Documentation and Analysis of the Linux Random Number Generator

Total Page:16

File Type:pdf, Size:1020Kb

Documentation and Analysis of the Linux Random Number Generator Documentation and Analysis of the Linux Random Number Generator Version: 3.6 Document history Version Date Editor Description 2.0 2018-03-21 Stephan Müller Covering kernel 4.15 Re-running all tests of chapters 6 and following on 4.15 2.1 2018-04-11 Stephan Müller Updating the test results for the reboot tests on bare metal with 50,000 reboot cycles 2.2 2018-04-11 Stephan Müller Covering kernel 4.16 2.3 2018-06-18 Stephan Müller Covering kernel 4.17 2.4 2018-08-24 Stephan Müller Covering kernel 4.18 2.5 2018-11-12 Stephan Müller Covering kernel 4.19 Updated seeding process ChaCha20 DRNG documented 2.6 2019-01-11 Stephan Müller Covering kernel 4.20 3.0 2019-04-05 Stephan Müller Covering kernel 5.0 Re-running all tests of chapters 6 and following on 5.0 3.1 2019-04-12 Stephan Müller Adding results of reboot-tests for 5.0 3.2 2019-05-17 Stephan Müller Addressing comments from BSI Covering kernel 5.1 3.3 2019-08-13 Stephan Müller Covering kernel 5.2 3.4 2019-09-26 Stephan Müller Covering kernel 5.3 3.5 2019-12-13 Stephan Müller Covering kernel 5.4 3.6 2020-04-07 Stephan Müller Covering kernel 5.5 Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Internet: https://www.bsi.bund.de © Federal Office for Information Security 2020 Document history This analysis was prepared for BSI by atsec information security GmbH. Federal Office for Information Security 3 Federal Office for Information Security 5 Table of Contents Table of Contents Document history.............................................................................................................................................................................. 2 1 Introduction....................................................................................................................................................................................... 13 1.1 Authors.......................................................................................................................................................................................... 14 1.2 Copyright...................................................................................................................................................................................... 14 1.3 BSI-Reference............................................................................................................................................................................. 14 2 Architecture of Non-Deterministic Random Number Generators (NDRNGs)..................................................15 2.1 Terminology................................................................................................................................................................................ 15 2.2 General Architecture............................................................................................................................................................... 17 3 Design of the Linux-RNG............................................................................................................................................................. 20 3.1 Historical Background............................................................................................................................................................ 20 3.2 Linux-RNG Architecture....................................................................................................................................................... 20 3.2.1 Linux-RNG Internal Design.......................................................................................................................................... 21 3.3 Deterministic Random Number Generators (DRNGs)............................................................................................23 3.3.1 Entropy Pools....................................................................................................................................................................... 23 3.3.2 ChaCha20 DRNG................................................................................................................................................................ 33 3.4 Interfaces to Linux-RNG....................................................................................................................................................... 37 3.4.1 Character Device Files...................................................................................................................................................... 37 3.4.2 System Call............................................................................................................................................................................ 41 3.4.3 In-Kernel Interfaces.......................................................................................................................................................... 41 3.4.4 /proc Files.............................................................................................................................................................................. 42 3.5 Entropy Sources......................................................................................................................................................................... 43 3.5.1 Timer State Maintenance for Entropy Sources....................................................................................................43 3.5.2 Entropy Collection............................................................................................................................................................ 45 3.6 Entropy Estimation.................................................................................................................................................................. 57 3.6.1 Storing of “Superfluous” Entropy...............................................................................................................................59 3.7 Generic Architecture and Linux-RNG............................................................................................................................60 3.8 Use of the Linux-RNG............................................................................................................................................................. 62 3.9 Hardware-based Random Number Generators..........................................................................................................63 3.9.1 CPU Hardware Random Number Generators......................................................................................................63 3.9.2 Hardware Random Number Generator Framework.........................................................................................65 3.10 Support Functions for Other Kernel Parts....................................................................................................................67 3.11 Time Line of Entropy Requirements...............................................................................................................................68 3.11.1 Installation Time................................................................................................................................................................ 68 3.11.2 First Reboot After Installation...................................................................................................................................... 69 3.11.3 Regular Usage....................................................................................................................................................................... 69 3.12 Security Domain Protecting the Linux-RNG...............................................................................................................70 4 Conducted Analyses of the Linux-RNG................................................................................................................................ 71 4.1 Attacks of Gutterman et al. And its Relevance............................................................................................................71 4.1.1 Denial of Service Attacks................................................................................................................................................ 71 4.1.2 Use of Diskless Systems................................................................................................................................................... 71 4.1.3 Enhanced Backward Secrecy........................................................................................................................................ 72 4.2 Lacharme’s Analysis................................................................................................................................................................. 72 4.2.1 Linux-RNG Without Input to the Entropy Pools................................................................................................72 4.2.2 Attacks on the Input......................................................................................................................................................... 72 Federal Office for Information Security 7 Table of Contents 4.2.3 Assessment of the Entropy Estimation....................................................................................................................72 4.3 Conclusions from [LRSV12] and [GPR06]......................................................................................................................72
Recommended publications
  • LSP 1.20 Davinci Linux NOR Flash Device Driver
    LSP 1.20 DaVinci Linux NOR Flash Driver User's Guide Literature Number: SPRUF10 April 2008 2 SPRUF10–April 2008 Submit Documentation Feedback Contents 1 Overview............................................................................................................................. 5 1.1 System Requirements .................................................................................................... 5 1.2 Design Overview .......................................................................................................... 6 2 Installation Guide................................................................................................................. 7 2.1 List of Installable Components .......................................................................................... 7 2.2 Component Folder ........................................................................................................ 7 2.3 Development Tools ....................................................................................................... 7 2.4 Build......................................................................................................................... 8 2.5 Steps to Load/Unload the NOR Flash Driver.......................................................................... 8 3 NOR Flash Driver Porting...................................................................................................... 9 3.1 Customizing the NOR-flash partitions .................................................................................
    [Show full text]
  • Interrupt Handling in Linux
    Department Informatik Technical Reports / ISSN 2191-5008 Valentin Rothberg Interrupt Handling in Linux Technical Report CS-2015-07 November 2015 Please cite as: Valentin Rothberg, “Interrupt Handling in Linux,” Friedrich-Alexander-Universitat¨ Erlangen-Nurnberg,¨ Dept. of Computer Science, Technical Reports, CS-2015-07, November 2015. Friedrich-Alexander-Universitat¨ Erlangen-Nurnberg¨ Department Informatik Martensstr. 3 · 91058 Erlangen · Germany www.cs.fau.de Interrupt Handling in Linux Valentin Rothberg Distributed Systems and Operating Systems Dept. of Computer Science, University of Erlangen, Germany [email protected] November 8, 2015 An interrupt is an event that alters the sequence of instructions executed by a processor and requires immediate attention. When the processor receives an interrupt signal, it may temporarily switch control to an inter- rupt service routine (ISR) and the suspended process (i.e., the previously running program) will be resumed as soon as the interrupt is being served. The generic term interrupt is oftentimes used synonymously for two terms, interrupts and exceptions [2]. An exception is a synchronous event that occurs when the processor detects an error condition while executing an instruction. Such an error condition may be a devision by zero, a page fault, a protection violation, etc. An interrupt, on the other hand, is an asynchronous event that occurs at random times during execution of a pro- gram in response to a signal from hardware. A proper and timely handling of interrupts is critical to the performance, but also to the security of a computer system. In general, interrupts can be emitted by hardware as well as by software. Software interrupts (e.g., via the INT n instruction of the x86 instruction set architecture (ISA) [5]) are means to change the execution context of a program to a more privileged interrupt context in order to enter the kernel and, in contrast to hardware interrupts, occur synchronously to the currently running program.
    [Show full text]
  • Oracle® Linux 7 Release Notes for Oracle Linux 7.2
    Oracle® Linux 7 Release Notes for Oracle Linux 7.2 E67200-22 March 2021 Oracle Legal Notices Copyright © 2015, 2021 Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
    [Show full text]
  • User Manual Issue 2.0.2 September 2017
    The Embedded I/O Company TDRV015-SW-82 Linux Device Driver Reconfigurable FPGA Version 2.0.x User Manual Issue 2.0.2 September 2017 TEWS TECHNOLOGIES GmbH Am Bahnhof 7 25469 Halstenbek, Germany Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19 e-mail: [email protected] www.tews.com TDRV015-SW-82 This document contains information, which is Linux Device Driver proprietary to TEWS TECHNOLOGIES GmbH. Any Reconfigurable FPGA reproduction without written permission is forbidden. Supported Modules: TEWS TECHNOLOGIES GmbH has made any TAMC631 (TPLD001) effort to ensure that this manual is accurate and TAMC640 (TPLD002) complete. However TEWS TECHNOLOGIES GmbH TAMC641 (TPLD003) reserves the right to change the product described TAMC651 (TPLD004) in this document at any time without notice. TPMC632 (TPLD005) TEWS TECHNOLOGIES GmbH is not liable for any damage arising out of the application or use of the device described herein. 2011-2017 by TEWS TECHNOLOGIES GmbH Issue Description Date 1.0.0 First Issue March 14, 2011 1.0.1 SupportedModulesadded September30,2011 2.0.0 New API implemented March 7, 2012 2.0.1 IncludestatementinExampleCodescorrected August 18, 2015 Reference to Engineering Documentation removed 2.0.2 Filelistmodified(licenseadded) September28,2017 TDRV015-SW-82 - Linux Device Driver Page 2 of 75 Table of Contents 1 INTRODUCTION......................................................................................................... 4 2 INSTALLATION.........................................................................................................
    [Show full text]
  • FIPS 140-2 Non-Proprietary Security Policy Oracle Linux 7 Kernel Crypto
    FIPS 140-2 Non-Proprietary Security Policy Oracle Linux 7 Kernel Crypto API Cryptographic Module FIPS 140-2 Level 1 Validation Software Version: R7-2.0.0 Date: December 7, 2018 Document Version 1.1 ©Oracle Corporation This document may be reproduced whole and intact including the Copyright notice. Title: Oracle Linux 7 Kernel Crypto API Cryptographic Module Security Policy December 07, 2018 Author: Atsec Information Security Contributing Authors: Oracle Linux Engineering Oracle Security Evaluations – Global Product Security Oracle Corporation World Headquarters 500 Oracle Parkway Redwood Shores, CA 94065 U.S.A. Worldwide Inquiries: Phone: +1.650.506.7000 Fax: +1.650.506.7200 oracle.com Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or distributed whole and intact including this copyright notice. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Oracle Linux 7 Kernel Crypto API Cryptographic
    [Show full text]
  • Oracle Solaris 11.4 Security Target, V1.3
    Oracle Solaris 11.4 Security Target Version 1.3 February 2021 Document prepared by www.lightshipsec.com Oracle Security Target Document History Version Date Author Description 1.0 09 Nov 2020 G Nickel Update TOE version 1.1 19 Nov 2020 G Nickel Update IDR version 1.2 25 Jan 2021 L Turner Update TLS and SSH. 1.3 8 Feb 2021 L Turner Finalize for certification. Page 2 of 40 Oracle Security Target Table of Contents 1 Introduction ........................................................................................................................... 5 1.1 Overview ........................................................................................................................ 5 1.2 Identification ................................................................................................................... 5 1.3 Conformance Claims ...................................................................................................... 5 1.4 Terminology ................................................................................................................... 6 2 TOE Description .................................................................................................................... 9 2.1 Type ............................................................................................................................... 9 2.2 Usage ............................................................................................................................. 9 2.3 Logical Scope ................................................................................................................
    [Show full text]
  • Kernel Boot-Time Tracing
    Kernel Boot-time Tracing Linux Plumbers Conference 2019 - Tracing Track Masami Hiramatsu <[email protected]> Linaro, Ltd. Speaker Masami Hiramatsu - Working for Linaro and Linaro members - Tech Lead for a Landing team - Maintainer of Kprobes and related tracing features/tools Why Kernel Boot-time Tracing? Debug and analyze boot time errors and performance issues - Measure performance statistics of kernel boot - Analyze driver init failure - Debug boot up process - Continuously tracing from boot time etc. What We Have There are already many ftrace options on kernel command line ● Setup options (trace_options=) ● Output to printk (tp_printk) ● Enable events (trace_events=) ● Enable tracers (ftrace=) ● Filtering (ftrace_filter=,ftrace_notrace=,ftrace_graph_filter=,ftrace_graph_notrace=) ● Add kprobe events (kprobe_events=) ● And other options (alloc_snapshot, traceoff_on_warning, ...) See Documentation/admin-guide/kernel-parameters.txt Example of Kernel Cmdline Parameters In grub.conf linux /boot/vmlinuz-5.1 root=UUID=5a026bbb-6a58-4c23-9814-5b1c99b82338 ro quiet splash tp_printk trace_options=”sym-addr” trace_clock=global ftrace_dump_on_oops trace_buf_size=1M trace_event=”initcall:*,irq:*,exceptions:*” kprobe_event=”p:kprobes/myevent foofunction $arg1 $arg2;p:kprobes/myevent2 barfunction %ax” What Issues? Size limitation ● kernel cmdline size is small (< 256bytes) ● A half of the cmdline is used for normal boot Only partial features supported ● ftrace has too complex features for single command line ● per-event filters/actions, instances, histograms. Solutions? 1. Use initramfs - Too late for kernel boot time tracing 2. Expand kernel cmdline - It is not easy to write down complex tracing options on bootloader (Single line options is too simple) 3. Reuse structured boot time data (Devicetree) - Well documented, structured data -> V1 & V2 series based on this. Boot-time Trace: V1 and V2 series V1 and V2 series posted at June.
    [Show full text]
  • Namespacing in Selinux
    Namespacing in SELinux Linux.conf.au 2018 Sydney, Australia James Morris [email protected] Introduction ● Who am I? – Linux security subsystem maintainer ● Previously: Crypto API, Netfilter, SELinux, LSM, IPSec, MCS, sVirt ● Recovering manager ● blog.namei.org ● @xjamesmorris ● Overview – Briefly review technologies – Discuss requirements – SELinux namespace prototype – Current work: inode labeling – Future work SELinux ● Label-based mandatory access control (MAC) – Set security labels on: ● Subjects ● Objects – Define permissions – Centrally managed policy – Enforced by kernel ● Generalized ● Separation of policy and mechanism Linux Security Modules (LSM) ● Kernel API for access control ● Hooks – Located at security decision points – All security relevant information available – Race-free ● Kind of like Netfilter but for the whole kernel ● Pluggable: Smack, SELinux, AppArmor etc. Linux Namespaces ● Private views of global resources – mount, network, ipc, pid, user, uts, cgroup ● APIs: clone(2), setns(2), unshare(2) ● See also: pam_namespace(8) ● Uses: – Sandboxes – Containers – Multi-level security (!) ● No namespacing of LSM or other security APIs Containers ● Not a Thing ™ ● Actually namespaces + cgroups + magic – Docker, lxc, lxd etc. ● Very popular ● Kernel security APIs not containerized, e.g. – Limits functionality for OS-like containers – SELinux on Fedora-based distros pretends to be disabled inside container, and yet … ! Use Cases ● Enable SELinux confinement within a container – Currently runs as one global label and appears
    [Show full text]
  • O'reilly Linux Kernel in a Nutshell.Pdf
    ,title.4229 Page i Friday, December 1, 2006 9:52 AM LINUX KERNEL IN A NUTSHELL ,title.4229 Page ii Friday, December 1, 2006 9:52 AM Other Linux resources from O’Reilly Related titles Building Embedded Linux Running Linux Systems Understanding Linux Linux Device Drivers Network Internals Linux in a Nutshell Understanding the Linux Linux Pocket Guide Kernel Linux Books linux.oreilly.com is a complete catalog of O’Reilly’s Resource Center books on Linux and Unix and related technologies, in- cluding sample chapters and code examples. Conferences O’Reilly brings diverse innovators together to nurture the ideas that spark revolutionary industries. We spe- cialize in documenting the latest tools and systems, translating the innovator’s knowledge into useful skills for those in the trenches. Visit conferences.oreilly.com for our upcoming events. Safari Bookshelf (safari.oreilly.com) is the premier on- line reference library for programmers and IT professionals. Conduct searches across more than 1,000 books. Subscribers can zero in on answers to time-critical questions in a matter of seconds. Read the books on your Bookshelf from cover to cover or sim- ply flip to the page you need. Try it today for free. ,title.4229 Page iii Friday, December 1, 2006 9:52 AM LINUX KERNEL IN A NUTSHELL Greg Kroah-Hartman Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo ,LKNSTOC.fm.8428 Page v Friday, December 1, 2006 9:55 AM Chapter 1 Table of Contents Preface . ix Part I. Building the Kernel 1. Introduction . 3 Using This Book 4 2. Requirements for Building and Using the Kernel .
    [Show full text]
  • Speeding up Linux Disk Encryption Ignat Korchagin @Ignatkn $ Whoami
    Speeding Up Linux Disk Encryption Ignat Korchagin @ignatkn $ whoami ● Performance and security at Cloudflare ● Passionate about security and crypto ● Enjoy low level programming @ignatkn Encrypting data at rest The storage stack applications @ignatkn The storage stack applications filesystems @ignatkn The storage stack applications filesystems block subsystem @ignatkn The storage stack applications filesystems block subsystem storage hardware @ignatkn Encryption at rest layers applications filesystems block subsystem SED, OPAL storage hardware @ignatkn Encryption at rest layers applications filesystems LUKS/dm-crypt, BitLocker, FileVault block subsystem SED, OPAL storage hardware @ignatkn Encryption at rest layers applications ecryptfs, ext4 encryption or fscrypt filesystems LUKS/dm-crypt, BitLocker, FileVault block subsystem SED, OPAL storage hardware @ignatkn Encryption at rest layers DBMS, PGP, OpenSSL, Themis applications ecryptfs, ext4 encryption or fscrypt filesystems LUKS/dm-crypt, BitLocker, FileVault block subsystem SED, OPAL storage hardware @ignatkn Storage hardware encryption Pros: ● it’s there ● little configuration needed ● fully transparent to applications ● usually faster than other layers @ignatkn Storage hardware encryption Pros: ● it’s there ● little configuration needed ● fully transparent to applications ● usually faster than other layers Cons: ● no visibility into the implementation ● no auditability ● sometimes poor security https://support.microsoft.com/en-us/help/4516071/windows-10-update-kb4516071 @ignatkn Block
    [Show full text]
  • Hiding Process Memory Via Anti-Forensic Techniques
    DIGITAL FORENSIC RESEARCH CONFERENCE Hiding Process Memory via Anti-Forensic Techniques By: Frank Block (Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and ERNW Research GmbH) and Ralph Palutke (Friedrich-Alexander Universität Erlangen-Nürnberg) From the proceedings of The Digital Forensic Research Conference DFRWS USA 2020 July 20 - 24, 2020 DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development. https://dfrws.org Forensic Science International: Digital Investigation 33 (2020) 301012 Contents lists available at ScienceDirect Forensic Science International: Digital Investigation journal homepage: www.elsevier.com/locate/fsidi DFRWS 2020 USA d Proceedings of the Twentieth Annual DFRWS USA Hiding Process Memory Via Anti-Forensic Techniques Ralph Palutke a, **, 1, Frank Block a, b, *, 1, Patrick Reichenberger a, Dominik Stripeika a a Friedrich-Alexander Universitat€ Erlangen-Nürnberg (FAU), Germany b ERNW Research GmbH, Heidelberg, Germany article info abstract Article history: Nowadays, security practitioners typically use memory acquisition or live forensics to detect and analyze sophisticated malware samples. Subsequently, malware authors began to incorporate anti-forensic techniques that subvert the analysis process by hiding malicious memory areas. Those techniques Keywords: typically modify characteristics, such as access permissions, or place malicious data near legitimate one, Memory subversion in order to prevent the memory from being identified by analysis tools while still remaining accessible.
    [Show full text]
  • AMD Alchemy™ Processors Building a Root File System for Linux® Incorporating Memory Technology Devices
    AMD Alchemy™ Processors Building a Root File System for Linux® Incorporating Memory Technology Devices 1.0 Scope This document outlines a step-by-step process for building and deploying a Flash-based root file system for Linux® on an AMD Alchemy™ processor-based development board, using an approach that incorporates Memory Technology Devices (MTDs) with the JFFS2 file system. Note: This document describes creating a root file system on NOR Flash memory devices, and does not apply to NAND Flash devices. 1.1 Journaling Flash File System JFFS2 is the second generation of the Journaling Flash File System (JFFS). This file system provides a crash-safe and powerdown-safe Linux file system for use with Flash memory devices. The home page for the JFFS project is located at http://developer.axis.com/software/jffs. 1.2 Memory Technology Device The MTD subsystem provides a generic Linux driver for a wide range of memory devices, including Flash memory devices. This driver creates an abstracted device used by JFFS2 to interface to the actual Flash memory hardware. The home page for the MTD project is located at http://www.linux-mtd.infradead.org. 2.0 Building the Root File System Before being deployed to an AMD Alchemy platform, the file system must first be built on an x86 Linux host PC. The pri- mary concern when building a Flash-based root file system is often the size of the image. The file system must be designed so that it fits within the available space of the Flash memory, with enough extra space to accommodate any runtime-created files, such as temporary or log files.
    [Show full text]