1PM in Oregon

Total Page:16

File Type:pdf, Size:1020Kb

1PM in Oregon (-ia Does not circulate Special Report 1020 October 2000 k 1PMin Oregon: Achievements and Future Directions N EMATOLOGY 4 ENTOMOLOGY 'V SOCIAL SCIEESI Integrated plant protection center OREGONSTATE UNIVERSITY I EXTENSION SERVICE For additional copies of this publication, send $15.00per copy to: Integrated Plant Protection Center 2040 Cordley Hall Oregon State University Corvallis, OR 9733 1-3904 Oregon State University Extension Service SpecialReport 1020 October 2000 1PMin Oregon: Achievements and Future Directions Editors: Myron Shenk Integrated Pest Management Specialist and Marcos Kogan Director, Integrated Plant Protection Center Oregon State University Table of Contents Welcome I Introductions 1 Marcos Kogan, OSU, Director IPPC Words from the President of Oregon State University 3 Paul Risser, President of OSU OSU Extension Service's Commitment to 1PM 5 Lyla Houglum, OSU, Director OSU-ES 1PM on the National Scene 8 Harold Coble, N. Carolina State U.! NatI. 1PM Program Coordinator The Role of Extension in Promoting 1PM Programs 13 Michael Gray, University of Illinois, 1PM Coordinator Performance Criteria for Measuring 1PM Results 19 Charles Benbrook, Benbrook Consulting Services FQPA Effects on Integrated Pest Management in the United States 28 Mark Whalon, Michigan State University and Resistance Management 1PM: Grower Friendly Practices and Cherry Grower Challenges 34 Bob Bailey, Grower, The Dalles Areawide Management of Codling Moth in Pears 36 Philip Vanbuskirk, Richard Hilton, Laura Naumes, and Peter Westigard, OSU Extension Service, Jackson County; Naumes Orchards, Medford Integrated Fruit Production for Pome Fruit in Hood River: Pest Management in the Integrated Fruit Production (IFP) Program 43 Helmut Riedl, Franz Niederholzer, and Clark Seavert, OSU Mid-Columbia Research and Ext. Center The Economics of Mating Disruption in Pacific Northwest Apple and Pear 56 Jeff Connor, OSU Agriculture and Resource Economics Integrated Management of Postharvest Diseases of Pear 75 David Sugar, Katie Powers, and Sally Basile, OSU Southern Oregon Research and Extension Center Apple Ermine Moth and Its Biological Control in Oregon 78 Barry B. Bai, Oregon Department of Agriculture, Plant Division Summary of Results—Codling Moth Areawide Management Program (CAMP) 83 L. Lampson, Milton-Freewater Implementing an 1PM Program for Obliquebanded Leafroller on Sweet Cherry 85 Lynn Long, OSU Extension Service, Hood River County Two Steps Forward, One Step Back 87 George Ing, Grower, Hood River Nematode Management With and Without Nematicides: Opportunities and Challenges 89 Russell Ingham, OSU Botany and Plant Pathology Department Even Modest Labor Requirements Pose a Significant Constraint on the Adoption of 1PM Monitoring and Scouting Procedures 98 Dan McGrath, OSU Extension Service, Marion County Evaluation of Technological Methods to Monitor the Spread of the Gorse Spider Mite in Oregon 108 Amy Peters Ruddell, Norman Harris, Eric Coombs, and Douglas Johnson, OSU Ext. Service, Coos County; OSU Rangeland Resources Dept.; Oregon Department of Agriculture Integrated Production Program for Oregon Vineyards 112 Al MacDonald, Chair, Low Input Viticulture and Enology Wine Grape Pest Management in Oregon 115 Ed Hellman, OSU Extension Service, North Willamette Research and Extension Center Hazelnut 1PM in Oregon 118 Jeff Olsen, OSU Extension Service, Yamhill County Impacts of Tillage and Cover Crop Residues on the Soil Foodweb and Multiple Pests in Vegetables....121 Ray William, Ed Peachy, Andy Moldenke, Ralph Berry, Elaine Ingham, Liz Harrison, and Mary Powelson, OSU Departments of Horticulture, Entomology, and Botany/Plant Pathology Enhancing Biological Control with Beneficial Insectary Plants 126 John Luna, M. Colley, and M. Staben, OSU Horticulture Department Evaluation of Potential Fall-Seeded Cover Crops for Weed Suppression and Beneficial Insect Habitat 133 Diane Kaufman, Gina Koskela, and Lynn Royce, OSU North Willamette Experiment Station Field Evaluations of Meadowfoam Seedmeal to Control Clubroot Disease (Plasmodiophora brassicae) in Cruciferous Crops 135 Wes Deuel and Sven Svenson, OSU North Willamette Research and Extension Center Banker Plants: Strategies for Release of Predaceous Mites to Control Spider Mites in Outdoor Ornamental Nurseries 139 RD. Pratt and B.A. Croft, OSU Entomology Department Efficacy of Insecticide Mixtures to Control Lygus Bug in Alfalfa Seed 147 Ben Simko and D.J. Kriegh, OSU Extension Service, Malheur County Integrated Insect Management in Mint 150 Ralph Berry, OSU Entomology Department The Importance of Integrated Pest Management (1PM) for the Successful Use of Predator Mites to Control Spider Mites in Peppermint 159 Mark Morris and J.Y. Takeyasu, Consultants Evaluation of the Toxicity of Pesticides to Neosieulus fallacis in the Laboratory and in Field Observations 168 Diane Kaufman, Gina Koskela, Mark Morris, and Brian Croft, OSU North Willamette Experiment Station Management of Fungal Diseases in Onions and Garlic 172 Fred Crowe, OSU Central Oregon Agricultural Research Center Integrated Management and Optimization of Fungicides to Control Septoria in Winter Wheat 177 John Leffel, JL Agricultural Consulting Alternative Strategies for Septoria Management in the Willamette Valley 178 Russ Karow, Ernie Marx, Pat Martinez, S. Aldrich-Markham, and Stella Coakley, OSU Depts. of Crops and Soil Science, Botany and Plant Pathology; Yamhill Co. Extension Service Feeding on Transgenic Bt-Potato Plants by Phytophagous Heteropteran Predators 182 Christine Armer, Ralph Berry, Marcos Kogan, OSU Entomology Department, OSU Integrated Plant Protection Center Integrated Pest Management of Diseases of Grasses Grown for Seed in Oregon 189 Steven Alderman and William Pfender, USDA-ARS Establishing a Grower Supported Weather Station Network 197 Lynn Long, OSU Extension Service, Wasco County Online Decision Support for 1PM 199 Len Coop, OSU Integrated Plant Protection Center and Entomology Departments The Delay Between Development and Adoption of 1PM Practices in Oregon Agriculture 204 Glenn Fisher, OSU Entomology Department Database Management System for Internet 1PM Information 205 Waheed Bajwa and Marcos Kogan, OSU Integrated Plant Protection Center An Interactive, Knowledge-based System for Integrated Codling Moth Management 216 Waheed Bajwa and Marcos Kogan, OSU Integrated Plant Protection Center 11 Acknowledgments This Conference was made possible through the combined efforts of Integrated Plant Protection Center (IPPC) staff members in collaboration with Oregon State University (OSU) research and Extension faculty and students dedicated to the advancement of integrated pest management in Oregon and the Pacific Northwest. The participation of representatives of the Oregon Department of Agriculture reaffirmed the commonality of our goals in plant protection. Although few growers participated in the Conference, their presence was particularly significant, as they provided a unique perspective based on their experience in the production fields. The U.S. Department of Agriculture, CSREES, Pest Management (Smith-Lever 3(d)) program through IPPC provided funding for the Conference. Technical editing of the proceedings was under the direction of IPPC staff, with final copy editing and design by the OSU Department of Extension and Experiment Station Communications. To all of the people who made this Conference possible, our deepest appreciation. 111 Marcos Kogan integrated Plant Protection Center Oregon State University Corvallis, Oregon 97331 Oregon has had a long and distinguished history of U.S. by the year 2000. Critics complain that, accomplishments in crop protection. F.L. Washburn, depending on how one looks at 1PM, either we first entomology department head at State already have exceeded that target, or in no way are Agricultural College of Oregon, also taught the first we going to meet it.It all depends on how we course in economic entomology in 1889. Both define 1PM and how we measure progress in 1PM Washburn and A.B. Cordley were Station adoption. It would be useful to achieve consensus entomologists and published on codling moth and on a definition of 1PM, but this is not easy. On the San Jose scale in the late 1800s. Until 1911-12, IPPC web site there is a compendium of 1PM little attention was given to pests of field crops; but definitions (Bajwa and Kogan, 1997). At last count, soon after, work started on vetch, clover, alfalfa, the compendium included 67 published definitions. field peas for seed, and hay. The department I would not be surprised if by the end of this expanded with new faculty added and research conference, we did not hear of three or four new focusing on all major fruit, vegetable, and field ones. crops in the state (Richter, 1966). The first head of Botany and Horticulture was E.R. Lake (1888- Definitions usually are selected to suit one's 1891), and the first publication in plant pathology, perspective or vested interests. I personally favor "Investigations of Plant Diseases," was issued in one that considers 1PM primarily as a decision- 1889. In 1894, Moses Craig published "Cause and making system for crop protection. I feel that 1PM Prevention of Plant Diseases" (Station Bull. No. 27). success hinges on the quality of the information The name of the department was changed to that is available to support pest control decisions. A Botany and Plant Pathology in 1909. Both traditional pest control program becomes 1PM entomology and plant pathology research and when control (or management)
Recommended publications
  • Montreal Protocol on Substances That Deplete the Ozone Layer
    MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER 1994 Report of the Methyl Bromide Technical Options Committee 1995 Assessment UNEP 1994 Report of the Methyl Bromide Technical Options Committee 1995 Assessment Montreal Protocol On Substances that Deplete the Ozone Layer UNEP 1994 Report of the Methyl Bromide Technical Options Committee 1995 Assessment The text of this report is composed in Times Roman. Co-ordination: Jonathan Banks (Chair MBTOC) Composition and layout: Michelle Horan Reprinting: UNEP Nairobi, Ozone Secretariat Date: 30 November 1994 No copyright involved. Printed in Kenya; 1994. ISBN 92-807-1448-1 1994 Report of the Methyl Bromide Technical Options Committee for the 1995 Assessment of the MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER pursuant to Article 6 of the Montreal Protocol; Decision IV/13 (1993) by the Parties to the Montreal Protocol Disclaimer The United Nations Environment Programme (UNEP), the Technology and Economics Assessment Panel co-chairs and members, the Technical and Economics Options Committees chairs and members and the companies and organisations that employ them do not endorse the performance, worker safety, or environmental acceptability of any of the technical options discussed. Every industrial operation requires consideration of worker safety and proper disposal of contaminants and waste products. Moreover, as work continues - including additional toxicity testing and evaluation - more information on health, environmental and safety effects of alternatives and replacements
    [Show full text]
  • 2003 Contents
    THE NEWSJOURNAL OF THE TORONTO ENTOMOLOGISTS’ ASSOCIATION VOLUME 8, NUMBER 2 JANUARY 2003 Contents Vol. 8, No. 2 Jan. 2003 Mission Statement The Toronto Entomologists’ Association (TEA) is a non-profit educational and scientific organization formed to promote Announcements ...................................................................................................................... 21 interest in insects, to encourage co-operation Upcoming Meetings ............................................................................................................... 22 among amateur and professional Recent News submitted by Don Davis ................................................................................... 24 entomologists, to educate and inform non- entomologists about insects, entomology and Meeting Reports ..................................................................................................................... 25 related fields, to aid in the preservation of Rediscovery of the Lake Huron Locust in Ontario by Steve Marshall .............................. 26 insects and their habitats and to issue publications in support of these objectives. The Bookworm ....................................................................................................................... 27 Executive Officers: Weaving an Ant's Tail by Lydia Attard ................................................................................ 28 President Nancy van der Poorten 2002 Presqu'ile Butterfly Blitz by Philip Careless .............................................................
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • Biology and Control of the Anguinid Nematode
    BIOLOGY AND CONTROL OF THE AIIGTIINID NEMATODE ASSOCIATED WITH F'LOOD PLAIN STAGGERS by TERRY B.ERTOZZI (B.Sc. (Hons Zool.), University of Adelaide) Thesis submitted for the degree of Doctor of Philosophy in The University of Adelaide (School of Agriculture and Wine) September 2003 Table of Contents Title Table of contents.... Summary Statement..... Acknowledgments Chapter 1 Introduction ... Chapter 2 Review of Literature 2.I Introduction.. 4 2.2 The 8acterium................ 4 2.2.I Taxonomic status..' 4 2.2.2 The toxins and toxin production.... 6 2.2.3 Symptoms of poisoning................. 7 2.2.4 Association with nematodes .......... 9 2.3 Nematodes of the genus Anguina 10 2.3.1 Taxonomy and sYstematics 10 2.3.2 Life cycle 13 2.4 Management 15 2.4.1 Identifi cation...................'..... 16 2.4.2 Agronomicmethods t6 2.4.3 FungalAntagonists l7 2.4.4 Other strategies 19 2.5 Conclusions 20 Chapter 3 General Methods 3.1 Field sites... 22 3.2 Collection and storage of Polypogon monspeliensis and Agrostis avenaceø seed 23 3.3 Surface sterilisation and germination of seed 23 3.4 Collection and storage of nematode galls .'.'.'.....'.....' 24 3.5 Ext¡action ofjuvenile nematodes from galls 24 3.6 Counting nematodes 24 3.7 Pot experiments............. 24 Chapter 4 Distribution of Flood Plain Staggers 4.1 lntroduction 26 4.2 Materials and Methods..............'.. 27 4.2.1 Survey of Murray River flood plains......... 27 4.2.2 Survey of southeastern South Australia .... 28 4.2.3 Surveys of northern New South Wales...... 28 4.3 Results 29 4.3.1 Survey of Murray River flood plains...
    [Show full text]
  • Updated March 2015 (Replaces February 2010 Version)
    Recovery Plan for Rathayibacter Poisoning caused by Rathayibacter toxicus (syn. Clavibacter toxicus) Updated March 2015 (Replaces February 2010 Version) Contents Page Executive Summary 2 Contributors and Reviewers 5 I. Introduction 5 II. Disease Development and Symptoms 8 III. Plant Infection, Spread of the Bacterium, and Animal Poisoning 11 IV. Monitoring and Detection 12 V. Response 13 VI. USDA Pathogen Permits 14 VII. Economic Impact and Compensation 15 VIII. Mitigation and Disease Management 15 IX. Infrastructure and Experts 16 X. Research, Extension, and Education Needs 17 References 20 Web Resources 25 Appendices 26 This recovery plan is one of several disease-specific documents produced as part of the National Plant Disease Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9). The purpose of the NPDRS is to ensure that the tools, infrastructure, communication networks, and capacity required to minimize the impact of high consequence plant disease outbreaks are available so that an adequate level of crop production is maintained. Each disease-specific plan is intended to provide a brief primer on the disease, assess the status of critical recovery components, and identify disease management research, extension, and education needs. These documents are not intended to be stand-alone documents that address all of the many and varied aspects of plant disease outbreaks and all of the decisions that must be made and actions taken to achieve effective response and recovery. They are, however, documents that will help the USDA to further guide efforts toward plant disease recovery. Cite this document as: Murray, T.D., I. Agarkova, S.
    [Show full text]
  • Insect Pathogens As Biological Control Agents: Back to the Future ⇑ L.A
    Journal of Invertebrate Pathology 132 (2015) 1–41 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Insect pathogens as biological control agents: Back to the future ⇑ L.A. Lacey a, , D. Grzywacz b, D.I. Shapiro-Ilan c, R. Frutos d, M. Brownbridge e, M.S. Goettel f a IP Consulting International, Yakima, WA, USA b Agriculture Health and Environment Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK c U.S. Department of Agriculture, Agricultural Research Service, 21 Dunbar Rd., Byron, GA 31008, USA d University of Montpellier 2, UMR 5236 Centre d’Etudes des agents Pathogènes et Biotechnologies pour la Santé (CPBS), UM1-UM2-CNRS, 1919 Route de Mendes, Montpellier, France e Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, Ontario L0R 2E0, Canada f Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada1 article info abstract Article history: The development and use of entomopathogens as classical, conservation and augmentative biological Received 24 March 2015 control agents have included a number of successes and some setbacks in the past 15 years. In this forum Accepted 17 July 2015 paper we present current information on development, use and future directions of insect-specific Available online 27 July 2015 viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for con- trol of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Keywords: Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the con- Microbial control trol of lepidopteran pests.
    [Show full text]
  • Bacterial Associates of Anguina Species Isolated from Galls Yang Chang WEN and David R
    Fundam. appi. NemaLOi., 1992, 15 (3), 231-234. Bacterial associates of Anguina species isolated from galls Yang Chang WEN and David R. VIGLIERCHIO Department of Nematology, University of Califomia, Davis, CA 95616, USA Accepted for publication 9 April 1991. Summary - Certain animal and plant diseases are weil known to be a consequence of a particular nematode and bacterial species involved in an intimate relationship. For several such insect diseases, reports indicate that the nematode is unable to survive in the absence of the specific partner. That is not the case for the plant parasite group, Anguina in which each partner may survive independently. This report suggests that the relationship with Anguina is opportunistic in that if the appropriate bacteria share the nematode community, the characteristic disease appears. In the absence of that particular bacterial species other bacterial species in the nematode niche can substitute; however the relationship is benign. This indicates that although specificity in partners is required for a specific disease to emerge the nematode may develop intimate relationships with a range of non-threatening bacteria. Therein may lie part of the explanation of why the" sheep staggers " disease so serious to livestock in Australia is not so in the US Pacific Northwest which harbors the same nematode, Anguina agrostis. Résumé - Bactéries associées à certaines espèces d1\nguina isolées de galles - Certaines maladies des animaux et des plantes sont bien connues pour être causées par des espéces particulières de nématodes et de bactéries étroitement associées. Dans le cas de plusieurs maladies d'insectes, les observations indiquent que le nématode ne peut survivre en l'absence de son partenaire spécifique.
    [Show full text]
  • Responses of Anguina Agrostis to Detergent and Anesthetic Treatment 1
    Host Range, Biology, and Pathology of P. punctata: Radice et al. 165 rence of cyst nematodes (Heterodera spp.) in Michigan. 7. Radice, A. D., and P. M. Halisky. 1983. Nema- Plant Disease Reporter 55:399. todes parasitic on turfgrasses in New Jersey. New Jer- 3. Chitwood, B. G. 1949. Cyst formingHeterodera sey Academy Science 28:25 (Abstr.). encountered in soil sampling. Plant Disease Reporter 8. Radice, A. D., R. F. Myers, and P. M. Halisky. 33:130-131. 1983. The grass cyst nematode in New Jersey. Jour- 4. Dunn, R. A. 1969. Extraction of cysts of Het- nal of Nematology 15:4-8 (Abstr.). erodera species from soil by centrifugation in high 9. Spears, J. F. 1956. Occurrence of the grass cyst density solutions. Journal of Nematology 1:7 (Abstr.). nematode, Heterodera punctata, and Heterodera cacti 5. Horne, C. W. 1965. The taxonomic status, group cysts in North Dakota and Minnesota. Plant morphology and biology of a cyst nematode (Nema- Disease Reporter 40:583-584. toda:Heteroderidae) found attacking Poa annua L. 10. Thorne, G. 1928. Heteroder a punctata n. sp. a Ph.D. dissertation, Texas A&M University, College nematode parasite on wheat roots from Saskatche- Station, Texas (Diss. Abstr. 65-12, 287). wan. Scientific Agriculture 8:707-710. 6. Horne, C. W., and W. H. Thames, Jr. 1966. 11. Wheeler, W. H. 1949. Interceptions of the Notes on occurrence and distribution of Heterodera genus Heterodera in foreign soil. Plant Disease Re- punctata. Plant Disease Reporter 50:869-871. porter 33:446. Journal of Nematology 17(2): 165-168.
    [Show full text]
  • Negative Per Capita Effects of Two Invasive Plants, Lythrum Salicaria and Phalaris Arundinacea, Volume 99 on the Moth Diversity of Wetland Communities 229 Issue 3 L.L
    Online submission at: www.editorialmanager.com/ber Bulletin of Entomological Volume 99 Issue 3 Research June 2009 Bulletin of Research Papers Bulletin of K. Kishimoto-Yamada, T. Itioka, S. Sakai, K. Momose, T. Nagamitsu, H. Kaliang, P. Meleng, L. Chong, A.A. Hamid Karim, S. Yamane, M. Kato, C.A.M. Reid, T. Nakashizuka and T. Inoue Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual Entomological Research environmental changes in a Bornean rainforest 217 Entomological S.S. Schooler, P.B. McEvoy, P. Hammond and E.M. Coombs Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, Volume 99 on the moth diversity of wetland communities 229 Issue 3 L.L. Stelinski and L.J. Gut June 2009 Delayed mating in tortricid leafroller species: simultaneously aging both sexes prior to mating Research is more detrimental to female reproductive potential than aging either sex alone 245 Z. Lei, T.-X. Liu and S.M. Greenberg Feeding, oviposition and survival of Liriomyza trifolii (Diptera: Agromyzidae) on Bt and non-Bt cottons 253 99 Issue 3 June 2009 Volume S.J. Castle, N. Prabhaker, T.J. Henneberry and N.C. Toscano Host plant influence on susceptibility of Bemisia tabaci (Hemiptera: Aleyrodidae) to insecticides 263 M. Jonsson, S.D. Wratten, K.A. Robinson and S.A. Sam The impact of floral resources and omnivory on a four trophic level food web 275 R. Kahuthia-Gathu, B. Löhr, H.M. Poehling and P.K. Mbugua Diversity, distribution and role of wild crucifers in major cabbage and kale growing areas of Kenya 287 J.
    [Show full text]
  • Rathayibacter Toxicus: a Dual Kingdom Pathogen Threatening Plants, Animals and Humans
    Rathayibacter toxicus: A Dual Kingdom Pathogen Threatening Plants, Animals and Humans Anne Vidaver University of Nebraska-Lincoln Major Points • Bacterium (R. toxicus) needs a nematode vector • Potential nematodes vectors are in the U.S. • Plant hosts: many , esp. field grasses and cereals, incl. U.S. • Multiple corynetoxins produced • No immunity Major Reference • Recovery Plan for Rathayibacter Poisonng caused by Rathayibacter toxicus (syn. Clavibacter toxicus) , 2015, 28 pp. • National Plant Disease Recovery system: Plant Diseases that Threaten U.S. Agriculture • Select Agent • USDA: www. ars. usda.gov Corynetoxins Produced by R. toxicus • Members of tunicamycin family of antibiotics • Glycolipid sidechains – 16 variations • Heat stable • Highly toxic (3-6 mg/kg/ body weight) • Cumulative effect • No immunity • No effective vaccine to date Corynetoxin Structure Corynetoxin H17a, one of the major components of the Rathayibacter toxicus corynetoxins (Eckardt, 1983). Biological Safety, 5th ed., ASM • Biological Safety Considerations for Plant Pathogens and Plant-associated Microorganisms of Significance to Human Health • Anne Vidaver, Sue Tolin and Patricia Lambrecht • In press (2016) Potential Nematode Vectors in U.S. • Anguina agrostis: Bentgrass seed gall nematode • A. pacificae: Pacific shoot gall nematode. Host Poa annua • A. tritici: Wheat seed gall nematode. (Not reported in U.S. since 1975) • A. agropyronifloris: Host western wheatgrass (Agropyron smithii) U.S. Susceptibility • Cattle - 95 million • Sheep - 6 million • Horses - 9 million: race horses most valuable • Bison thousands • Other grazing animals • Humans? (contaminated cereals) The Annual Life Cycle of the Bacterium Causing Rathayibacter Poisoning This diagram is not drawn to scale. Not all animals consuming infected grasses die as a result. Challenges • The bacterium is not vector (nematode) specific • Host plants: many • Gumming, slime in plant seed heads (not always) • Can be undetected for years • The mechanism(s) underlying the production of toxins is unknown.
    [Show full text]
  • Rathayibacter Poisoning
    Recovery Plan For Rathayibacter Poisoning Caused by Rathayibacter toxicus (syn. Clavibacter toxicus) February, 2010 Contents: Page Executive Summary 2 Contributors and Reviewers 4 I. Introduction 5 II. Disease Development and Symptoms 7 III. Plant Infection, Spread of the Bacterium, and Animal Poisoning 10 IV. Monitoring and Detection 11 V. Response 12 VI. USDA Pathogen Permits 13 VII. Economic Impact and Compensation 14 VIII. Mitigation and Disease Management 14 IX. Infrastructure and Experts 15 X. Research, Extension, and Education 16 References 19 Web Resources 23 Appendices 24 This recovery plan is one of several disease-specific documents produced as part of the National Plant Disease Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9). The purpose of the NPDRS is to ensure that the tools, infrastructure, communication networks, and capacity required to minimize the impact of high consequence plant disease outbreaks are available so that a adequate level of crop production is maintained. Each disease-specific plan is intended to provide a brief primer on the disease, assess the status of critical recovery components, and identify disease management research, extension, and education needs. These documents are not intended to be stand-alone documents that address all of the many and varied aspects of plant disease outbreaks and all of the decisions that must be made and actions taken to achieve effective response and recovery. They are, however, documents that will help the USDA to further guide efforts toward plant disease recovery. Executive Summary Rathayibacter (Clavibacter) toxicus was added to the Select Agent List in 2008 due primarily to the potential damage affecting domesticated forage-consuming animals in the U.S.
    [Show full text]
  • Insect Pathogens As Biological Control Agents: Back to the Future
    Accepted Manuscript Insect pathogens as biological control agents: back to the future L.A. Lacey, D. Grzywacz, D.I. Shapiro-Ilan, R. Frutos, M. Brownbridge, M.S. Goettel PII: S0022-2011(15)00134-2 DOI: http://dx.doi.org/10.1016/j.jip.2015.07.009 Reference: YJIPA 6706 To appear in: Journal of Invertebrate Pathology Received Date: 24 March 2015 Accepted Date: 17 July 2015 Please cite this article as: Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., Goettel, M.S., Insect pathogens as biological control agents: back to the future, Journal of Invertebrate Pathology (2015), doi: http://dx.doi.org/10.1016/j.jip.2015.07.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. JIP-15-82 1 Insect pathogens as biological control agents: back to the future 2 3 4 L. A. Lacey1, D. Grzywacz2 D. I. Shapiro-Ilan3, R. Frutos4, M. Brownbridge5, M. S. Goettel6 5 6 1 IP Consulting International, Yakima, WA, USA. [email protected] 7 2 Principal Scientist, Agriculture Health and Environment Department, Natural Resources Institute, 8 University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK [email protected] 9 3 U.
    [Show full text]