Lessons from the Pandemic on the Value of Research Infrastructure Laurence S

Total Page:16

File Type:pdf, Size:1020Kb

Lessons from the Pandemic on the Value of Research Infrastructure Laurence S Roope et al. Health Res Policy Sys (2021) 19:54 https://doi.org/10.1186/s12961-021-00704-2 COMMENTARY Open Access Lessons from the pandemic on the value of research infrastructure Laurence S. J. Roope1,2* , Paolo Candio1,2, Vasiliki Kiparoglou2,3, Helen McShane2,4, Raymond Duch5 and Philip M. Clarke1,2,6 Abstract The COVID-19 pandemic has shed a spotlight on the resilience of healthcare systems, and their ability to cope ef- ciently and efectively with unexpected crises. If we are to learn one economic lesson from the pandemic, arguably it is the perils of an overfocus on short-term allocative efciency at the price of lack of capacity to deal with uncertain future challenges. In normal times, building spare capacity with ‘option value’ into health systems may seem inef- cient, the costs potentially exceeding the benefts. Yet the fatal weakness of not doing so is that this can leave health systems highly constrained when dealing with unexpected, but ultimately inevitable, shocks—such as the COVID-19 pandemic. In this article, we argue that the pandemic has highlighted the potentially enormous option value of bio- medical research infrastructure. We illustrate this with reference to COVID-19 response work supported by the United Kingdom National Institute for Health Research Oxford Biomedical Research Centre. As the world deals with the fallout from the most serious economic crisis since the Great Depression, pressure will soon come to review government expenditure, including research funding. Developing a framework to fully account for option value, and understand- ing the public appetite to pay for it, should allow us to be better prepared for the next emerging problem. Keywords: Option value, Research funding, Research infrastructure, Resilience Main text insurance, investing in spare capacity for emergency ser- Te coronavirus disease 2019 (COVID-19) pandemic has vices may seem inefcient in the short term, but has clear shed a spotlight on the resilience of healthcare systems, option value due to the ability it provides to respond to and their ability to cope efciently and efectively with uncertain emergencies. unexpected crises. If we are to learn one economic lesson Te concept of option value has evolved into two broad from the pandemic, arguably it is the perils of an overfo- separate, though closely related, versions. One version, cus on short-term allocative efciency at the price of lack sometimes referred to as ‘quasi-option value’, emerged of capacity to deal with uncertain future challenges. mainly from the literature on environmental economics In a seminal study, Weisbrod developed the concept and has emphasized the so-called ‘irreversibility efect’ that has evolved into ‘option value’ [1]. Te insight is that of environmental degradation from certain investments there can be value in having access to use of a public good [2–4]. A second version, sometimes referred to as ‘real or service, even if there is uncertainty as to whether or option value’ was motivated mainly by business invest- not it will ever actually be used. For example, rather like ment decisions, where the future value of an irrevers- ible investment is uncertain [5]. Tis version developed *Correspondence: [email protected] the similarity between investment decisions and fnan- 1 Health Economics Research Centre, Nufeld Department of Population cial options. Te two concepts are very similar, with only Health, University of Oxford, Old Road Campus, Headington, Oxford OX3 subtle diferences. Quasi-option value can be character- 7LF, UK Full list of author information is available at the end of the article ized as capturing the value of learning (and so reducing © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Roope et al. Health Res Policy Sys (2021) 19:54 Page 2 of 4 uncertainty) while preserving options; real option value Social Care, is to translate basic scientifc developments captures the value of preserving options, conditional and laboratory research into clinical benefts and the on learning [6]. Common to both concepts is that irre- clinical setting. It is one of 20 BRCs in England to have versibility of decisions, in the sense of removing future received funding during 2017–2022, following a competi- options, together with uncertainty over the consequences tive bidding process. It is divided into 20 themes and four of irreversibility, adds to the value of preservation [6]. In clusters: Precision Medicine; Technology and Big Data; this article, in contrast to considering investment deci- Immunity and Infection; and Chronic Diseases. Its total sions that may irreversibly erode option value, we will funding during 2017–2022 comprises around £114 m. consider the option value that investment in a public In contrast to funding granted to conduct specifc good can provide. studies (which cannot generally be diverted), research Te pandemic has presented some obvious examples infrastructure funding has the fexibility to facilitate of goods with major option value. Many countries have researchers to respond quickly and efectively to uncer- struggled, for example, with shortages of personal pro- tain major health issues as they arise, allowing pilot stud- tective equipment, health professionals, intensive care ies to be undertaken while seeking dedicated funding. In unit beds and mechanical ventilators—not to mention the case of COVID-19, the enabling nature of research capacity to test for the virus [7]. In the case of ventilators, infrastructure funding meant that some funding could be there is evidence that the problem was not necessarily repurposed at short notice to tackle the emergency. Tus, shortage of actual numbers, but rather a lack of infor- a number of research groups were able to rapidly divert mation infrastructure [8]. In the United Kingdom, in the resources from existing projects to address an emerg- frst wave of the pandemic, occupancy of beds compat- ing issue. Subsequently, many received signifcant funds ible with mechanical ventilation never exceeded 62% from other sources, but without the initial infrastructure at the national level, yet 30% of hospitals across Eng- support critical time would have been lost. Further, data land reached full saturation at some point [8]. Investing infrastructure, such as NHS DigiTrials [15], has allowed in infrastructure that makes real-time bed occupancy rapid analysis by having a system that routinely links data available to front-line workers could have enabled administrative data to outcomes of participants in clini- nearby hospitals to ease pressure on those exceeding cal trials. recommended bed occupancy. In normal times, build- Quantifying the value of research in general [16], and ing capacity in such ways may seem inefcient, the costs research infrastructure in particular, is a difcult multi- potentially exceeding the benefts. Yet the fatal weak- dimensional and intertemporal problem that is gaining ness of not adopting such strategies is that this can leave increasing attention [17, 18]. Using the Oxford BRC as healthcare systems highly constrained when dealing with an example, we posit that a major overlooked source of unexpected, but ultimately inevitable, shocks—such as value of research funding in general, and research infra- the COVID-19 pandemic. While in the last year there structure in particular, is its option value. Specifcally, the have been some extraordinary eforts to expand capac- option value from Oxford BRC funding attributable to ity [9–11], better preparation, including development of COVID-19 could be staggeringly high. Consider frst the infrastructure that would make capacity available when prospect of the Oxford vaccine making a substantial con- needed, would have saved many lives as well as, in the tribution towards ending the pandemic. Tis now seems long run, being more efcient economically. likely given that it has been found efective in Phase II/ We argue that a less obvious—but perhaps no less III trials [19] and is substantially cheaper and more eas- important—lesson from the pandemic on infrastructure ily stored than Pfzer and Moderna’s efective mRNA is on the option value of research. At the University of vaccines [20]. Te International Monetary Fund (IMF) Oxford, for example, researchers working on high-profle has estimated that COVID-19 will decrease world eco- projects, such as the Oxford vaccine [12], the RECOV- nomic output by a total US$ 11 trillion in 2020 and 2021 ERY (Randomized Evaluation of COVID-19 Terapy) [21]. Tis amounts to US$ 458 billion a month. A simple trial [13] and the Ofce for National Statistics (ONS) calculation suggests that if BRC infrastructure sped up Coronavirus Infection Survey [14], have been supported the development of an efective vaccine by just 1 day, the by the National Institute for Health Research (NIHR) value to the global economy could be up to US$ 15 bil- Oxford Biomedical Research Centre (Oxford BRC). lion.
Recommended publications
  • (MGH) COVID-19 Treatment Guidance
    Version 8.0 4/28/2021 10:00AM © Copyright 2020 The General Hospital Corporation. All Rights Reserved. Massachusetts General Hospital (MGH) COVID-19 Treatment Guidance This document was prepared (in March, 2020-April, 2021) by and for MGH medical professionals (a.k.a. clinicians, care givers) and is being made available publicly for informational purposes only, in the context of a public health emergency related to COVID-19 (a.k.a. the coronavirus) and in connection with the state of emergency declared by the Governor of the Commonwealth of Massachusetts and the President of the United States. It is neither an attempt to substitute for the practice of medicine nor as a substitute for the provision of any medical professional services. Furthermore, the content is not meant to be complete, exhaustive, or a substitute for medical professional advice, diagnosis, or treatment. The information herein should be adapted to each specific patient based on the treating medical professional’s independent professional judgment and consideration of the patient’s needs, the resources available at the location from where the medical professional services are being provided (e.g., healthcare institution, ambulatory clinic, physician’s office, etc.), and any other unique circumstances. This information should not be used to replace, substitute for, or overrule a qualified medical professional’s judgment. This website may contain third party materials and/or links to third party materials and third party websites for your information and convenience. Partners is not responsible for the availability, accuracy, or content of any of those third party materials or websites nor does it endorse them.
    [Show full text]
  • Progress in the Development of Potential Therapeutics and Vaccines Against COVID-19 Pandemic
    Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 5 Issue 7 July 2021 Review Article Progress in the Development of Potential Therapeutics and Vaccines against COVID-19 Pandemic Abhishek Kumar Yadav, Shubham Kumar and Vikramdeep Monga* Received: May 02, 2021 Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, Published: June 09, 2021 India © All rights are reserved by Vikramdeep *Corresponding Author: Vikramdeep Monga, Department of Pharmaceutical Monga., et al. Chemistry, ISF College of Pharmacy, Moga, Punjab, India. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 or coronavirus disease 2019 and the same has been declared as a global pandemic by WHO which marked the third introduction of a virulent coronavirus into human society. This a threat to human life worldwide. Considerable efforts have been made for developing effective and safe drugs and vaccines against is a highly pathogenic human coronavirus in which pneumonia of unknown origin was identified in China in December 2019 and is SARS-CoV-2. The current situation and progress in the development of various therapeutic candidates including vaccines in preclini- cal and clinical studies have been described in the manuscript. Until now, many people have been infected with this lethal virus, and a lot of people have died from this COVID-19. This viral disease spreads by coming in contact with an infected person. Understand- ing of SARS-CoV-2 is growing in relation to its epidemiology, virology, and clinical management strategies. Till date, very few drugs or vaccines have been developed or approved for the treatment of this deadly disease of COVID-19 and many candidates are under the clinical development pipeline.
    [Show full text]
  • Impact of SARS-Cov-2 Variant on the Severity of Maternal Infection and Perinatal Outcomes: Data from the UK Obstetric Surveillan
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.22.21261000; this version posted July 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Impact of SARS-CoV-2 variant on the severity of maternal infection and perinatal outcomes: Data from the UK Obstetric Surveillance System national cohort. Nicola Vousden PhD1, Rema Ramakrishnan PhD1, Kathryn Bunch MA1, Edward Morris MD2, Nigel Simpson MBBS3, Christopher Gale PhD4, Patrick O’Brien MBBCh,2,5, Maria Quigley MSc1, Peter Brocklehurst MSc6, Jennifer J Kurinczuk MD1, Marian Knight DPhil1 1National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, UK 2Royal College of Obstetricians and Gynaecologists, London, UK 3Department of Women's and Children's Health, School of Medicine, University of Leeds, UK 4Neonatal Medicine, School of Public Health, Faculty of Medicine, Imperial College London, London, UK 5Institute for Women’s Health, University College London, London, UK 6Birmingham Clinical Trials Unit, Institute of Applied Health Research, University of Birmingham, UK *Corresponding author: Marian Knight National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, UK 01865 289700 [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.07.22.21261000; this version posted July 25, 2021.
    [Show full text]
  • An Examination of COVID-19 Medications' Effectiveness
    healthcare Review An Examination of COVID-19 Medications’ Effectiveness in Managing and Treating COVID-19 Patients: A Comparative Review Mahmoud Al-Masaeed 1,* , Mohammad Alghawanmeh 2, Ashraf Al-Singlawi 3 , Rawan Alsababha 4 and Muhammad Alqudah 1 1 Faculty of Health and Medicine, University of Newcastle, Callaghan 2308, Australia; [email protected] 2 Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan; [email protected] 3 Independent Scholar, Amman 11731, Jordan; [email protected] 4 School of nursing and Midwifery, Western Sydney University, Sydney 2560, Australia; [email protected] * Correspondence: [email protected] Abstract: Background: The review seeks to shed light on the administered and recommended COVID- 19 treatment medications through an evaluation of their efficacy. Methods: Data were collected from key databases, including Scopus, Medline, Google Scholar, and CINAHL. Other platforms included WHO and FDA publications. The review’s literature search was guided by the WHO Citation: Al-Masaeed, M.; solidarity clinical trials for COVID-19 scope and trial-assessment parameters. Results: The findings Alghawanmeh, M.; Al-Singlawi, A.; indicate that the use of antiretroviral drugs as an early treatment for COVID-19 patients has been Alsababha, R.; Alqudah, M. An useful. It has reduced hospital time, hastened the clinical cure period, delayed and reduced the Examination of COVID-19 need for mechanical and invasive ventilation, and reduced mortality rates. The use of vitamins, Medications’ Effectiveness in minerals, and supplements has been linked to increased immunity and thus offering the body a Managing and Treating COVID-19 fighting chance. Nevertheless, antibiotics do not correlate with improving patients’ wellbeing and Patients: A Comparative Review.
    [Show full text]
  • Official Report of This Meeting
    COVID-19 Committee Thursday 18 February 2021 Session 5 © Parliamentary copyright. Scottish Parliamentary Corporate Body Information on the Scottish Parliament’s copyright policy can be found on the website - www.parliament.scot or by contacting Public Information on 0131 348 5000 Thursday 18 February 2021 CONTENTS Col. CITIZENS PANEL ................................................................................................................................................ 5 SUBORDINATE LEGISLATION............................................................................................................................. 26 Personal Protective Equipment (Temporary Arrangements) (Coronavirus) (Scotland) Regulations 2021 (SSI 2021/50) ............................................................................................................. 26 Health Protection (Coronavirus) (Restrictions and Requirements) (Local Levels) (Scotland) Amendment (No 16) Regulations 2021 [Draft] ........................................................................................ 26 COVID-19 COMMITTEE 6th Meeting 2021, Session 5 CONVENER *Donald Cameron (Highlands and Islands) (Con) DEPUTY CONVENER Monica Lennon (Central Scotland) (Lab) COMMITTEE MEMBERS *Willie Coffey (Kilmarnock and Irvine Valley) (SNP) *Maurice Corry (West Scotland) (Con) *Annabelle Ewing (Cowdenbeath) (SNP) *John Mason (Glasgow Shettleston) (SNP) *Stuart McMillan (Greenock and Inverclyde) (SNP) *Mark Ruskell (Mid Scotland and Fife) (Green) *Beatrice Wishart (Shetland Islands) (LD)
    [Show full text]
  • COVID-Clinical-Update.Pdf
    COVID-19 Update Jorge Mera, MD Whitney Essex, APRN Questions • I have heard that the only thing that will end this pandemic is acquisition of immunity. That means either natural or by vaccination, therefore, in the absence of vaccination, we should be encouraging natural immunity (infection with recovery) rather than advocating avoidance. Any chosen path will result in casualties. however, our current path of avoidance is drawing out the process and hurting our nation. Please comment. • Prescriptions for zithromax and hydroxychloroquine have skyrocketed across the nation. Is there any role for these medications for outpatients, either prophylactically or for treatment? Please also discuss other treatments being advocated such as zinc. Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries • Non-pharmacological interventions (NPI) have been the mainstay for controlling the COVID-19 pandemic. • While NPIs are effective in preventing health systems overload, these long-term measures are likely to have significant adverse economic consequences • Many countries are currently considering to lift the NPIs • Dynamic NPIs, with intervals of relaxed social distancing, may provide a more suitable alternative, • But the ideal frequency and duration of intermittent NPIs, and the ideal “break” when interventions can be temporarily relaxed, remain uncertain • Multivariate prediction model, based on up-to-date transmission and clinical parameters, to simulate outbreak traJectories in 16 countries, from diverse regions and economic categories. • In each country, we then modelled the impacts on intensive care unit (ICU) admissions and deaths over an 18-month period for following scenarios: 1. No intervention 2. Consecutive cycles of mitigation measures followed by a relaxation period 3.
    [Show full text]
  • Ongoing Living Update of Potential COVID-19 Therapeutics: Summary of Rapid Systematic Reviews
    Ongoing Living Update of Potential COVID-19 Therapeutics: Summary of Rapid Systematic Reviews RAPID REVIEW – July 13th 2020. (The information included in this review reflects the evidence as of the date posted in the document. Updates will be developed according to new available evidence) Disclaimer This document includes the results of a rapid systematic review of current available literature. The information included in this review reflects the evidence as of the date posted in the document. Yet, recognizing that there are numerous ongoing clinical studies, PAHO will periodically update these reviews and corresponding recommendations as new evidence becomes available. 1 Ongoing Living Update of Potential COVID-19 Therapeutics: Summary of Rapid Systematic Reviews Take-home messages thus far: • More than 200 therapeutic options or their combinations are being investigated in more than 1,700 clinical trials. In this review we examined 26 therapeutic options. • Preliminary findings from the RECOVERY Trial showed that low doses of dexamethasone (6 mg of oral or intravenous preparation once daily for 10 days) significantly reduced mortality by one- third in ventilated patients and by one fifth in patients receiving oxygen only. The anticipated RECOVERY Trial findings and WHO’s SOLIDARITY Trial findings both show no benefit via use of hydroxychloroquine and lopinavir/ritonavir in terms of reducing 28-day mortality or reduced time to clinical improvement or reduced adverse events. • Currently, there is no evidence of benefit in critical outcomes (i.e. reduction in mortality) from any therapeutic option (though remdesivir is revealing promise as one option based on 2 randomized controlled trials) and that conclusively allows for safe and effective use to mitigate or eliminate the causative agent of COVID-19.
    [Show full text]
  • RECOVERY Protocol V12 (2020-12-16)
    RANDOMISED EVALUATION OF COVID-19 THERAPY (RECOVERY) Background: In early 2020, as this protocol was being developed, there were no approved treatments for COVID-19, a disease induced by the novel coronavirus SARS-CoV-2 that emerged in China in late 2019. The UK New and Emerging Respiratory Virus Threats Advisory Group (NERVTAG) advised that several possible treatments should be evaluated, including Lopinavir-Ritonavir, low-dose corticosteroids, and Hydroxychloroquine (which has now been done). A World Health Organization (WHO) expert group issued broadly similar advice. These groups also advised that other treatments will soon emerge that require evaluation. Eligibility and randomisation: This protocol describes a randomised trial among patients hospitalised for COVID-19. All eligible patients are randomly allocated between several treatment arms, each to be given in addition to the usual standard of care in the participating hospital: No additional treatment vs colchicine vs corticosteroids (children only) vs intravenous immunoglobulin (children only). In a factorial design (in the UK alone), eligible patients are allocated simultaneously to no additional treatment vs convalescent plasma vs synthetic neutralising antibodies (REGN-COV2). Separately, all participants aged 18 years or older will be allocated to either aspirin vs control. The study allows a subsequent randomisation for patients with progressive COVID-19 (evidence of hyper-inflammatory state): No additional treatment vs tocilizumab. For patients for whom not all the trial arms are appropriate or at locations where not all are available, randomisation will be between fewer arms. Adaptive design: The interim trial results will be monitored by an independent Data Monitoring Committee (DMC). The most important task for the DMC will be to assess whether the randomised comparisons in the study have provided evidence on mortality that is strong enough (with a range of uncertainty around the results that is narrow enough) to affect national and global treatment strategies.
    [Show full text]
  • COVID and COVID Vaccine Update
    Friday General Session COVID and COVID Vaccine Update Jason Bowling, MD Associate Professor of Infectious Disease, Medical Director of Infection Control and Hospital Epidemiologist Company UT Health San Antonio San Antonio, Texas Educational Objectives By completing this educational activity, the participant should be better able to: 1. Evaluate the diagnostic challenges surrounding COVID. 2. Assess the risk factors for mild versus severe disease in patients infected with COVID. 3. Assess the rapidly changing treatment landscape for COVID patients with mild to moderate disease. Discuss the mechanism of action, side effects, and adverse events of COVID vaccines and review recommendations regarding COVID vaccination. Speaker Disclosure Dr. Bowling has disclosed that neither he nor members of his immediate family have a relevant financial relationship with an ineligible company. 6 COVID-19 and COVID-19 Vaccine Update Disclosures Jason Bowling, MD, FIDSA Associate Professor of Medicine Medical Director Infection Prevention UH & UTHSA Hospital Epidemiologist, University Hospital • I have no financial disclosures or conflicts of interest to report. • I will discuss medications being used in the context of a clinical trial. 12 Objectives • Analyze the clinical impact of the virology and epidemiology of COVID-19. • Evaluate the diagnostic challenges surrounding COVID-19. • Assess the rapidly changing treatment landscape for COVID-19 patients: outpatients and inpatients. • Discuss the mechanism of action, side effects, and adverse effects of COVID-19 vaccines and review recommendations regarding COVID-19 vaccination. https://coronavirus.jhu.edu/map.html - Accessed 5-19-21 34 San Antonio Metro Health: 5-19-21 56 1 Hospitalized COVID-19 Patients IHME COVID-19 PROJECTIONS: TEXAS University Hospital 5-19-21 COVID-19 (healthdata.org) – Updated 5/19/21 78 Brief SARS-CoV-2 Virology SARS-CoV-2 Pathogenesis • Spike protein binds ACE-2 receptor in human host • ACE-2 receptors .
    [Show full text]
  • Randomized Evaluation of COVID-19 Therapy) Brigid Mary Flanagan, BA, RN, CCRC, MSB
    Clinical Researcher™ The Authority in Ethical, Responsible Clinical Research December 2020 (Volume 34, Issue 10) All contents © 2020 ACRP. All Rights Reserved (The Association of Clinical Research Professionals) 1 | P a g e Clinical Researcher™ Association of Clinical Research Professionals Editor-in-Chief Director, Advertising & Exhibition Sales James Michael Causey Tammy B. Myers, CEM [email protected] [email protected] (703) 253-6274 (703) 254-8112 Managing Editor Media Kit Gary W. Cramer https://acrpnet.org/advertising/ [email protected] (703) 258-3504 For membership questions, contact ACRP at [email protected] or (703) 254-8100. Editorial Advisors for This Issue Suheila Abdul-Karrim, CCRA, CCRT, FACRP (Freelancer) For information on writing for Clinical Staci Horvath, CCRA Researcher, visit (Gradalis, Inc.) https://www.acrpnet.org/resources/clinical- researcher/ or e-mail [email protected]. Stefanie La Manna, PhD, MPH, ARNP, Credit-granting Home Study tests are available FNP-C (Nova Southeastern University) at https://www.acrpnet.org/home-study/, along with downloadable PDFs of the relevant articles Jerry Stein, PhD, ACRP-CP and questions. The test from this issue should be (Summer Creek Consulting, LLC) online in January 2021. 2 | P a g e Clinical Researcher—December 2020 (Volume 34, Issue 10) Table of Contents 4 Executive Director’s Message—A Spring of Hope from Our Winter of Despair Jim Kremidas 6 Chair’s Message—Staying in the Spotlight After the Storm Has Passed Paul Evans, PhD PEER REVIEWED 9 Quality by Design in the RECOVERY Trial (Randomized Evaluation of COVID-19 Therapy) Brigid Mary Flanagan, BA, RN, CCRC, MSB 18 Biobanking and the COVID-19 Pandemic Dr.
    [Show full text]
  • COVID-19: Emerging Trials and Treatments
    Emerging Therapies for CoVID-19 CAPT Ryan Schupbach, PharmD, BCPS, CACP Vice Chair, IHS National Pharmacy & Therapeutics Committee IHS COVID-19 TeleECHO Session September 17, 2020 OBJECTIVES • Identify evidence-based therapies for treatment of CoVID-19 SARS-CoV2 structure • Review clinical trial characteristics of Spike (S) emerging CoVID-19 therapies Envelope (E) Genome RNA Nucleocapsid (N) • Examine the availability and staging of Membrane (M) leading CoVID-19 vaccines Adapted from Jin Y et al. Viruses. 2020 March 7 2 DISCLOSURE STATEMENT Nothing to disclose • I have no financial relationships with commercial entities producing healthcare related products and/or services. 3 Potential Therapies: CoVID-19 • >1000 compounds theorized with potential against COVID-19 • 27 FDA-approved drugs initially identified as candidates (repurposing) • Over 20,000 safety-tested (unmarketed) compounds in FDA Database • 400,000 natural products available; many using supercomputers to identify computational matches (pharmacophore analysis) • Over 1200 clinical trials registered globally since March • Analysis showed 38% of trials had planned enrollment of <100 patients 1. Krogan, N. How COVID-19 Drug Hunters Spot Virus-Fighting Compounds. Scientific American. March 20, 2020. 2. US Food and Drug Administration. FACT SHEET. www.fda.gov/about-fda/fda-basics/fact-sheet-fda-glance 3. Stat-AppliedXL analysis. Data from ClinicalTrials.gov 4 4. Steele Ji. Medical Press. https://medicalxpress.com/news/2020-06-lab-naturally-compounds-potential-covid-.html. June 19, 2020 5 Kupferschmidt K, Cohen J (2020) Race to find COVID-19 treatments accelerates. Science (New York, NY) 367:1412–1413 6 FasterCures. The Milken Institute. © 2020 Milken Institute and First Person.
    [Show full text]
  • Moving Quickly in Pandemics BMJ: First Published As 10.1136/Bmj.M2730 on 9 July 2020
    EDITOR'S CHOICE The BMJ [email protected] Follow Richard on Moving quickly in pandemics BMJ: first published as 10.1136/bmj.m2730 on 9 July 2020. Downloaded from Twitter @rich_hurley Richard Hurley features and debates editor Cite this as: BMJ 2020;370:m2730 http://dx.doi.org/10.1136/bmj.m2730 Speed is of the essence in responding to the covid-19 pandemic. But in Leicester lockdown has been reimposed Published: 09 July 2020 because information was shared too slowly. Local authorities lacked centrally held data to detect a rise in cases and act swiftly. In an editorial this week Mike Gill, Devi Sridhar, and Fiona Godlee describe a “chaotic system” in England that seems to focus on increasing test numbers instead of establishing a local testing strategy designed to contain the virus and save lives.1 They blame the government’s “paternalistic, centralising tendency” and lack of trust in local professionals. Wales shares covid-19 data locally. Scotland’s “zero covid” test, trace, and isolate strategy is built on existing local capacity and locally led tracing, with daily public reports on testing.2 This open, strategic approach, including clear lines of accountability, is working, the editorialists argue. England will see further lockdowns and deaths “without swift and decisive action by those at local and national levels who understand communicable disease control,” they say.1 Information from trials can enable speedy decisions. The rapidly convened RECOVERY trial is currently assessing dexamethasone in children, azithromycin, tocilizumab, and plasma.3 This “platform trial” involves over 175 UK hospitals, 3500 healthcare professionals, and 15% of all hospital patients with covid-19.
    [Show full text]