Medium-Chain Fatty Acids and Monoglycerides As Feed Additives for Pig Production: Towards Gut Health Improvement and Feed Pathogen Mitigation Joshua A

Total Page:16

File Type:pdf, Size:1020Kb

Medium-Chain Fatty Acids and Monoglycerides As Feed Additives for Pig Production: Towards Gut Health Improvement and Feed Pathogen Mitigation Joshua A Jackman et al. Journal of Animal Science and Biotechnology (2020) 11:44 https://doi.org/10.1186/s40104-020-00446-1 REVIEW Open Access Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation Joshua A. Jackman1*, R. Dean Boyd2,3 and Charles C. Elrod4,5* Abstract Ongoing challenges in the swine industry, such as reduced access to antibiotics and virus outbreaks (e.g., porcine epidemic diarrhea virus, African swine fever virus), have prompted calls for innovative feed additives to support pig production. Medium-chain fatty acids (MCFAs) and monoglycerides have emerged as a potential option due to key molecular features and versatile functions, including inhibitory activity against viral and bacterial pathogens. In this review, we summarize recent studies examining the potential of MCFAs and monoglycerides as feed additives to improve pig gut health and to mitigate feed pathogens. The molecular properties and biological functions of MCFAs and monoglycerides are first introduced along with an overview of intervention needs at different stages of pig production. The latest progress in testing MCFAs and monoglycerides as feed additives in pig diets is then presented, and their effects on a wide range of production issues, such as growth performance, pathogenic infections, and gut health, are covered. The utilization of MCFAs and monoglycerides together with other feed additives such as organic acids and probiotics is also described, along with advances in molecular encapsulation and delivery strategies. Finally, we discuss how MCFAs and monoglycerides demonstrate potential for feed pathogen mitigation to curb disease transmission. Looking forward, we envision that MCFAs and monoglycerides may become an important class of feed additives in pig production for gut health improvement and feed pathogen mitigation. Keywords: Antibiotics, Feed pathogen mitigation, Growth promotion, Gut health, Immune enhancement, MCFA, Medium-chain fatty acids, Monoglycerides Introduction have distinct targeting spectrums and potencies [2]. Certain Antibiotics have long been used in the swine industry for antibiotics have also been and continue to be used for treat- therapeutic purposes, as they are in human medicine, to ing subclinical diseases [3], and successful intervention can prevent severe clinical disease and death [1]. Antibiotics indirectly improve pig growth and feed efficiency [4]. work against bacteria and different classes of antibiotics Mechanistically, antibiotics can affect bacterial cell integrity and reproduction, and thus exert growth-promoting effects * Correspondence: [email protected]; [email protected] by modulating the composition of bacterial populations 1School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, within the pig gastrointestinal tract while reducing bacterial Republic of Korea pathogen levels throughout the body to prevent disease. 4Natural Biologics Inc., Newfield, NY 14867, USA Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Jackman et al. Journal of Animal Science and Biotechnology (2020) 11:44 Page 2 of 15 Despite these important capabilities, there are mount- as health-promoting feed additives and feed pathogen ing concerns that antibiotic usage in food animals is mitigation agents for pig production. This article extends contributing to the global problem of antibiotic-resistant beyond previous reviews that broadly surveyed the bacteria across human and animal populations [5]. health-promoting effects of different types of fatty acids These concerns have led to calls to significantly reduce [19, 20], while providing more recent and deeper cover- or stop the use of antibiotics in animals that are also age of the chemical properties, pathogen disruption used in human medicine, particularly in cases where mechanisms, and field tests of MCFAs and monoglycer- they are used at sub-therapeutic levels to promote ides; the latter being an important class of MCFA deriv- growth [6]. Legislative bans on growth-promoting antibi- atives that has not been reviewed before [21, 22]. In otics have been passed in different parts of the world, addition, we provide coverage of MCFAs and monoglyc- such as the European Union [7], while other regulatory erides as feed pathogen mitigation agents and discuss actions, such as the revised Veterinary Feed Directive in current progress to inhibit high-priority viruses in feed, the United States, are encouraging more judicious use of which is significant because feed can be an important human medically relevant, therapeutic antibiotics in food vector for transboundary diseases [23]. We also address animal production, including halting sub-therapeutic MCFA and monoglyceride encapsulation and delivery in usage of such antibiotics [8]. At the same time, discus- a variety of formats that may be useful for feed pathogen sion has been raised about how curtailing the use of mitigation, for enteric pathogen mitigation, and for de- growth-promoting antibiotics that act as prophylactics livery to distant enteric sites. to inhibit bacterial pathogens at the subclinical level could lead to the increased use of therapeutic antibiotics Medium-chain fatty acids and monoglycerides among pigs displaying clinical infections [9]. MCFAs (defined as saturated fatty acids with C6 to C12 Concerns and legislative actions around antibiotic use hydrocarbon chains) and their corresponding monoglyc- in food animals are leading to an increase in the search eride derivatives are single-chain lipid amphiphiles. An for tools to counter pathogens. Promoting immune de- overview of the basic physical properties of important velopment or expression in young animals is one ex- MCFAs and monoglycerides is presented in Table 1. ample, which also tends to improve growth [10]. A MCFAs and monoglycerides are naturally present in recent addition to vaccines, therapeutic drugs, and the milk produced by some animals [24] as well as in immune enhancers is medium-chain fatty acids other natural sources such as coconut oil [25]. They are (MCFAs), especially saturated MCFAs with 6–12 building blocks of MCTs, which can be used as feed ad- carbon-long chains, which have demonstrated positive ditives and lipases break down the triglycerides in vivo benefits as feed additives by improving animal health, to yield MCFAs and monoglycerides among various hy- production, and feed digestibility [11]. These efforts drolysis products [13, 15]. The MCT approach is useful have built on pioneering works that utilized medium- because, unlike certain MCFAs, they do not have ad- chain triglycerides (MCTs) as feed additives in verse odors and facilitate digestion and release of conjunction with lipolytic enzymes, called lipases, that MCFAs and monoglycerides in the stomach along with can catalyze in vivo MCT hydrolysis and subsequent progressive release in the foregut as well. Depending on release of biologically active MCFAs and monoglycer- the situation, the MCTs may be delivered as a standa- ide derivatives to support pig growth and develop- lone feed additive if the feed source contains endogen- ment [12–15]. Importantly, free MCFAs and ous lipases or if gastric lipase secretion in the pig is monoglycerides also exhibit antiviral and antibacterial sufficiently developed, or can be delivered together with activity [16, 17]. The combined health-promoting and an exogenous lipase [14]. pathogen-mitigating functions of MCFAs and mono- Another option that is becoming popular and is the main glycerides are particularly significant in light of the focus of this review article involves directly using high-purity expanding African Swine Fever virus (ASFv) epidemic, formsofdesiredMCFAsand/ormonoglyceridesastheaddi- which highlights the devastation of, and urgency to tive, and to directly incorporate them into feed and/or water. address, virus outbreaks in the swine industry [18]. An important benefit of directly using free MCFAs and/or Over the past few years, there has been progress in evalu- monoglycerides in feed is that they exhibit antimicrobial ating the performance of free MCFAs and monoglycerides properties and thus can potentially inhibit viral and bacterial as feed additives in pig diets as well as in understanding pathogens in the feed to reduce the risk of disease transmis- mechanistic aspects of how these compounds function. sion. Of note, depending on the jurisdiction,
Recommended publications
  • Module 1: Basic Nutrition FINAL Description Text Slide 1 Welcome to the Module Nutrition Basics
    Module 1: Basic Nutrition FINAL Description Text Slide 1 Welcome to the module Nutrition Basics What is nutrition? The American Medical Association’s Council on Food and Nutrition defines nutrition as: "The science of food, the nutrients and the substances therein, their action, interaction, and balance in relation to Slide 2 health and disease, and the process by which the organism ingests, digests, absorbs, transports, utilizes and excretes food substances" So what does that actually mean? Nutrition is about food and what food is made of, and it also includes how food works in our bodies: how we eat, digest and use the food inside our bodies. Let’s start with some basic definitions. A nutrient is a chemical substance in food that contributes to health. Food provides both the energy and nutrients that our bodies need to carry out necessary functions. A food contains a variety of nutrients, and each food provides different ones. There are 3 things that make a nutrient essential. 1) if left out of the diet, a Slide 3 decline in health will follow, 2) if restored before permanent damage occurs, health should be regained, 3) a specific biological function must be identified. An example of a non essential nutrient is alcohol, although some people get some of their energy intake from it, removing alcohol from the diet will not cause any health problems or deficiencies. We‘ll start our look at nutrition by investigating how we get the food we eat from our plate into our cells. We do this through the process of digestion.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • 4.1 Cocos Nucifera Coconut
    4.1 Cocos nucifera Coconut Valerie Hocher, [ean-Luc Verdeil and Bernard Malaurie IRD/CIRAD Coconut Program, UMR 1098 BEPC, IRD, BP 64501-911 Av. Agropolis, 34394 Montpellier, Cedex 5, France 1. Introduction length and 30-120 cm deep and continu­ ously generate adventitious roots (Reynolds, 1.1. Botany and history 1988; Persley, 1992). Nutrients and water are absorbed by the rootlets. The coconut palm (Cocos nucifera L.) is a rela­ The coconut palm 'trunk' is a stem with tively slow growing woody perennial species. no true bark, no branches and no cambium. It is the only species in the genus Cocos. All Secondary growth (increased stem diameter) forms known to date are diploid (2n = 2x = is by secondary enlargement meristem 32). No closely related species with even par­ located below the shoot meristem. Growth tial interfertility has been reported (Bourdeix depends on age, ecotype and edaphic condi­ et al., 2001). The lifespan of a coconut palm tions, but is generally between 30 and 100 cm can be > 60 years under favourable ecological per annum. The stem is surmounted by a conditions. Coconuts can grow to a height of crown of approx. 30 compound leaves, approx. 25 m (Ohler, 1999). which protect the terminal vegetative bud Optimum growing conditions for coconut and whose destruction causes the death of are in the lowland humid tropics at altitudes the palm. An adult coconut has virtually as < 1000 m near coastal areas in sandy, weII­ many unopened (20-30) as opened leaves. drained soils (Persley, 1992); however, Leaves are produced continuously at approx.
    [Show full text]
  • Fatty Acids: Essential…Therapeutic
    Volume 3, No.2 May/June 2000 A CONCISE UPDATE OF IMPORTANT ISSUES CONCERNING NATURAL HEALTH INGREDIENTS Written and Edited By: Thomas G. Guilliams Ph.D. FATTY ACIDS: Essential...Therapeutic Few things have been as confusing to both patient and health care provider as the issue of fats and oils. Of all the essential nutrients required for optimal health, fatty acids have not only been forgotten they have been considered hazardous. Health has somehow been equated with “low-fat” or “fat-free” for so long, to suggest that fats could be essential or even therapeutic is to risk credibility. We hope to give a view of fats that is both balanced and scientific. This review will cover the basics of most fats that will be encountered in dietary or supplemental protocols. Recommendations to view essential fatty acids in a similar fashion as essential vitamins and minerals will be combined with therapeutic protocols for conditions ranging from cardiovascular disease, skin conditions, diabetes, nerve related disorders, retinal disorders and more. A complete restoration of health cannot be accomplished until there is a restoration of fatty acid nutritional information among health care professionals and their patients. Fats- What are they? Dietary fats come to us from a variety of sources, but primarily in the form of triglycerides. That is, three fatty acid molecules connected by a glycerol backbone (see fatty acid primer page 3 for diagram). These fatty acids are then used as energy by our cells or modified into phospholipids to be used as cell or organelle membranes. Some fatty acids are used in lipoprotein molecules to shuttle cholesterol and fats to and from cells, and fats may also be stored for later use.
    [Show full text]
  • Relationship Between Dietary Intake of Fatty Acids and Disease Activity in Pediatric Inflammatory Bowel Disease Patients
    Relationship between Dietary Intake of Fatty Acids and Disease Activity in Pediatric Inflammatory Bowel Disease Patients A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science in the Department of Nutrition of the College of Allied Health Sciences by Michael R. Ciresi B.S. The Ohio State University June 2008 Committee Chair: Grace Falciglia, Ph.D. Abstract Background. Crohn’s disease (CD) and ulcerative colitis (UC), collectively known as inflammatory bowel disease (IBD), are chronic illnesses that affect predominately the gastrointestinal tract. The pathogenesis and etiology remain unclear but the importance of environmental factors, in particular diet, is evidenced by the increased incidence rates of the recent decades that genetic inheritance cannot account for. In particular, the quantity of fatty acid consumption has been consistently linked with IBD risk. While several studies have investigated the connections between diet, etiology, signs and symptoms associated with IBD, very few have explored the relationship between disease state and specific fatty acid intake in the pediatric IBD population. Methods. In this cross-sectional study, 100 pediatric patients from Cincinnati Children’s Hospital and the Hospital for Sick Children in Toronto with diagnosed IBD (73 with Crohn’s disease (CD) and 27 with ulcerative colitis (UC)) were included. Three-day diet records were collected from the patients for the assessment of their dietary intake. The abbreviated Pediatric Crohn’s Disease Activity Index (PCDAI), the abbreviated Ulcerative Colitis Activity Index (PUCAI), and markers of inflammation (lipopolysaccharide binding protein (LBP) and S100A12) were used to assess disease severity.
    [Show full text]
  • Oleochemicals Series
    OLEOCHEMICALS FATTY ACIDS This section will concentrate on Fatty Acids produced from natural fats and oils (i.e. not those derived from petroleum products). Firstly though, we will recap briefly on Nomenclature. We spent some time clarifying the structure of oleochemicals and we saw how carbon atoms link together to form carbon chains of varying length (usually even numbered in nature, although animal fats from ruminant animals can have odd-numbered chains). A fatty acid has at least one carboxyl group (a carbon attached to two oxygens (-O) and a hydrogen (-H), usually represented as -COOH in shorthand) appended to the carbon chain (the last carbon in the chain being the one that the oxygen and hydrogen inhabit). We will only be talking about chains with one carboxyl group attached (generally called “monocarboxylic acids”). The acids can be named in many ways, which can be confusing, so we will try and keep it as simple as possible. The table opposite shows the acid designations as either the “length of the carbon chain” or the “common name”. While it is interesting to know the common name for a particular acid, we will try to use the chainlength in any discussion so you do not have to translate. Finally, it is usual to speak about unsaturated acids using their chainlength suffixed with an indication of the number of double bonds present. Thus, C16=1 is the C16 acid with one double bond; C18=2 is the C18 acid with two double bonds and so on. SELECTING RAW MATERIALS FOR FATTY ACID PRODUCTION In principle, fatty acids can be produced from any oil or fat by hydrolytic or lipolytic splitting (reaction with water using high pressure and temperature or enzymes).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,187,615 B2 Friedman (45) Date of Patent: May 29, 2012
    US008187615B2 (12) United States Patent (10) Patent No.: US 8,187,615 B2 Friedman (45) Date of Patent: May 29, 2012 (54) NON-AQUEOUS COMPOSITIONS FOR ORAL 6,054,136 A 4/2000 Farah et al. DELIVERY OF INSOLUBLE BOACTIVE 6,140,375 A 10/2000 Nagahama et al. AGENTS 2003/O149061 A1* 8/2003 Nishihara et al. .......... 514,266.3 FOREIGN PATENT DOCUMENTS (76) Inventor: Doron Friedman, Karme-Yosef (IL) GB 2222770 A 3, 1990 JP 2002-121929 5, 1990 (*) Notice: Subject to any disclaimer, the term of this WO 96,13273 * 5/1996 patent is extended or adjusted under 35 WO 200056346 A1 9, 2000 U.S.C. 154(b) by 1443 days. OTHER PUBLICATIONS (21) Appl. No.: 10/585,298 Pouton, “Formulation of Self-Emulsifying Drug Delivery Systems' Advanced Drug Delivery Reviews, 25:47-58 (1997). (22) PCT Filed: Dec. 19, 2004 Lawrence and Rees, “Microemulsion-based media as novel drug delivery systems' Advanced Drug Delivery Reviews, 45:89-121 (86). PCT No.: PCT/L2004/OO1144. (2000). He et al., “Microemulsions as drug delivery systems to improve the S371 (c)(1), solubility and the bioavailability of poorly water-soluble drugs' (2), (4) Date: Jul. 6, 2006 Expert Opin. Drug Deliv. 7:445-460 (2010). Prajpati et al. “Effect of differences in Fatty Acid Chain Lengths of (87) PCT Pub. No.: WO2005/065652 Medium-Chain Lipids on Lipid/Surfactant/Water Phase Diagrams PCT Pub. Date: Jul. 21, 2005 and Drug Solubility” J. Excipients and Food Chem, 2:73-88 (2011). (65) Prior Publication Data * cited by examiner US 2007/O190O80 A1 Aug.
    [Show full text]
  • Understanding the Basics of Efas
    [Nutritional Lipids] Vol. 14 No 9 September 2009 Understanding the Basics of EFAs By Robin Koon, Contributing Editor While knowledge of essential fatty acids (EFAs) is growing among marketers and consumers, reviewing the comprehensive lipid category provides a point of references to delve further into the structure and function of these beneficial fats. Dietary lipids are an essential constituent of the human diet along with carbohydrates, proteins and fiber. Fats are a source of energy, supplying about 9 calories per gram, and make up approximately 40 percent of the body’s normal caloric intake. Lipids are a large and diverse group of naturally occurring organic compounds related by their solubility in non-polar organic solvents (e.g., ether, chloroform, acetone, benzene, etc.) and insolubility in water. In the human diet, triglycerides are the most abundantly consumed form of edible dietary lipids and normally constitute approximately 95 percent of total fat ingested. The remaining 5 percent is in the form of cerebrosides, phospholipids, fatty acids, fatty alcohols, cholesterol, sterols, terpenes, etc. The average human being consumes between 50 and 200 g/d of fat. Triglycerides (TG) are comprised predominantly of fatty acids (present in the form of esters of glycerol), although they are technically a combination of glycerol and three fatty acids, sometimes referred to as triacylglycerol. Glycerol is a three-carbon chain alcohol molecule with chemical formula of C3H803. When combined with one, two or three fatty acids, it forms a monoglyceride, diglyceride or triglyceride, respectively. Triglycerides are generally not well-absorbed in the gut and are enzymatically hydrolyzed, which splits the TG into its components by removing the fatty acids from their glycerol base, so all of these components can be easily absorbed.
    [Show full text]
  • 104 Global Strategy for the Conservation and Use of Coconut Genetic Resources
    104 Global Strategy for the Conservation and Use of Coconut Genetic Resources COGENT’s nascent international thematic action groups (ITAGs- see Annex 4) also embrace a number of other individuals and institutions who have provided supporting expertise during the Strategy development. Full lists of proposed members are available on the COGENT website. The “Coconut knowledge network for information exchange about Cocos ”, known as the coconut Google group58 and coordinated by Dr Hugh Harries is the main international forum in which important subjects have been usefully debated, contributing to the relevance and focusing of this Strategy. All these partners, particularly those holding germplasm in the public domain, as well as any other organizations, institutions or networks involved in coconut genetic resources in recent years, are likely to participate in the implementation of this Strategy. The coconut genetic resources scientific community is currently collaborating through a number of networks, projects and international legal and technical frameworks. COGENT is linking all of the key partners in the coconut sector, worldwide. COGENT aims to harness the benefits of its networked approach, particularly in the context of the Treaty and its global Plan of action. Since 1992, COGENT has developed an increasing number of connections with genebank curators, decision makers from the public and private sectors, scientists, private companies, farmers from the field until the highest levels. The COGENT Steering Committee, where official representatives from 39 coconut producing countries stand is a unique place to produce recommendations going directly to the Governments. These recommendations, being based on the inputs of hundreds of the most eminent scientists and hundreds of stakeholders working in the coconut sector for many years, are strong and highly reliable.
    [Show full text]
  • Valorization of Glycerol Through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value
    catalysts Article Valorization of Glycerol through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value Daniel Alberto Sánchez 1,3,* , Gabriela Marta Tonetto 1,3 and María Luján Ferreira 2,3 1 Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; [email protected] 2 Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; [email protected] 3 Planta Piloto de Ingeniería Química–PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina * Correspondence: [email protected]; Tel.: +54-291-4861700 Received: 8 December 2019; Accepted: 1 January 2020; Published: 14 January 2020 Abstract: The production of specific acylglycerides from the selective esterification of glycerol is an attractive alternative for the valorization of this by-product of the biodiesel industry. In this way, products with high added value are generated, increasing the profitability of the overall process and reducing an associated environmental threat. In this work, nutritional and medically interesting glycerides were obtained by enzymatic esterification through a two-stage process. In the first stage, 1,3-dicaprin was obtained by the regioselective esterification of glycerol and capric acid mediated by the commercial biocatalyst Lipozyme RM IM. Under optimal reaction conditions, 73% conversion of fatty acids and 76% selectivity to 1,3-dicaprin was achieved. A new model to explain the participation of lipase in the acyl migration reaction is presented. It evaluates the conditions in the microenvironment of the active site of the enzyme during the formation of the tetrahedral intermediate. In the second stage, the esterification of the sn-2 position of 1,3-dicaprin with palmitic acid was performed using the lipase from Burkholderia cepacia immobilized on chitosan as the biocatalyst.
    [Show full text]
  • Fats and Fatty Acid in Human Nutrition
    ISSN 0254-4725 91 FAO Fats and fatty acids FOOD AND NUTRITION PAPER in human nutrition Report of an expert consultation 91 Fats and fatty acids in human nutrition − Report of an expert consultation Knowledge of the role of fatty acids in determining health and nutritional well-being has expanded dramatically in the past 15 years. In November 2008, an international consultation of experts was convened to consider recent scientific developments, particularly with respect to the role of fatty acids in neonatal and infant growth and development, health maintenance, the prevention of cardiovascular disease, diabetes, cancers and age-related functional decline. This report will be a useful reference for nutrition scientists, medical researchers, designers of public health interventions and food producers. ISBN 978-92-5-106733-8 ISSN 0254-4725 9 7 8 9 2 5 1 0 6 7 3 3 8 Food and Agriculture I1953E/1/11.10 Organization of FAO the United Nations FAO Fats and fatty acids FOOD AND NUTRITION in human nutrition PAPER Report of an expert consultation 91 10 − 14 November 2008 Geneva FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Lauric Acid Content and Inhibitory Effect of Palm Kernel Oil on Two Bacterial Isolates and Candida Albicans
    African Journal of Biotechnology Vol. 5 (11), pp. 1045-1047, 2 June 2006 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2006 Academic Journals Short Communication Lauric acid content and inhibitory effect of palm kernel oil on two bacterial isolates and Candida albicans UGBOGU, O.C.*, ONYEAGBA R.A. and CHIGBU O.A. Department of Microbiology, Abia State University P.M.B. 2000 Uturu, Abia State – Nigeria Accepted 4 March, 2006 Palm kernel oil from various sources was assayed for lauric acid content and inhibitory effect against Staphylococcus aureus, Streptococcus sp. and Candida albicans. The different palm kernel oil samples showed noticeable inhibitory effect on S. aureus and Streptococcus sp. while no significant inhibitory effect was observed on C. albicans. The highest zone of inhibition was observed with the commercial palm kernel oil (PKO) followed by the mechanically extracted PKO. Similarly, lauric acid content was highest in the commercially obtained PKO followed by that mechanically extracted and least in the laboratory prepared PKO. Key words: Palm kernel oil, lauric acid, inhibitory effect, bacterial isolates, Candida albicans. INTRODUCTION Palm kernel oil (PKO) is obtained from processing the The people of Eastern region of Nigeria have been using kernel from the fruit of the oil palm tree (Elaies palm kernel oil as skin ointment since prehistoric times guineensis). Palm kernel oil has similar uses to coconut although scientific evidence for its antimicrobial effect is oil owing to their similarity in composition (Pantzaris and lacking. This paper reports the antimicrobial effect of Ahmad, 2004). The major fatty acids in palm kernel oil palm kernel oil obtained from different sources on two are lauric acid (C12, 48%), myristic acid (C14, 16%) and bacterial isolates (Staphylococcus sp.
    [Show full text]