Jumpstarting the CUBESAT REVOLUTION on PAGE 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mr. Jeffrey Manber Testimony.Pdf
Testimony of Mr. Jeffrey Manber Chief Executive Officer, Nanoracks LLC before the Senate Committee on Commerce, Science and Transportation Subcommittee on Aviation and Space Tuesday, November 5, 2019 Building NASA’s Workforce of the Future: STEM Engagement for a 21st Century Education Chairman Cruz, Ranking Member Sinema, and other distinguished members of the Aviation and Space Subcommittee, thank you for giving me the opportunity to return to this room to testify before you. I look forward to discussing how commercial access to the International Space Station has provided an unprecedented educational experience to over a million students across the United States. Let me begin today by explaining that I am here in two different capacities. I am, of course, representing Nanoracks as the CEO, but I am also Chairman of the Board for DreamUp, Nanoracks’ educational sister company. Once just a division in Nanoracks, we spun DreamUp out to be a standalone public benefit corporation because the business of providing educational access to space was, and remains today, strong and important. DreamUp’s sole focus is bringing space to the classroom, and the classroom to space. We opened the doors at Nanoracks in 2009 with the goal to make space accessible to everyone. I am proud to say today that the very first customers that brought Nanoracks into business were in fact, schools. Our very first experiments were small projects that were developed by middle school students. These kids quite literally held bake sales - not to sponsor their soccer team, or raise money for the school dance, but to send their very own science experiment to the International Space Station via a Nanoracks Space Act Agreement with NASA. -
Co-Creating and Directing Innovation Ecosystems? Nasas Changing Approach to Public-Private Partnerships in Low-Earth Orbit Mariana Mazzucato1,2 and Douglas K.R
CORE Metadata, citation and similar papers at core.ac.uk Provided by UCL Discovery Co-creating and directing Innovation Ecosystems? NASAs changing approach to public-private partnerships in low-earth orbit Mariana Mazzucato1,2 and Douglas K.R. Robinson 1,3 * 1 Institute for Innovation and Public Purpose, University College London, UK 2 Science Policy Research Unit (SPRU), University of Sussex, UK 3 Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), CNRS-INRA-ESIEE- UPEM, Université Paris-Est Marne-la-Vallée, France * Corresponding author : [email protected] Abstract A recent report from NASA’s office of the chief technologist positions a self-sustained “low-earth-orbit ecosystem” as a desirable objective for NASA’s human spaceflight policy and linking to its larger aims of deeper exploration of the solar system. The report follows a wave of mission shifts and space policy directives which emphasize that the private sector should be given more power and receive public agency financial support to stimulate space services. To understand how US space innovation activities are changing, and to be able to make assessments and policy recommendations, we use an innovation ecosystems approach to help understand the types of relationships between actors in low-earth-orbit and to determine the ramifications for US space policy. Our findings reveal four new forms of relationships between NASAA and other parties in the emerging innovation ecosystem and we discuss how these lead to policy challenges for NASA as a mission-oriented public agency with the new additional objective of creating an economic zone in orbit. 1. Introduction Historically, NASA’s mission-oriented programs for innovation have been driven by security concerns and by the need for maintaining technical leadership over other nations. -
Space Policy Directive 1 New Shepard Flies Again 5
BUSINESS | POLITICS | PERSPECTIVE DECEMBER 18, 2017 INSIDE ■ Space Policy Directive 1 ■ New Shepard fl ies again ■ 5 bold predictions for 2018 VISIT SPACENEWS.COM FOR THE LATEST IN SPACE NEWS INNOVATION THROUGH INSIGNT CONTENTS 12.18.17 DEPARTMENTS 3 QUICK TAKES 6 NEWS Blue Origin’s New Shepard flies again Trump establishes lunar landing goal 22 COMMENTARY John Casani An argument for space fission reactors 24 ON NATIONAL SECURITY Clouds of uncertainty over miltary space programs 26 COMMENTARY Rep. Brian Babin and Rep. Ami Ber We agree, Mr. President,. America should FEATURE return to the moon 27 COMMENTARY Rebecca Cowen- 9 Hirsch We honor the 10 Paving a clear “Path” to winners of the first interoperable SATCOM annual SpaceNews awards. 32 FOUST FORWARD Third time’s the charm? SpaceNews will not publish an issue Jan. 1. Our next issue will be Jan. 15. Visit SpaceNews.com, follow us on Twitter and sign up for our newsletters at SpaceNews.com/newsletters. ON THE COVER: SPACENEWS ILLUSTRATION THIS PAGE: SPACENEWS ILLUSTRATION FOLLOW US @SpaceNews_Inc Fb.com/SpaceNewslnc youtube.com/user/SpaceNewsInc linkedin.com/company/spacenews SPACENEWS.COM | 1 VOLUME 28 | ISSUE 25 | $4.95 $7.50 NONU.S. CHAIRMAN EDITORIAL CORRESPONDENTS ADVERTISING SUBSCRIBER SERVICES Felix H. Magowan EDITORINCHIEF SILICON VALLEY BUSINESS DEVELOPMENT DIRECTOR TOLL FREE IN U.S. [email protected] Brian Berger Debra Werner Paige McCullough Tel: +1-866-429-2199 Tel: +1-303-443-4360 [email protected] [email protected] [email protected] Fax: +1-845-267-3478 +1-571-356-9624 Tel: +1-571-278-4090 CEO LONDON OUTSIDE U.S. -
Global Exploration Roadmap
The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System. -
NASA's Changing Approach to Public-Private Partnerships in Low-Earth Orbit
Co-creating and directing Innovation Ecosystems? NASA’s changing approach to public-private partnerships in low-earth orbit Mariana Mazzucato, Douglas K. R. Robinson To cite this version: Mariana Mazzucato, Douglas K. R. Robinson. Co-creating and directing Innovation Ecosystems? NASA’s changing approach to public-private partnerships in low-earth orbit. Technological Forecast- ing and Social Change, Elsevier, 2017, 10.1016/j.techfore.2017.03.034. hal-01703940 HAL Id: hal-01703940 https://hal.archives-ouvertes.fr/hal-01703940 Submitted on 3 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Please cite as: Mazzucato, M., & Robinson, D. K. (2018). Co-creating and directing Innovation Ecosystems? NASA's changing approach to public-private partnerships in low-earth orbit. Technological Forecasting and Social Change, 136, 166-177. Co-creating and directing Innovation Ecosystems? NASAs changing approach to public-private partnerships in low-earth orbit Mariana Mazzucato1,2 and Douglas K.R. Robinson 1,3 * 1 Institute for Innovation and Public Purpose, -
Testimony of Mr. Jeffrey Manber Chief Executive Officer, Nanoracks LLC
Testimony of Mr. Jeffrey Manber Chief Executive Officer, NanoRacks LLC before the Senate Committee on Commerce, Science and Transportation Subcommittee on Space, Science, and Competitiveness Thursday, July 13, 2017 Chairman Cruz, Ranking Member Markey, and other distinguished members of the Space, Science, and Competitiveness subcommittee, thank you for giving me the opportunity to return to this room to testify before Congress once again. I look forward to discussing with you the challenges we face at my company NanoRacks, and within the larger commercial space industry, in seeking to develop a robust, American-style, service-based economy in space. We seek a marketplace that will realize multiple commercial space stations, in multiple orbits – within near and deep space, serving both traditional and unique customers from around the world. Since my visit before this subcommittee in April of 2014, NanoRacks has continued to grow into a commercial space station company via greater utilization of the International Space Station and other platforms. In the past three years we have taken on dozens of new customers, ranging from high schools you represent, to multiple U.S. agencies, other members of the commercial space industry and even foreign governments. To date, NanoRacks has brought over 550 research projects to the Space Station, including approximately 180 satellites, many of which are educational-based experiments representing schools throughout the country. All of this has been done with no direct NASA funding. We are a company that lives on our customers and the revenue generated from our ability to bring payloads and provide services to the Space Station. -
Spaceflight a British Interplanetary Society Publication
SpaceFlight A British Interplanetary Society publication Volume 60 No.8 August 2018 £5.00 The perils of walking on the Moon 08> Charon Tim Peake 634072 Russia-Sino 770038 9 Space watches CONTENTS Features 14 To Russia with Love Philip Corneille describes how Russia fell in love with an iconic Omega timepiece first worn by NASA astronauts. 18 A glimpse of the Cosmos 14 Nicholas Da Costa shows us around the Letter from the Editor refurbished Cosmos Pavilion – the Moscow museum for Russian space achievements. In addition to the usual mix of reports, analyses and commentary 20 Deadly Dust on all space-related matters, I am The Editor looks back at results from the Apollo particularly pleased to re- Moon landings and asks whether we are turning introduce in this month’s issue our a blind eye to perils on the lunar surface. review of books. And to expand that coverage to all forms of 22 Mapping the outer limits media, study and entertainment be SpaceFlight examines the latest findings it in print, on video or in a concerning Charon, Pluto’s major satellite, using 18 computer game – so long as it’s data sent back by NASA's New Horizons. related to space – and to have this as a regular monthly contribution 27 Peake Viewing to the magazine. Rick Mulheirn comes face to face with Tim Specifically, it is gratifying to see a young generation stepping Peake’s Soyuz spacecraft and explains where up and contributing. In which this travelling display can be seen. regard, a warm welcome to the young Henry Philp for having 28 38th BIS Russia-Sino forum provided for us a serious analysis Brian Harvey and Ken MacTaggart sum up the of a space-related computer game latest Society meeting dedicated to Russian and which is (surprisingly, to this Chinese space activities. -
Space Activities 2018
Space Activities in 2018 Jonathan McDowell [email protected] 2019 Feb 20 Rev 1.4 Preface In this paper I present some statistics characterizing astronautical activity in calendar year 2018. In the 2014 edition of this review, I described my methodological approach and some issues of definitional ambguity; that discussion is not repeated here, and it is assumed that the reader has consulted the earlier document, available at http://planet4589.org/space/papers/space14.pdf (This paper may be found as space18.pdf at the same location). Orbital Launch Attempts During 2018 there were 114 orbital launch attempts, with 112 reaching orbit. Table 1: Orbital Launch Attempts 2009-2013 2014 2015 2016 2017 2018 Average USA 19.0 24 20 22 30 31 Russia 30.2 32 26 17 19 17 China 14.8 16 19 22 18 39 Europe 11 12 11 11 11 Japan 4 4 4 7 6 India 4 5 7 5 7 Israel 1 0 1 0 0 N Korea 0 0 1 0 0 S Korea 0 0 0 0 0 Iran 0 1 0 1 0 New Zealand 0 0 0 0 3 Other 9 10 13 13 16 Total 79.0 92 87 85 91 114 The Arianespace-managed Soyuz launches from French Guiana are counted as European. Electron is licensed in the USA but launched from New Zealand territory. However, in late 2018 New Zealand registered the upper stages from the Jan 2018 Electron launch with the UN. Based on this, in rev 1.4 of this document I am changing Electron to count as a New Zealand launch vehicle. -
2Nd Annual ISS Research and Development Conference
2nd Annual ISS Research and Development Conference Discoveries, Applications and Opportunities July 16-18, 2013 Denver Marriott City Center 1701 California Street Denver, Colorado 80202 www.iss -casis.org www.astronautical.org 2nd Annual ISS Research and Development Conference July 16-18, 2013 Denver Marriott City Center, 1701 California Street, Denver, Colorado 80202 Organized by the American Astronautical Society in cooperation with the Center for the Advancement of Science in Space (CASIS) and NASA Sponsored by: Gold Sponsor Luncheon Sponsor Media Sponsor The International Space Station (ISS) – Scientific Laboratory Technology Testbed Orbiting Outpost Galactic Observatory Innovation Engine Student Inspiration. This conference focuses on ISS Research and Development — Discoveries in Microgravity Science; Discoveries in Space Science, Earth Science, Engineering and Education; Applications Benefitting Earth; Applications Enabling Exploration; and Opportunities. Plenary sessions will highlight major results and pathways to future opportunities. Organizations managing and funding research on ISS, including the ISS National Laboratory and NASA programs, will provide overviews of upcoming opportunities. Parallel technical sessions will provide tracks for scientists to be updated on significant accomplishments to date within their disciplines. A workshop on July 18 will help new users take this information and develop their own ideas for experiments using this unique laboratory. Potential ISS users who attend will learn: “What can I do on the ISS? How can I do it?” This is the only annual gathering offering perspectives on the full breadth of research and technology development on the ISS – one stop for understanding the full suite of opportunities available now. Page 2 Conference Technical Co-Chairs Dr. David B. -
Space-2014-Final-Program.Pdf
4–7 AUGUST 2014 SAN DIEGO, CA CONNECTING, PROTECTING, AND ENHANCING A GLOBAL SOCIETY FINAL PROGRAM www.aiaa-space.org #aiaaSpace 14-365 Executive Steering Committee AIAA SPACE 2014 Welcome The members of the Executive Steering Committee welcome you to the AIAA Space and Astronautics Forum and Exposition (SPACE 2014) with great excitement. This year’s event comes at a time when the political and economic landscape is little changed from last year: budgets are still tight, political support for our endeavors still wanes, and James H. Crocker Lt Gen (Ret) Larry conflicting visions for the future of space are evolving from all corners. But, against this Lockheed Martin D. James unsettled backdrop, we see new players emerging, new business models evolving, and a Space Systems NASA Jet Propulsion new commitment to furthering exploration of space growing. It is with these factors in Laboratory mind that we have developed the program for AIAA SPACE 2014. By participating in AIAA SPACE 2014, you will engage with leaders from government, industry and academia, discussing the global and national outlook for human space exploration, commercial opportunities, space science, research, and technology, and the utilization of space for transportation, security, and weather monitoring. These critical discussions will underpin our theme of “Connecting, Gregory Jones David King Protecting, and Enhancing a Global Society,” examining each element through Orbital Sciences Dynetics, Inc. the factors that drive every successful space mission: Leadership, Innovation, and Technology. You will find those plenary themes integrated into our panel and technical sessions, allowing deeper dives into all aspects of space exploration, including operations, robotics and architectures, systems and engineering, and much, much more. -
Introduction
INTRODUCTION This publication consists of 11 selected papers from workshops organized by the United Nations Office for Outer Space Affairs, within the framework of the Programme on Space Applications in 2004. The Programme on Space Applications was established in 1971, with one of its main objectives to further general knowledge and experiences in the field of space technology between developed and developing countries. The Programme organizes around ten workshops, seminars and training courses on an annual basis for students and professionals from developing countries with the aim of increasing local capabilities in space technologies, thus helping to promote the peaceful use of outer space, in accordance with United Nations goals and principles. These activities bring together professionals from developed and developing countries and allow for an exchange of information in several space-related fields, including telecommunications, remote sensing and satellite applications, global environment and land resources management and international space regulations. This volume of “Seminars of the United Nations Programme on Space Applications” is the sixteenth publication in an annual series that began in 1989. The selected papers discuss a variety of science policy issues and are published in the language of submission. -iii- CONTENTS Introduction ............................................................................................................iii I. Application-based themes Space-based Data: Between Pure Science and Down-to-Earth -
Session 1 – SEGMENTED ARCHITECTURES/DISTRIBUTED SYSTEMS
Session 1 – SEGMENTED ARCHITECTURES/DISTRIBUTED SYSTEMS SAR Satellite Mission Analysis and Implementation with Along-Track Formation Flying - IAA-LA2-01-01 Leonardo Cappuccio*; J. Lugo; P. Weder / INVAP *[email protected] Over the last few years, there has been a definite trend in the satellite industry that shows distributed mission concepts being increasingly considered in satisfying a vast diversity of needs. Some of the distributed missions are designed to fulfill specific goals which would not be possible to accomplish with monolithic satellite missions. Others take advantage of the new distributed scenarios to further optimize previously existing systems. A particular case is the utilization of the distributed concept to enhance some capabilities of satellite Synthetic Aperture Radar (SAR) missions. In this context, an along-track flying formation composed of two polarimetric satellites is introduced, as a feasible alternative to single satellite SAR. This new approach is driven by a reduction of size and mass per satellite, making them suitable payloads for less expensive launch services. As an additional advantage, a supposed critical failure in one of the satellites would not imply the end of the whole mission, but only a degradation of the achieved performance. Replacement of a damaged satellite may also be considered, since it would represent a reduced fraction of the overall mission cost. Another interesting fact is that multiple mission phases, each with different formation geometries, could be possible as well, so that the same system could also be used, for example, in across-track configuration. The segmented architecture SAR presented in this work is possible because it relies on the reception of the echo information from two independent phase centers, one per satellite.