish Aramanekoppa Subbarao Low-power Microprocessor based on Stack Architecture Stack on based Microprocessor Low-power Master’s Thesis Low-power Microprocessor based on Stack Architecture Girish Aramanekoppa Subbarao Series of Master’s theses Department of Electrical and Information Technology LU/LTH-EIT 2015-464 Department of Electrical and Information Technology, http://www.eit.lth.se Faculty of Engineering, LTH, Lund University, September 2015. Department of Electrical and Information Technology Master of Science Thesis Low-power Microprocessor based on Stack Architecture Supervisors: Author: Prof. Joachim Rodrigues Girish Aramanekoppa Subbarao Prof. Anders Ard¨o Lund 2015 © The Department of Electrical and Information Technology Lund University Box 118, S-221 00 LUND SWEDEN This thesis is set in Computer Modern 10pt, with the LATEX Documentation System ©Girish Aramanekoppa Subbarao 2015 Printed in E-huset Lund, Sweden. Sep. 2015 Abstract There are many applications of microprocessors in embedded applications, where power efficiency becomes a critical requirement, e.g. wearable or mobile devices in healthcare, space instrumentation and handheld devices. One of the methods of achieving low power operation is by simplifying the device architecture. RISC/CISC processors consume considerable power because of their complexity, which is due to their multiplexer system connecting the register file to the func- tional units and their instruction pipeline system. On the other hand, the Stack machines are comparatively less complex due to their implied addressing to the top two registers of the stack and smaller operation codes. This makes the instruction and the address decoder circuit simple by eliminating the multiplex switches for read and write ports of the register file.
    [Show full text]
  • Design and VHDL Implementation of an Application-Specific Instruction Set Processor
    Design and VHDL Implementation of an Application-Specific Instruction Set Processor Lauri Isola School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 19.12.2019 Supervisor Prof. Jussi Ryynänen Advisor D.Sc. (Tech.) Marko Kosunen Copyright © 2019 Lauri Isola Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the master’s thesis Author Lauri Isola Title Design and VHDL Implementation of an Application-Specific Instruction Set Processor Degree programme Computer, Communication and Information Sciences Major Signal, Speech and Language Processing Code of major ELEC3031 Supervisor Prof. Jussi Ryynänen Advisor D.Sc. (Tech.) Marko Kosunen Date 19.12.2019 Number of pages 66+45 Language English Abstract Open source processors are becoming more popular. They are a cost-effective option in hardware designs, because using the processor does not require an expensive license. However, a limited number of open source processors are still available. This is especially true for Application-Specific Instruction Set Processors (ASIPs). In this work, an ASIP processor was designed and implemented in VHDL hardware description language. The design was based on goals that make the processor easily customizable, and to have a low resource consumption in a System- on-Chip (SoC) design. Finally, the processor was implemented on an FPGA circuit, where it was tested with a specially designed VGA graphics controller. Necessary software tools, such as an assembler were also implemented for the processor. The assembler was used to write comprehensive test programs for testing and verifying the functionality of the processor. This work also examined some future upgrades of the designed processor.
    [Show full text]
  • Comparative Architectures
    Comparative Architectures CST Part II, 16 lectures Lent Term 2006 David Greaves [email protected] Slides Lectures 1-13 (C) 2006 IAP + DJG Course Outline 1. Comparing Implementations • Developments fabrication technology • Cost, power, performance, compatibility • Benchmarking 2. Instruction Set Architecture (ISA) • Classic CISC and RISC traits • ISA evolution 3. Microarchitecture • Pipelining • Super-scalar { static & out-of-order • Multi-threading • Effects of ISA on µarchitecture and vice versa 4. Memory System Architecture • Memory Hierarchy 5. Multi-processor systems • Cache coherent and message passing Understanding design tradeoffs 2 Reading material • OHP slides, articles • Recommended Book: John Hennessy & David Patterson, Computer Architecture: a Quantitative Approach (3rd ed.) 2002 Morgan Kaufmann • MIT Open Courseware: 6.823 Computer System Architecture, by Krste Asanovic • The Web http://bwrc.eecs.berkeley.edu/CIC/ http://www.chip-architect.com/ http://www.geek.com/procspec/procspec.htm http://www.realworldtech.com/ http://www.anandtech.com/ http://www.arstechnica.com/ http://open.specbench.org/ • comp.arch News Group 3 Further Reading and Reference • M Johnson Superscalar microprocessor design 1991 Prentice-Hall • P Markstein IA-64 and Elementary Functions 2000 Prentice-Hall • A Tannenbaum, Structured Computer Organization (2nd ed.) 1990 Prentice-Hall • A Someren & C Atack, The ARM RISC Chip, 1994 Addison-Wesley • R Sites, Alpha Architecture Reference Manual, 1992 Digital Press • G Kane & J Heinrich, MIPS RISC Architecture
    [Show full text]
  • CS152: Computer Systems Architecture Pipelining
    CS152: Computer Systems Architecture Pipelining Sang-Woo Jun Winter 2021 Large amount of material adapted from MIT 6.004, “Computation Structures”, Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”, and CS 152 Slides by Isaac Scherson Eight great ideas ❑ Design for Moore’s Law ❑ Use abstraction to simplify design ❑ Make the common case fast ❑ Performance via parallelism ❑ Performance via pipelining ❑ Performance via prediction ❑ Hierarchy of memories ❑ Dependability via redundancy But before we start… Performance Measures ❑ Two metrics when designing a system 1. Latency: The delay from when an input enters the system until its associated output is produced 2. Throughput: The rate at which inputs or outputs are processed ❑ The metric to prioritize depends on the application o Embedded system for airbag deployment? Latency o General-purpose processor? Throughput Performance of Combinational Circuits ❑ For combinational logic o latency = tPD o throughput = 1/t F and G not doing work! PD Just holding output data X F(X) X Y G(X) H(X) Is this an efficient way of using hardware? Source: MIT 6.004 2019 L12 Pipelined Circuits ❑ Pipelining by adding registers to hold F and G’s output o Now F & G can be working on input Xi+1 while H is performing computation on Xi o A 2-stage pipeline! o For input X during clock cycle j, corresponding output is emitted during clock j+2. Assuming ideal registers Assuming latencies of 15, 20, 25… 15 Y F(X) G(X) 20 H(X) 25 Source: MIT 6.004 2019 L12 Pipelined Circuits 20+25=45 25+25=50 Latency Throughput Unpipelined 45 1/45 2-stage pipelined 50 (Worse!) 1/25 (Better!) Source: MIT 6.004 2019 L12 Pipeline conventions ❑ Definition: o A well-formed K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K registers on every path from an input to an output.
    [Show full text]
  • X86-64 Machine-Level Programming∗
    x86-64 Machine-Level Programming∗ Randal E. Bryant David R. O'Hallaron September 9, 2005 Intel’s IA32 instruction set architecture (ISA), colloquially known as “x86”, is the dominant instruction format for the world’s computers. IA32 is the platform of choice for most Windows and Linux machines. The ISA we use today was defined in 1985 with the introduction of the i386 microprocessor, extending the 16-bit instruction set defined by the original 8086 to 32 bits. Even though subsequent processor generations have introduced new instruction types and formats, many compilers, including GCC, have avoided using these features in the interest of maintaining backward compatibility. A shift is underway to a 64-bit version of the Intel instruction set. Originally developed by Advanced Micro Devices (AMD) and named x86-64, it is now supported by high end processors from AMD (who now call it AMD64) and by Intel, who refer to it as EM64T. Most people still refer to it as “x86-64,” and we follow this convention. Newer versions of Linux and GCC support this extension. In making this switch, the developers of GCC saw an opportunity to also make use of some of the instruction-set features that had been added in more recent generations of IA32 processors. This combination of new hardware and revised compiler makes x86-64 code substantially different in form and in performance than IA32 code. In creating the 64-bit extension, the AMD engineers also adopted some of the features found in reduced-instruction set computers (RISC) [7] that made them the favored targets for optimizing compilers.
    [Show full text]
  • Vector Vs. Scalar Processors: a Performance Comparison Using a Set of Computational Science Benchmarks
    Vector vs. Scalar Processors: A Performance Comparison Using a Set of Computational Science Benchmarks Mike Ashworth, Ian J. Bush and Martyn F. Guest, Computational Science & Engineering Department, CCLRC Daresbury Laboratory ABSTRACT: Despite a significant decline in their popularity in the last decade vector processors are still with us, and manufacturers such as Cray and NEC are bringing new products to market. We have carried out a performance comparison of three full-scale applications, the first, SBLI, a Direct Numerical Simulation code from Computational Fluid Dynamics, the second, DL_POLY, a molecular dynamics code and the third, POLCOMS, a coastal-ocean model. Comparing the performance of the Cray X1 vector system with two massively parallel (MPP) micro-processor-based systems we find three rather different results. The SBLI PCHAN benchmark performs excellently on the Cray X1 with no code modification, showing 100% vectorisation and significantly outperforming the MPP systems. The performance of DL_POLY was initially poor, but we were able to make significant improvements through a few simple optimisations. The POLCOMS code has been substantially restructured for cache-based MPP systems and now does not vectorise at all well on the Cray X1 leading to poor performance. We conclude that both vector and MPP systems can deliver high performance levels but that, depending on the algorithm, careful software design may be necessary if the same code is to achieve high performance on different architectures. KEYWORDS: vector processor, scalar processor, benchmarking, parallel computing, CFD, molecular dynamics, coastal ocean modelling All of the key computational science groups in the 1. Introduction UK made use of vector supercomputers during their halcyon days of the 1970s, 1980s and into the early 1990s Vector computers entered the scene at a very early [1]-[3].
    [Show full text]
  • Instruction Set Architecture
    The Instruction Set Architecture Application Instruction Set Architecture OiOperating Compiler System Instruction Set Architecture Instr. Set Proc. I/O system or Digital Design “How to talk to computers if Circuit Design you aren’t on Star Trek” CSE 240A Dean Tullsen CSE 240A Dean Tullsen How to Sppmpeak Computer Crafting an ISA High Level Language temp = v[k]; • Designing an ISA is both an art and a science Program v[k] = v[k+ 1]; v[k+1] = temp; • ISA design involves dealing in an extremely rare resource Compiler – instruction bits! lw $15, 0($2) AblLAssembly Language lw $16, 4($2) • Some things we want out of our ISA Program sw $16, 0($2) – completeness sw $15, 4($2) Assembler – orthogonality 1000110001100010000000000000000 – regularity and simplicity Machine Language 1000110011110010000000000000100 – compactness Program 1010110011110010000000000000000 – ease of ppgrogramming 1010110001100010000000000000100 Machine Interpretation – ease of implementation Control Signal Spec ALUOP[0:3] <= InstReg[9:11] & MASK CSE 240A Dean Tullsen CSE 240A Dean Tullsen Where are the instructions? KKyey ISA decisions • Harvard architecture • Von Neumann architecture destination operand operation • operations y = x + b – how many? inst & source operands inst cpu data – which ones storage storage operands cpu • data “stored-program” computer – how many? storage – location – types – how to specify? how does the computer know what L1 • instruction format 0001 0100 1101 1111 inst – size means? cache L2 cpu Mem cache – how many formats? L1 dtdata cache CSE
    [Show full text]