4.1 Cocos Nucifera Coconut
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AD Monitoring Sheet PALM OIL V2018-1002
- Palm Oil - Date: 20 June 2018 The Amsterdam Declarations towards deforestation-free and sustainable commodities were launched in 2015. Denmark, France, Germany, Italy, the Netherlands, Norway and the United Kingdom signed these declarations. The Amsterdam Declaration regarding palm oil supports the private sector-driven commitment towards 100% sustainable palm oil in Europe that was signed by European initiatives for sustainable palm oil (ESPO). Relevant private sector rela ted alliances and Status of palm oil production and European organisations import • ESPO – European Sustainable Palm Oil initiative: The main producer countries are Indonesia (over 50% of includes national alliances from eight European global production and 50% of European imports in 2017) countries and Caobisco (Association of Chocolate, and Malaysia (around 30% of global production and 22% Biscuit and Confectionery Industries of Europe ), of European imports in 2017). In Indonesia, palm oil is FEDIOL (European Vegetable Oil and Protein meal mainly planted and expanding on the islands of Sumatra, Industry Federation) and IMACE (European Kalimantan and Papua. Palm oil is also expanding into Margarine Association). Papua New Guinea. In Malaysia, palm oil is mainly • ESPOAG – European Sustainable Palm Oil Advocacy planted in West Malaysia and Sabah. Both Kalimantan Group. and Sabah are situated on the island of Borneo. Not all • Voluntary certification schemes: Round Table for palm oil is traded on the world market. In 2017, Sustainable Palm Oil (RSPO), International Indonesia produced 42 million tons and exported 31.1 Sustainability and Carbon Certification (ISCC), million tons (74%). The largest palm oil importers were Rainforest Alliance (RA). India, EU28 and China. In 2017, the AD countries • Mandatory certification schemes: Indonesian accounted for 71% of total European palm oil import. -
Moment of Truth
COUNTDOWN MOMENTTO EXTINCTIONOF WILL GLOBALTRUTH BRANDS CLEAN UP THE PALM OIL TRADE BEFORE 2020? TIME FOR BRANDS TO COME CLEAN ABOUT THEIR LINKS TO FOREST DESTRUCTION FOR PALM OIL A FROM? COMES PALM OIL WHO THEIR DISCLOSE BRANDS WHICH TRADERS/ SUPPLIERS MILLS/ PRODUCERS 100% CLEAN PALM OIL CONTENTS CRUNCH TIME FOR CLIMATE COMMITMENTS 1 THE HIGH PRICE OF CHEAP PALM OIL 5 ARE CORPORATE COMMITMENTS MORE THAN HOT AIR? 9 HOW TRADERS SCORED ON NDPE IMPLEMENTATION 11 BRANDS ADMIT LINKS TO RAINFOREST DESTRUCTION 12 CONFRONTING THE BRANDS WITH EVIDENCE 15 HOW CONSUMER BRANDS ARE LINKED TO FOREST DESTROYERS 16 FELDA/FELDA GLOBAL VENTURES (FGV) 18 SALIM GROUP 20 SAMLING GROUP 22 TIME FOR ACTION 24 BRANDS MUST DISCLOSE WHERE THEIR PALM OIL COMES FROM... 26 ...AND TAKE CONTROL OF THEIR SUPPLY CHAINS 27 COUNTDOWN TO 2020 29 DEMANDS 31 APPENDIX 1: HOW COMPANIES PERFORM ON TRANSPARENCY 32 APPENDIX 2: LITERATURE REVIEW 42 ENDNOTES 48 REFERENCES 52 ‘ Whilst the causes of deforestation are complex, it is generally acknowledged that the biggest drivers are the cultivation of soya and palm oil, logging for the production of paper and board and the rearing of cattle. All of these commodities are major ingredients in the supply chains of most consumer goods companies. Our member companies drive the demand for these commodities and have an opportunity to ensure that the sourcing of these ingredients does not contribute to deforestation.’1 CONSUMER GOODS FORUM ‘The unsustainable use of natural resources has caused a dramatic decline of Bornean orangutans ... Our findings suggest that more than 100,000 individuals have been lost in the 16 years between 1999 and 2015.’2 MARIA VOIGHT, RESEARCHER AT THE MAX PLANCK INSTITUTE FOR EVOLUTIONARY ANTHROPOLOGY D 11 DECEMBER 2016, 1°3 0 46́ ̋ S 110°15 28́ ̋ E: DRONE FOOTAGE REVEALS A NEW CANAL CUTTING INTO PEATLAND FOREST FROM THE PT DAMAI AGRO SEJAHTERA (PT DAS) OIL PALM CONCESSION WITHIN THE SUNGAI PUTRI PEATLAND LANDSCAPE OF KETAPANG DISTRICT, WEST KALIMANTAN. -
Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review
Energies 2011, 4, 845-877; doi:10.3390/en4060845 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review Kathrin Sunde 1;?, Andreas Brekke 2 and Birger Solberg 1 1 Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Sørhellinga, Høgskoleveien 12, 1430 As,˚ Norway; E-Mail: [email protected] 2 Østfoldforskning AS, Gamle Beddingv. 2B, 1671 Krakerøy,˚ Norway; E-Mail: [email protected] ? Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +47-64965759; Fax: +47-64965001. Received: 1 February 2011; in revised form: 30 March 2011 / Accepted: 19 May 2011 / Published: 25 May 2011 Abstract: This article reviews and compares assessments of three biodiesel fuels: (1) transesterified lipids, (2) hydrotreated vegetable oils (HVO), and (3) woody biomass-to-liquid (BTL) Fischer-Tropsch diesel and selected feedstock options. The article attempts to rank the environmental performance and costs of fuel and feedstock combinations. Due to inter-study differences in goal and study assumptions, the ranking was mostly qualitative and intra-study results are emphasized. Results indicate that HVO made from wastes or by-products such as tall oil, tallow or used cooking oil outperforms transesterified lipids and BTL from woody material, both with respect to environmental life cycle impacts and costs. These feedstock options are, however, of limited availability, and to produce larger volumes of biofuels other raw materials must also be used. BTL from woody biomass seems promising with good environmental performance and the ability not to compete with food production. -
COCONUT Post-Harvest Operations
COCONUT Post-harvest Operations - Post-harvest Compendium COCONUT: Post-harvest Operations Organisation: Asian and Pacific Coconut Community (APCC) www.apcc.org.sg Author: P.G.Punchihewa and R.N. Arancon Edited by AGSI/FAO: Danilo Mejia (Technical), Beverly Lewis (Language & Style), Last reviewed: 14/10/1999 Contents 1. Introduction ........................................................................................................................ 2 1.1 Economic and Social Impact of Coconut..................................................................... 2 1.2 World Trade ................................................................................................................. 5 1.3 Primary Products .......................................................................................................... 6 1.4 Secondary and derived product .................................................................................. 12 1.5 Requirements for Export and Quality Assurance ...................................................... 22 2. Post-Production Operations ............................................................................................. 24 2.1 Pre-Harvest Operations .............................................................................................. 24 2.2 Harvesting .................................................................................................................. 24 2.3 Copra Processing ...................................................................................................... -
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
Current Knowledge on Interspecific Hybrid Palm Oils As Food and Food
foods Review Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient Massimo Mozzon , Roberta Foligni * and Cinzia Mannozzi * Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; m.mozzon@staff.univpm.it * Correspondence: r.foligni@staff.univpm.it (R.F.); c.mannozzi@staff.univpm.it (C.M.); Tel.: +39-071-220-4010 (R.F.); +39-071-220-4014 (C.M.) Received: 6 April 2020; Accepted: 10 May 2020; Published: 14 May 2020 Abstract: The consumers’ opinion concerning conventional palm (Elaeis guineensis) oil is negatively affected by environmental and nutritional issues. However, oils extracted from drupes of interspecific hybrids Elaeis oleifera E. guineensis are getting more and more interest, due to their chemical and × nutritional properties. Unsaturated fatty acids (oleic and linoleic) are the most abundant constituents (60%–80% of total fatty acids) of hybrid palm oil (HPO) and are mainly acylated in position sn-2 of the glycerol backbone. Carotenes and tocotrienols are the most interesting components of the unsaponifiable matter, even if their amount in crude oils varies greatly. The Codex Committee on Fats and Oils recently provided HPO the “dignity” of codified fat substance for human consumption and defined the physical and chemical parameters for genuine crude oils. However, only few researches have been conducted to date on the functional and technological properties of HPO, thus limiting its utilization in food industry. Recent studies on the nutritional effects of HPO softened the initial enthusiasm about the “tropical equivalent of olive oil”, suggesting that the overconsumption of HPO in the most-consumed processed foods should be carefully monitored. -
Coconut Oil and Coconut Water: Are Coconuts the New Superfood?
DIVISION OF AGRICULTURE RESEARCH & EXTENSION Family and Consumer Sciences University of Arkansas System FSFCS90 Coconut Oil and Coconut Water: Are Coconuts the New Superfood? Jamie I. Baum, PhD Products containing coconut (e.g., population studies) that show a Assistant Professor continue to increase in popularity. link between high coconut-consuming Nutrition Products such as coconut oil and coco countries and longevity [1-2]. nut water are flooding the market. It is difficult to walk into a grocery store Coconut oil is considered a Rosemary Rodibaugh, without seeing a coconut-containing saturated fat and contains 9 calories PhD product on display. There are hundreds per gram. There are two basic types of fats – saturated and unsaturated. Professor - Nutrition of blogs and diets that sing the praises of health benefits they claim are linked Unsaturated fats are healthy fats and to coconut products, including weight include plant-based fats (such as loss, cancer prevention and improved vegetable oils and fats found in nuts, brain function in Alzheimer’s disease. avocados and seeds) and fish oils. Does this mean that coconuts are the These fats should be the primary fats next superfood? in your diet because they either do not affect cholesterol levels or they raise HDL (good) cholesterol without Coconut Oil raising LDL (bad) cholesterol. Coconut oil is an edible oil Saturated fats found in animal fats extracted from the “meat” of matured and tropical oils, including coconut oil, coconuts. It has several applications should be consumed only in small in the food industry. It is used in amounts because they raise both processed foods because it is relatively HDL (good) and LDL (bad) cholesterol. -
Coconut Water
COMPOSITION OF YOUNG COCONUT PRESERVATION TECHNIQUES FPDD Guide No. 5 - Rev. 2, Series of 2019 WATER Proximate g/100 g To prolong the shelf-life of coconut water, PHILIPPINE Energy 109 kJ various preservation techniques are recom- COCONUT Moisture 95.2 mended: Protein 0.2 AUTHORITY Fat 0.0 Ultra High Temperature (UHT) involves Ash 0.2 heating the water to 130 oC to 150 oC for 2-45 Fructose 2.4 ALBAY RESEARCH seconds; the product is aseptically packaged Glucose 2.7 ENTER Sucrose 1.5 in order to obtain a stable shelf -life (1 to 2 C Total Sugar 5-6.6 years at ambient temperatures), but affects the coconut water’s natural flavor. Minerals mg/100 g Calcium 12.0 Microfiltration is a type of physical filtration COCONUT PROCESSING Chlorine 118 process where a contaminated fluid is passed TECHNOLOGIES Magnesium 10-11.0 through a special pore-sized membrane to Manganese 1,020.0 separate microorganisms and suspended Phosphorus 9.0 Potassium 186-294 particles from the liquid Sodium 5-25 YOUNG Cold Preservation is the process that Vitamins Content involves filtration, bottling and temperature Nicotinic acid 0.64 µg/mL control ((0-4°C), allowing the bottled coconut COCONUT Riboflavin (Vit. B2) 0.01 µg/mL water to stay fresh from 10 days to 3 weeks Niacin (Vit. B3) 0.10 mg/100g and retain its natural flavour. This is the most Ascorbic Acid (Vit. C) 2.2-3.7 mg/mL preferred method for extending the shelf-life ATER of the coconut water W Amino Acids Mg/100mL Alanine 10 Arginine 32 Aspartic Acid 18 Glutamic Acid 43 Glycine 10 Isoleucine 8 FOOD PRODUCT -
Ofero A. Caparino, Ph.D. Division Chief, Bioprocess Engineering Division Philmech
Ofero A. Caparino, Ph.D. Division Chief, BioProcess Engineering Division PHilMech Philippine Center for Postharvest Development and Mechanization CLSU Compound Science City of Munoz Nueva Ecija Tel: 044-4560-213 68 out of 79 3.61 B provinces are nuts coconut areas 2.7 B nuts 340 M bearing trees 8.92 B 15.31 B nuts/year nuts Reference: PCA, 2013) WORLD TOP TEN COCONUT PRODUCERS (FAOSTAT, 2013) 15.31 B nuts/year 20,000,000 18,000,000 (Average 2007-2011) 16,000,000 14,000,000 12,000,000 10,000,000 8,000,000 6,000,000 4,000,000 2,000,000 ‐ PRODUCTION COCONUT MACHINERY, PRIMARY VALUE‐ADDED MARKET SALES EQUIPMENT for INCOME INPUTS PARTS PROJECT PRODUCT PRODUCTS R&D, COOKING OIL OILMILLS OIL SOAPS PRODUCTION MEAT DETERGENTS RESOURCES KERNEL PROCESSING COPRA LIVESTOCK FEEDS MACHINERY MEAL Nursery/Seed Gardens ROPES, GEOTEXTILES BEATING MACHINE, FIBER DOORMATS, BASKETS HUSK DECORTICATOR, BALER, 1‐ & 2‐PLY ORGANIC FERTILIZER ROPE TWINER, Farmers/ COIR DUST ROOTING MEDIA Planting DOORMAT EQUIPMENT HORTICULTURE POTS DOMESTIC AND …creating new JAGGERY, COCONECTAR, EXPORT TODDY Fertilization SAP COCOSUGAR, LUMBANOG MARKETS WINE, VINEGAR Pest demands in the Management COCONUT Coconut COCONUT JUICE, VINEGAR, NATA emerging markets WATER WaterWATER DE COCO, WINE LATHE, CUTTER, ACTIVATED worldwidePOLISHER, CHARCOAL CHARCOAL SHELL HANDICRAFT Harvest FORMED FASHION ACCESSORIES, MACHINERY PRODUCTS BELTS, BUTTONS, HANDICRAFTS WOOD WOOD, WOOD, HANDICRAFTS, LUMBER LUMBER FURNITURES LEAVES, LEAF SHEATHS, HATS, SLIPPERS, BASKETS, STIPULES BAGS, HANDICRAFTS FRUIT TRAYS, PICTURE INFLORESCENCE FRAMES, PLACE MATS, BLINDS, ARTIFICIAL FLOWERS Flowchart of Supply and Value of Coconut and Coconut Products in the Philippines , Coconut industry strategic plan for Philippine Agriculture 2010 Sources of cocowater – Large desiccated coconut processing plants Some health benefits of coconut water Use for intravenous hydration of patients in remote areas (Campbell‐Falck et al.,2000). -
Coconut Water
COCONUT WATER Coconut water concentrate and coconut water (single strength) are two of the many types of products supplied by iTi Tropicals. Fruit Overview: Coconuts are the fruit of the coconut palm, native to countries such as Vietnam, Thailand, Sri Lanka, India, The Philippines, Indonesia and Malaysia. They can also be found throughout South and Central America and the Caribbean. While the coconut is a simple dry nut composed of inner fibers, inside lies white, fleshy edible coconut meat, along with refreshing coconut water. The coconut palm has been called the “tree of life” because it offers a source of food, drink, oil, medicine, fiber, timber, thatch, mats, fuel, and domestic utensils for the local populations where it is grown. While coconuts have many uses including pure coconut, coconut cream, and coconut oil, coconut water is among the most popular. Coconut water is naturally filtered for nine months through the dense fibers of the coconut creating a nutritious, pure, and refreshing isotonic beverage that can be mixed with just about any other flavor or fruit without dominating the taste or color. Food Application: Coconut water, (also called coconut juice) is not only refreshing and cool, it has five essential electrolytes, including more potassium than a banana. It has no added sugars, fat, cholesterol or preservatives, and is significantly lower in calories than many other juices. Because coconut wa- ter is 100% juice and is extremely versatile, it can stand alone as a refreshing drink, or it can be blended. It can be the base of tropical drinks, teas, coffee, sauces, cocktails, smoothies, and can even be used as a cooking medium, broth, or marinade. -
Oleochemicals Series
OLEOCHEMICALS FATTY ACIDS This section will concentrate on Fatty Acids produced from natural fats and oils (i.e. not those derived from petroleum products). Firstly though, we will recap briefly on Nomenclature. We spent some time clarifying the structure of oleochemicals and we saw how carbon atoms link together to form carbon chains of varying length (usually even numbered in nature, although animal fats from ruminant animals can have odd-numbered chains). A fatty acid has at least one carboxyl group (a carbon attached to two oxygens (-O) and a hydrogen (-H), usually represented as -COOH in shorthand) appended to the carbon chain (the last carbon in the chain being the one that the oxygen and hydrogen inhabit). We will only be talking about chains with one carboxyl group attached (generally called “monocarboxylic acids”). The acids can be named in many ways, which can be confusing, so we will try and keep it as simple as possible. The table opposite shows the acid designations as either the “length of the carbon chain” or the “common name”. While it is interesting to know the common name for a particular acid, we will try to use the chainlength in any discussion so you do not have to translate. Finally, it is usual to speak about unsaturated acids using their chainlength suffixed with an indication of the number of double bonds present. Thus, C16=1 is the C16 acid with one double bond; C18=2 is the C18 acid with two double bonds and so on. SELECTING RAW MATERIALS FOR FATTY ACID PRODUCTION In principle, fatty acids can be produced from any oil or fat by hydrolytic or lipolytic splitting (reaction with water using high pressure and temperature or enzymes). -
Sustainable Palm Derivatives in Cleaning and Personal Care Products
Sustainable Palm Derivatives in Cleaning and Personal Care Products A CPET Special Newsletter July 2015 The Purpose of this Special Newsletter This newsletter is meant to provide information and guidance to businesses and government departments on sourcing cleaning products and personal care products made with sustainable palm oil derivatives. It outlines the complexities in the derivatives supply chain, explains why sustainable palm-based derivatives have been difficult to source in the past, and provides a quick guide to sourcing certified derivatives. Introduction to Palm-based Derivative Supply Chain Palm oil and palm kernel oil are complex commodities because of the demand for a large number of fractions and derivatives of the oils. In fact, about 60% of the palm oil and palm kernel oil consumed globally is in the form of derivatives such as olein and stearin.1 The supply chains for these derivatives are multi-layered and have been historically difficult to trace. Although traceability is improving, the derivatives can be challenging to source as sustainable. Oleochemicals, which are produced from the fatty acid distillates that result from the refining process of palm oil and palm kernel oil, are typically used in the production of cleaning products and personal care products. Palm based oleochemicals have a diverse range of applications. In the past decade, many European manufacturers and traders have shifted towards the use of palm-derived oleochemicals (as opposed to petrochemicals or other plant based oleochemicals), due to the increase in the number of plants in Southeast Asia with access to palm feedstocks. The environmental and social repercussions of this shift in usage, and the parallel significant increase in oil palm plantations in Southeast Asia, have been dramatic, leading to deforestation, climate change, habitat loss, and disruptions to local communities.