CSC506 Lecture 7 Vector Processors

Total Page:16

File Type:pdf, Size:1020Kb

CSC506 Lecture 7 Vector Processors Vector Processors A vector processor is a pipelined processor with special instructions designed to keep the (floating point) execution unit pipeline(s) full. These special instructions are vector instructions. Terminology: ¨ Scalar – a single quantity (number). ¨ Vector – an ordered series of scalar quantities – a one-dimensional array. Scalar Quantity Data Vector Quantity Data Data Data Data Data Data Data Data Five basic types of vector operations: 1. V ß V Example: Complement all elements 2. S ß V Examples: Min, Max, Sum 3. V ß V x V Examples: Vector addition, multiplication, division 4. V ß V x S Examples: Multiply or add a scalar to a vector 5. S ß V x V Example: Calculate an element of a matrix One instruction says, in effect, do the same thing on all the elements of the vector(s). Vector Processors Architecture of Parallel Computers Page 1 The generic vector processor: Stream A Pipelined Processor Stream B Multiport Memory System Stream C = A x B Many large-scale scientific and engineering problems can be solved by operations on large vectors or matrices of floating point numbers. Vector processors are designed to efficiently work on these problems. Performance of these machines is measured in: ¨ FLOPS – Floating Point Operations per Second, ¨ MegaFLOPS – a million FLOPS, or ¨ GigaFLOPS – a billion FLOPS. The extremely high performance is achieved only for problems that can be expressed as operations on large vectors. These processors are also called supercomputers, popularized by the CRAY series. The cost/performance ratio of vector processors can be impressive, but the initial cost is high (few of them are built). NEC's SX-4 series, which NEC claims was the most successful supercomputer, sold just 134 systems in 3 years. NEC reports that the SX-5, introduced in June 1998, has received orders for 22 systems over the last year. We also see the attached vector processor – an optional vector processing unit attached to a standard scalar computer. © 1997, 1999 E.F. Gehringer, G.Q. Kenney CSC 506, Summer 1999 Page 2 Matrix multiplication: Suppose we want to calculate the product of two N x N matrices, C := A x B. We must perform this calculation: N– 1 cij := å aik b kj k = 0 Inner loop of a scalar processor performing the martix multiply The following loop calculates a single element of the matrix C. We must execute this loop N2 times to get A x B: ------- ; Instructions to initialize 1 iteration of kLoop ------- ; (initialize RC, RN, Rk, Ri, Rj) kLoop ADD Ri, Stride-i ; Increment column of A ADD Rj, Stride-j ; Increment row of B LOAD RA, A(Ri) ; Get value of Matrix A row LOAD RB, B(Rj) ; Get value of Matrix B column FMPY RA, RB ; Floating multiply FADD RC, RA ; Floating add INC Rk ; Increment k CMP Rk, RN ; At end of Row x Column? BNE kLoop ; No -- Repeat for R x C STORE RC, C(r, c) ; Yes -- Store C element ------- ; Continue with all Rows/Columns of C Vector Processors Architecture of Parallel Computers Page 3 Vector Processor Operation With a vector processor, we have minimal instructions to set up the vector operation, and the entire inner loop (kLoop) consists of three vector instructions: ------- ; Instructions to initialize vector operation VLOAD V1, A(r), N, Stride-i ; Vector load row of A with stride i VLOAD V2, B(c), N, Stride-j ; Vector load column of B with stride j VMPYADD V1, V2, RC ; Vector multiply + add to C STORE RC, C(r, c) ; Store C element ------- ; Continue with all Rows/Columns of C The special vector instruction allows us to calculate each element of C in a single vector floating point instruction (VMPYADD) rather than 2N scalar floating point instructions (FMPY and FADD) and 5N loop control and addressing instructions. In addition, the special vector instruction can keep the floating point pipeline full and generate one result output per clock. For example, if we have a 4-stage floating point addition pipe and a 10-stage floating point multiply pipe: ¨ Do we ever get more than one instruction in the pipelines at a time with the kLoop sequence of the scalar processor? ¨ We will keep both pipelines full with successive multiply/adds on the vector processor. With P independent pipes, we can operate on P elements of C in parallel. © 1997, 1999 E.F. Gehringer, G.Q. Kenney CSC 506, Summer 1999 Page 4 FORTRAN is still the preferred language for the majority of the users of vector processors, because the majority of users are scientists and engineers and because there is a large amount of scientific software available in FORTRAN. Example FORTRAN: DO 100 I=1,N A(I) = B(I) + C(I) B(I) = 2 * A(I+1) 100 CONTINUE If we unwind this “DO Loop” A(1) = B(1) + C(1) B(1) = 2 * A(2) A(2) = B(2) + C(2) B(2) = 2 * A(3) . “Vector FORTRAN” TEMP(1:N) = A(2:N+1) A(1:N) = B(1:N) + C(1:N) B(1:N) = 2 * TEMP(1:N) Also, some optimizing FORTRAN compilers automatically generate vector code from the original “DO Loop.” For example, DEC VAX FORTRAN supports the automatic generation of vector operations. ¨ [NO]VECTOR Controls whether or not the compiler checks the source code for data dependencies and generates code for the vector hardware when the code is eligible. Vector Processors Architecture of Parallel Computers Page 5 An example vector processor: NEC announced the SX-4 supercomputer in November 1994. It is the third in the SX series of supercomputers and is upward compatible from the SX- 3R vector processor with enhancements for scalar processing, short vector processing, and parallel processing. The SX-4 has an 8.0 ns clock cycle and a peak performance of 2 Gflops per processor. Each SX-4 processor contains a vector unit and superscalar unit. The vector unit is built using eight vector pipeline processor VLSI chips. Each vector unit chip is a self contained vector unit with registers holding 32 vector elements. The eight chips are connected by crossbar and comprise 32 vector pipelines arranged as sets of eight add/shift, eight multiply, eight divide, and eight logical pipes. Each set of eight pipes serves a single vector instruction, and all sets of pipes can operate concurrently. With a vector add and vector multiply operating concurrently, the pipes provide 2 GFLOPS peak performance. The memory and the processors within each SX-4 node are connected by a nonblocking crossbar. Each processor has a 16 Gbytes per second port into the crossbar. The main memory can have up to 1024 banks of 64-bit wide synchronous static RAM (SSRAM). The SSRAM is composed of 4 Mbit, 15 ns components. Bank cycle time is only two clocks. (Note: NEC has subsequently changed to use Synchronous Dynamic RAM (SDRAM) instead of static RAM). A 32 processor node has a 512 gigabytes per second sustainable memory bandwidth. Conflict free unit stride as well as stride 2 access is guaranteed from all 32 processors simultaneously. Higher strides and list vector access benefit from the very short bank cycle time. Note: The SX-4 achieves the stated 2 GFLOPS by feeding a multiply directly into an add, and concurrently doing this on 8 parallel pipelines. 8 ns per clock = 125 MHz. 125 MHz x 2 FLOPS/clock x 8 pipes = 2 GFLOPS. © 1997, 1999 E.F. Gehringer, G.Q. Kenney CSC 506, Summer 1999 Page 6 NEC SX-5 Organization CPU- Central Processing Unit MM- Main Memory Unit IOP - Input-Output Processor VR - Vector Register File SR - Scalar Register File The SX-5 Series employs a 0.25µ CMOS LSI technology. This enables the SX-5 to achieve a clock cycle of 4.0ns, which is half that of the SX-4 Series. Vector Processors Architecture of Parallel Computers Page 7 SX-4BA SX-4A SX-4AM Server Single Multi Node Node CPUs 1-4 1-16 8-256 CPU Peak 1.8 GF 2 GF 2 GF System Peak 7.2 GF 32 GF 512 GF Clock 8.8 ns 8.0 ns 8.0 ns Memory Type SDRAM SDRAM SDRAM Max.Capacity 16 GB 32 GB 512 GB Max Banking 4,096 8,192 131,072 IOP (max) 1.6 GB/s 3.2 GB/s 25.6 GB/s XMU Optional Optional Optional Max Bandwidth 3.6 GB/s 8 GB/s 128 GB/s Max.Capacity 8 GB 16 GB 64 GB Table 1: SX-4A Models Overview SX-4 Vector Unit Substantial effort has been made to provide significant vector performance for short vector lengths. The crossover between scalar and vector performance is a short 8 elements in most cases. The vector unit has 8 operational registers from which all operations can be started. In addition, there are 64 vector data registers which have a subset of valid instructions and that can receive results from pipelines concurrently with the 8 operational registers; the vector data registers serve as a high performance vector cache which significantly reduces memory traffic in most cases. The ganging of 8 vector pipeline processor VLSI results in visible vector registers which each hold 256 vector elements. Therefore the vector unit is described as 72 registers of 256 elements of 64 bits each. © 1997, 1999 E.F. Gehringer, G.Q. Kenney CSC 506, Summer 1999 Page 8 Revisit the definition of speedup Recall that the speedup of a pipeline measures how much more quickly a workload is completed by the pipeline processor than by a non-pipeline processor. Best Serial Time Speedup = Parallel Execution Time A k-stage pipeline with all stages of equal duration (one clock period) has a theoretical speedup of k – because it takes k clocks to get a single operation through the pipe and we are retiring one operation every clock.
Recommended publications
  • Data-Level Parallelism
    Fall 2015 :: CSE 610 – Parallel Computer Architectures Data-Level Parallelism Nima Honarmand Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Data Parallelism vs. Control Parallelism – Data Parallelism: parallelism arises from executing essentially the same code on a large number of objects – Control Parallelism: parallelism arises from executing different threads of control concurrently • Hypothesis: applications that use massively parallel machines will mostly exploit data parallelism – Common in the Scientific Computing domain • DLP originally linked with SIMD machines; now SIMT is more common – SIMD: Single Instruction Multiple Data – SIMT: Single Instruction Multiple Threads Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Many incarnations of DLP architectures over decades – Old vector processors • Cray processors: Cray-1, Cray-2, …, Cray X1 – SIMD extensions • Intel SSE and AVX units • Alpha Tarantula (didn’t see light of day ) – Old massively parallel computers • Connection Machines • MasPar machines – Modern GPUs • NVIDIA, AMD, Qualcomm, … • Focus of throughput rather than latency Vector Processors 4 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 5 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 6 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 7 Instr.
    [Show full text]
  • 2.5 Classification of Parallel Computers
    52 // Architectures 2.5 Classification of Parallel Computers 2.5 Classification of Parallel Computers 2.5.1 Granularity In parallel computing, granularity means the amount of computation in relation to communication or synchronisation Periods of computation are typically separated from periods of communication by synchronization events. • fine level (same operations with different data) ◦ vector processors ◦ instruction level parallelism ◦ fine-grain parallelism: – Relatively small amounts of computational work are done between communication events – Low computation to communication ratio – Facilitates load balancing 53 // Architectures 2.5 Classification of Parallel Computers – Implies high communication overhead and less opportunity for per- formance enhancement – If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation. • operation level (different operations simultaneously) • problem level (independent subtasks) ◦ coarse-grain parallelism: – Relatively large amounts of computational work are done between communication/synchronization events – High computation to communication ratio – Implies more opportunity for performance increase – Harder to load balance efficiently 54 // Architectures 2.5 Classification of Parallel Computers 2.5.2 Hardware: Pipelining (was used in supercomputers, e.g. Cray-1) In N elements in pipeline and for 8 element L clock cycles =) for calculation it would take L + N cycles; without pipeline L ∗ N cycles Example of good code for pipelineing: §doi =1 ,k ¤ z ( i ) =x ( i ) +y ( i ) end do ¦ 55 // Architectures 2.5 Classification of Parallel Computers Vector processors, fast vector operations (operations on arrays). Previous example good also for vector processor (vector addition) , but, e.g. recursion – hard to optimise for vector processors Example: IntelMMX – simple vector processor.
    [Show full text]
  • Balanced Multithreading: Increasing Throughput Via a Low Cost Multithreading Hierarchy
    Balanced Multithreading: Increasing Throughput via a Low Cost Multithreading Hierarchy Eric Tune Rakesh Kumar Dean M. Tullsen Brad Calder Computer Science and Engineering Department University of California at San Diego {etune,rakumar,tullsen,calder}@cs.ucsd.edu Abstract ibility of SMT comes at a cost. The register file and rename tables must be enlarged to accommodate the architectural reg- A simultaneous multithreading (SMT) processor can issue isters of the additional threads. This in turn can increase the instructions from several threads every cycle, allowing it to clock cycle time and/or the depth of the pipeline. effectively hide various instruction latencies; this effect in- Coarse-grained multithreading (CGMT) [1, 21, 26] is a creases with the number of simultaneous contexts supported. more restrictive model where the processor can only execute However, each added context on an SMT processor incurs a instructions from one thread at a time, but where it can switch cost in complexity, which may lead to an increase in pipeline to a new thread after a short delay. This makes CGMT suited length or a decrease in the maximum clock rate. This pa- for hiding longer delays. Soon, general-purpose micropro- per presents new designs for multithreaded processors which cessors will be experiencing delays to main memory of 500 combine a conservative SMT implementation with a coarse- or more cycles. This means that a context switch in response grained multithreading capability. By presenting more virtual to a memory access can take tens of cycles and still provide contexts to the operating system and user than are supported a considerable performance benefit.
    [Show full text]
  • Vector-Thread Architecture and Implementation by Ronny Meir Krashinsky B.S
    Vector-Thread Architecture And Implementation by Ronny Meir Krashinsky B.S. Electrical Engineering and Computer Science University of California at Berkeley, 1999 S.M. Electrical Engineering and Computer Science Massachusetts Institute of Technology, 2001 Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2007 c Massachusetts Institute of Technology 2007. All rights reserved. Author........................................................................... Department of Electrical Engineering and Computer Science May 25, 2007 Certified by . Krste Asanovic´ Associate Professor Thesis Supervisor Accepted by . Arthur C. Smith Chairman, Department Committee on Graduate Students 2 Vector-Thread Architecture And Implementation by Ronny Meir Krashinsky Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science Abstract This thesis proposes vector-thread architectures as a performance-efficient solution for all-purpose computing. The VT architectural paradigm unifies the vector and multithreaded compute models. VT provides the programmer with a control processor and a vector of virtual processors. The control processor can use vector-fetch commands to broadcast instructions to all the VPs or each VP can use thread-fetches to direct its own control flow. A seamless intermixing of the vector and threaded control mechanisms allows a VT architecture to flexibly and compactly encode application paral- lelism and locality. VT architectures can efficiently exploit a wide variety of loop-level parallelism, including non-vectorizable loops with cross-iteration dependencies or internal control flow.
    [Show full text]
  • Lecture 14: Gpus
    LECTURE 14 GPUS DANIEL SANCHEZ AND JOEL EMER [INCORPORATES MATERIAL FROM KOZYRAKIS (EE382A), NVIDIA KEPLER WHITEPAPER, HENNESY&PATTERSON] 6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE SPRING 2013 Today’s Menu 2 Review of vector processors Basic GPU architecture Paper discussions 6.888 Spring 2013 - Sanchez and Emer - L14 Vector Processors 3 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 4 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 5 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 6 Instr. Operands Operation Comment VADD.VV V1,V2,V3 V1=V2+V3 vector + vector VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector VMUL.VV V1,V2,V3 V1=V2*V3 vector x vector VMUL.SV V1,R0,V2 V1=R0*V2 scalar x vector VLD V1,R1 V1=M[R1...R1+63] load, stride=1 VLDS V1,R1,R2 V1=M[R1…R1+63*R2] load, stride=R2
    [Show full text]
  • Lecture 14: Vector Processors
    Lecture 14: Vector Processors Department of Electrical Engineering Stanford University http://eeclass.stanford.edu/ee382a EE382A – Autumn 2009 Lecture 14- 1 Christos Kozyrakis Announcements • Readings for this lecture – H&P 4th edition, Appendix F – Required paper • HW3 available on online – Due on Wed 11/11th • Exam on Fri 11/13, 9am - noon, room 200-305 – All lectures + required papers – Closed books, 1 page of notes, calculator – Review session on Friday 11/6, 2-3pm, Gates Hall Room 498 EE382A – Autumn 2009 Lecture 14 - 2 Christos Kozyrakis Review: Multi-core Processors • Use Moore’s law to place more cores per chip – 2x cores/chip with each CMOS generation – Roughly same clock frequency – Known as multi-core chips or chip-multiprocessors (CMP) • Shared-memory multi-core – All cores access a unified physical address space – Implicit communication through loads and stores – Caches and OOO cores lead to coherence and consistency issues EE382A – Autumn 2009 Lecture 14 - 3 Christos Kozyrakis Review: Memory Consistency Problem P1 P2 /*Assume initial value of A and flag is 0*/ A = 1; while (flag == 0); /*spin idly*/ flag = 1; print A; • Intuitively, you expect to print A=1 – But can you think of a case where you will print A=0? – Even if cache coherence is available • Coherence talks about accesses to a single location • Consistency is about ordering for accesses to difference locations • Alternatively – Coherence determines what value is returned by a read – Consistency determines when a write value becomes visible EE382A – Autumn 2009 Lecture 14 - 4 Christos Kozyrakis Sequential Consistency (What the Programmers Often Assume) • Definition by L.
    [Show full text]
  • Amdahl's Law Threading, Openmp
    Computer Science 61C Spring 2018 Wawrzynek and Weaver Amdahl's Law Threading, OpenMP 1 Big Idea: Amdahl’s (Heartbreaking) Law Computer Science 61C Spring 2018 Wawrzynek and Weaver • Speedup due to enhancement E is Exec time w/o E Speedup w/ E = ---------------------- Exec time w/ E • Suppose that enhancement E accelerates a fraction F (F <1) of the task by a factor S (S>1) and the remainder of the task is unaffected Execution Time w/ E = Execution Time w/o E × [ (1-F) + F/S] Speedup w/ E = 1 / [ (1-F) + F/S ] 2 Big Idea: Amdahl’s Law Computer Science 61C Spring 2018 Wawrzynek and Weaver Speedup = 1 (1 - F) + F Non-speed-up part S Speed-up part Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall? 1 1 = = 1.33 0.5 + 0.5 0.5 + 0.25 2 3 Example #1: Amdahl’s Law Speedup w/ E = 1 / [ (1-F) + F/S ] Computer Science 61C Spring 2018 Wawrzynek and Weaver • Consider an enhancement which runs 20 times faster but which is only usable 25% of the time Speedup w/ E = 1/(.75 + .25/20) = 1.31 • What if its usable only 15% of the time? Speedup w/ E = 1/(.85 + .15/20) = 1.17 • Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar! • To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less Speedup w/ E = 1/(.001 + .999/100) = 90.99 4 Amdahl’s Law If the portion of Computer Science 61C Spring 2018 the program that Wawrzynek and Weaver can be parallelized is small, then the speedup is limited The non-parallel portion limits the performance 5 Strong and Weak Scaling Computer Science 61C Spring 2018 Wawrzynek and Weaver • To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
    [Show full text]
  • Parallel Generation of Image Layers Constructed by Edge Detection
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 7323-7332 © Research India Publications. http://www.ripublication.com Speed Up Improvement of Parallel Image Layers Generation Constructed By Edge Detection Using Message Passing Interface Alaa Ismail Elnashar Faculty of Science, Computer Science Department, Minia University, Egypt. Associate professor, Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia. Abstract A. Elnashar [29] introduced two parallel techniques, NASHT1 and NASHT2 that apply edge detection to produce a set of Several image processing techniques require intensive layers for an input image. The proposed techniques generate computations that consume CPU time to achieve their results. an arbitrary number of image layers in a single parallel run Accelerating these techniques is a desired goal. Parallelization instead of generating a unique layer as in traditional case; this can be used to save the execution time of such techniques. In helps in selecting the layers with high quality edges among this paper, we propose a parallel technique that employs both the generated ones. Each presented parallel technique has two point to point and collective communication patterns to versions based on point to point communication "Send" and improve the speedup of two parallel edge detection techniques collective communication "Bcast" functions. The presented that generate multiple image layers using Message Passing techniques achieved notable relative speedup compared with Interface, MPI. In addition, the performance of the proposed that of sequential ones. technique is compared with that of the two concerned ones. In this paper, we introduce a speed up improvement for both Keywords: Image Processing, Image Segmentation, Parallel NASHT1 and NASHT2.
    [Show full text]
  • CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors
    NJIT Computer Science Dept CS650 Computer Architecture CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors and PC Clustering Andrew Sohn Computer Science Department New Jersey Institute of Technology Lecture 10: Intro to Multiprocessors/Clustering 1/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Key Issues Run PhotoShop on 1 PC or N PCs Programmability • How to program a bunch of PCs viewed as a single logical machine. Performance Scalability - Speedup • Run PhotoShop on 1 PC (forget the specs of this PC) • Run PhotoShop on N PCs • Will it run faster on N PCs? Speedup = ? Lecture 10: Intro to Multiprocessors/Clustering 2/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Types of Multiprocessors Key: Data and Instruction Single Instruction Single Data (SISD) • Intel processors, AMD processors Single Instruction Multiple Data (SIMD) • Array processor • Pentium MMX feature Multiple Instruction Single Data (MISD) • Systolic array • Special purpose machines Multiple Instruction Multiple Data (MIMD) • Typical multiprocessors (Sun, SGI, Cray,...) Single Program Multiple Data (SPMD) • Programming model Lecture 10: Intro to Multiprocessors/Clustering 3/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Shared-Memory Multiprocessor Processor Prcessor Prcessor Interconnection network Main Memory Storage I/O Lecture 10: Intro to Multiprocessors/Clustering 4/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Distributed-Memory Multiprocessor Processor Processor Processor IO/S MM IO/S MM IO/S MM Interconnection network IO/S MM IO/S MM IO/S MM Processor Processor Processor Lecture 10: Intro to Multiprocessors/Clustering 5/15 12/7/2003 A.
    [Show full text]
  • High-Performance Message Passing Over Generic Ethernet Hardware with Open-MX Brice Goglin
    High-Performance Message Passing over generic Ethernet Hardware with Open-MX Brice Goglin To cite this version: Brice Goglin. High-Performance Message Passing over generic Ethernet Hardware with Open-MX. Parallel Computing, Elsevier, 2011, 37 (2), pp.85-100. 10.1016/j.parco.2010.11.001. inria-00533058 HAL Id: inria-00533058 https://hal.inria.fr/inria-00533058 Submitted on 5 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High-Performance Message Passing over generic Ethernet Hardware with Open-MX Brice Goglin INRIA Bordeaux - Sud-Ouest – LaBRI 351 cours de la Lib´eration – F-33405 Talence – France Abstract In the last decade, cluster computing has become the most popular high-performance computing architec- ture. Although numerous technological innovations have been proposed to improve the interconnection of nodes, many clusters still rely on commodity Ethernet hardware to implement message passing within parallel applications. We present Open-MX, an open-source message passing stack over generic Ethernet. It offers the same abilities as the specialized Myrinet Express stack, without requiring dedicated support from the networking hardware. Open-MX works transparently in the most popular MPI implementations through its MX interface compatibility.
    [Show full text]
  • An Investigation of Symmetric Multi-Threading Parallelism for Scientific Applications
    An Investigation of Symmetric Multi-Threading Parallelism for Scientific Applications Installation and Performance Evaluation of ASCI sPPM Frank Castaneda [email protected] Nikola Vouk [email protected] North Carolina State University CSC 591c Spring 2003 May 2, 2003 Dr. Frank Mueller An Investigation of Symmetric Multi-Threading Parallelism for Scientific Applications Introduction Our project is to investigate the use of Symmetric Multi-Threading (SMT), or “Hyper-threading” in Intel parlance, applied to course-grain parallelism in large-scale distributed scientific applications. The processors provide the capability to run two streams of instruction simultaneously to fully utilize all available functional units in the CPU. We are investigating the speedup available when running two threads on a single processor that uses different functional units. The idea we propose is to utilize the hyper-thread for asynchronous communications activity to improve course-grain parallelism. The hypothesis is that there will be little contention for similar processor functional units when splitting the communications work from the computational work, thus allowing better parallelism and better exploiting the hyper-thread technology. We believe with minimal changes to the 2.5 Linux kernel we can achieve 25-50% speedup depending on the amount of communication by utilizing a hyper-thread aware scheduler and a custom communications API. Experiment Setup Software Setup Hardware Setup ?? Custom Linux Kernel 2.5.68 with ?? IBM xSeries 335 Single/Dual Processor Red Hat distribution 2.0 Ghz Xeon ?? Modification of Kernel Scheduler to run processes together ?? Custom Test Code In order to test our code we focus on the following scenarios: ?? A serial execution of communication / computation sections o Executing in serial is used to test the expected back-to-back run-time.
    [Show full text]
  • Vector Vs. Scalar Processors: a Performance Comparison Using a Set of Computational Science Benchmarks
    Vector vs. Scalar Processors: A Performance Comparison Using a Set of Computational Science Benchmarks Mike Ashworth, Ian J. Bush and Martyn F. Guest, Computational Science & Engineering Department, CCLRC Daresbury Laboratory ABSTRACT: Despite a significant decline in their popularity in the last decade vector processors are still with us, and manufacturers such as Cray and NEC are bringing new products to market. We have carried out a performance comparison of three full-scale applications, the first, SBLI, a Direct Numerical Simulation code from Computational Fluid Dynamics, the second, DL_POLY, a molecular dynamics code and the third, POLCOMS, a coastal-ocean model. Comparing the performance of the Cray X1 vector system with two massively parallel (MPP) micro-processor-based systems we find three rather different results. The SBLI PCHAN benchmark performs excellently on the Cray X1 with no code modification, showing 100% vectorisation and significantly outperforming the MPP systems. The performance of DL_POLY was initially poor, but we were able to make significant improvements through a few simple optimisations. The POLCOMS code has been substantially restructured for cache-based MPP systems and now does not vectorise at all well on the Cray X1 leading to poor performance. We conclude that both vector and MPP systems can deliver high performance levels but that, depending on the algorithm, careful software design may be necessary if the same code is to achieve high performance on different architectures. KEYWORDS: vector processor, scalar processor, benchmarking, parallel computing, CFD, molecular dynamics, coastal ocean modelling All of the key computational science groups in the 1. Introduction UK made use of vector supercomputers during their halcyon days of the 1970s, 1980s and into the early 1990s Vector computers entered the scene at a very early [1]-[3].
    [Show full text]