The Catalogue of Seed Plants in Yunnan Province

Total Page:16

File Type:pdf, Size:1020Kb

The Catalogue of Seed Plants in Yunnan Province The catalogue of seed plants in Yunnan Province Chen Jiahui1*, Deng Tao1, Zhang Daigui2, Yue Jipei1, Zhou Zhuo1, Sun Lu1, Li China Scientific Data Yanbo1, Li Wenqing1, Shi Mingming1, Sun Hang1* Vol.3, No.1, 2018 1. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China; 2. College of Biology and Environmental Sciences, Jishou University, Jishou 416000, P. R. China ARTICLE DOI: * Email: [email protected]; [email protected] 10.11922/csdata.2017.18.zh DATA DOI: Abstract: Species catalogue is the basic biota data of a natural geographical 10.11922/sciencedb.489 region or administrative division, and is the premise of biodiversity research, SUBJECT CATEGORY: Biological sciences conservation and rational utilization. However, due to continuous advances RECEIVED: of plant taxonomy and systematics, as well as different standpoints of September 28, 2017 taxonomists, botanical references have adopted a variety of taxonomic RELEASED: systems and treatments. Species catalogue therefore needs continuous October 27, 2017 updates. This study is based on data collected from taxonomic references PUBLISHED: ranging from monograph, herbarium to field investigation, including Flora February 28, 2018 of Yunnan, Checklist of Yunnan Seed Plants, Flora of China, among others. After rigorous data processing and review, we archived the Catalogue of Seed Plants in Yunnan Province (version 2016). As the most authoritative and accurate data set of seed plants in Yunnan so far, this catalogue is expected to facilitate the research, conservation, and rational utilization of seed plants, providing bases for biodiversity management and relevant policy-making. The data set contains information on 16,064 species, covering 2,392 genera and 253 families of seed plants in Yunnan Province. These include 113 species of gymnosperms (including infraspecies, or 105 species excluding infraspecies) in 25 genera and 9 families, and 15,951 species of angiosperms (including infraspecies, or 14,433 excluding infraspecies) in 2,367 genera and 244 families. The data set consists of four parts of data: family name in Latin, family name in Chinese, scientific name and Chinese name. Keywords: Yunnan; seed plants; catalogue Dataset Profile Title The catalogue of seed plants in Yunnan Province Chen Jiahui, Deng Tao, Zhang Daigui, Le Jipei, Zhou Zhuo, Sun Lu, Li Data authors Yanbo, Li Wenqing, Shi Mingming, Sun Hang Data corresponding Sun Hang ([email protected]); Chen Jiahui - 1 - authors ([email protected]) Geographical scope Yunnan Province (E97°31′~106°12′, N 21°08′~29°15′) Data volume 6.79 MB Data format *.pdf Data service system <http://www.sciencedb.cn/dataSet/handle/489> Cataloguing of Yunnan Biota, Yunnan Provincial Department of Environmental Protection (2016) (530007081508006); Service project of special research institutes of Kunming Institute of Botany, Sources of funding Chinese Academy of Sciences; Plant Big Data Platform and iFlora Project of Kunming Institute of Botany, Chinese Academy of Sciences (KIB2016005). This data set covers 16,064 species of seed plants in 253 families and 2,392 genera (including infraspecies), among which 113 species in 9 families and 25 genera (including infraspecies) are Dataset composition gymnosperms, and 15,951 species in 244 families, 2,367 genera (including infraspecies) are angiosperms. The data set includes information on the plants’ family name in Latin, family name in Chinese, species name in Latin, and species name in Chinese. 1. Introduction Due to its unique geographical location, complex topography and diverse ecological environments, Yunnan Province is home to abundant plants and is known as “Kingdom of the Plants”. Being the intersection zone of the world’s three biodiversity hotspots, namely Eastern Himalaya, Indo-Burma, China’s Southwest Mountains,1–3 the place has attracted extensive attention worldwide. According to the comprehensive biodiversity evaluation criteria proposed by Wan Bentai et al.,4 Yunnan should be ranked among the "abundant". Nationwide, Yunnan is among the top for biodiversity cataloging research, and is an area highly concerned by botanists and environmentalists.5 As biodiversity investigation and research advanced in recent years, numerous new taxa in Yunnan have been discovered and published. While most of them are new species, some are new genera, and some are even elevated to new families according to research advances, such as Borthwickiaceae.6 In recent years, approximately 20 new species in Yunnan were discovered or described each year. With advances in plant taxonomy and systematics, biologists proposed an angiosperm APG system (I-IV) and a new system of gymnosperm based on molecular phylogenetics.7–8 However, debates continue on whether a classification system should be mainly based on molecular or morphological evidence. Meanwhile, due to continuous advances in plant taxonomy, systematics and species cataloging, the scope of families, genera and species are being re-delimited by - 2 - floras such as Flora of Yunnan and Flora of China, which then adopted different plant systems. Varied plant systems and taxonomic treatments are likely to cause inconvenience or even confusion to researchers in life science, agriculture, forestry, medicine, environmental science, as well as to government managers. As plant catalogue is the basis of plant research and conservation, it is important to re-catalogue the plants of Yunnan based on the latest advances on plant taxonomy and systematics. In this study, we integrated the latest advances in plant taxonomy and systematics, consulted taxonomists’ opinions, and re-catalogued the seed plants of Yunnan based on floras such as Flora of China and Flora of Yunnan. A data set of seed plants in Yunnan was compiled – the Catalogue of Seed Plants in Yunnan Province (hereinafter referred to as "CSPY"). 2. Data acquisition and processing method 2.1 Data source The raw data of CSPY were mainly collected from Flora of Yunnan and Checklist of Yunnan Seed Plants. Other sources include: (1) Flora of China, Chinese Seed Plant Dictionary, etc., which recorded plant distribution in Yunnan; (2) latest classification revisions, advances in molecular phylogeny, and new taxa or species discovered in Yunnan since 1984; (3) other publications containing seed plant records in Yunnan, such as local floras, natural reserve biodiversity investigation reports, regional biodiversity monographs (such as The Seed Plants in Subnival Area of Hengduan Mountain), etc.; (4) herbariums of the following institutions: Kunming Institute of Botany, Chinese Academy of Sciences (KUN); Institute of Botany, Chinese Academy of Sciences (PE); Chengdu Institute of Biology, Chinese Academy of Sciences (CDBI); Institute of Life Sciences, Sichuan University (SZ); Northwest Institute of Plateau Biology, Chinese Academy of Sciences (HNWP); Xishuangbanna Botanical Garden (HITBC); Yunnan University (YNKU); Southwest Forestry University (SWFC), etc., and some online databases such as Chinese Virtual Herbarium (CVH, www.cvh.ac.cn), National Specimen Information Infrastructure (NSII, http://www.nsii.org.cn), Chinese Field Herbarium (CFH, http://www.nature-museum.net); and (5) recent field expedition outcomes and expert opinions/advice on specific taxa. We also collected synonyms of the plants’ scientific names not listed in the above-mentioned floras, mainly from Dictionary of Families and Genera of China, The Families and Genera of Angioserms in China: A Comprehensive Review, and other taxonomy-related journals. We also included the name of the species wrongly recorded as distributed in Yunnan and of those unrecorded ones with actual distribution in Yunnan. In addition, we have corrected misspelled names of the species (mainly records from - 3 - Flora of Yunnan, Flora of China, and local floras or monographs) (e.g., Sigesbeckia is misspelled as Siegesbeckia). All of the above-mentioned data have been included for subsequent processing. 2.2 Methods and criteria of data processing (1) Synonym processing We used the following databases for synonym matching and processing: Tropicos (http://www.tropicos.org), The Plant List (http://www.theplantlist.org), Species 2000 China Node (http://www.sp2000.cn/joaen/index.php), and Flora of China (http://www.efloras.org/flora_page.aspx?flora_id=2). We first searched species names against these databases for possible synonyms. We then manually checked all the synonyms and the unmatched names carefully. A full checklist of seed plants in Yunnan was therefore achieved, coupled with a set of advice on anomaly treatment for further expert review. (2) Taxonomic system selection We delimited the scope of family and genus based on the latest achievements in plant taxonomy and systematics, and hence adopted the APG IV system9 for angiosperm, and the Flora of China system for gymnosperm. (3) Expert opinion as the golden rule Considering taxonomists were experts of a specific plant taxon, we tended to value their opinions over others when treating plant species of their specialization. However, reasons were required when they disagreed on our proposed treatments. (4) Treatment of new species recorded in Flora of Yunnan In Flora of Yunnan, some new species were named and described. For these species, we referred to the original description in the flora to decide whether the new species was legitimate or not. All illegitimate species have been removed. (5) Principles for
Recommended publications
  • CAPPARACEAE 1. BORTHWICKIA W. W. Smith, Trans. & Proc. Bot. Soc. Edinburgh 24: 175. 1912
    CAPPARACEAE 山柑科 shan gan ke Zhang Mingli (张明理)1; Gordon C. Tucker2 Shrubs, trees, or woody vines, evergreen (deciduous in some Crateva), with branched or simple trichomes. Stipules spinelike, small, or absent. Leaves alternate or rarely opposite, simple or compound with 3[–9] leaflets. Inflorescences axillary or superaxillary, racemose, corymbose, subumbellate, or paniculate, 2–10-flowered or 1-flowered in leaf axil. Flowers bisexual or sometimes unisex- ual, actinomorphic or zygomorphic, often with caducous bracteoles. Sepals 4(–8), in 1 or 2 whorls, equal or not, distinct or basally connate, rarely outer whorl or all sepals connected and forming a cap. Petals (0–)4(–8), alternating with sepals, distinct, with or with- out a claw. Receptacle flat or tapered, often extended into an androgynophore, with nectar gland. Stamens (4–)6 to ca. 200; filaments on receptacle or androgynophore apex, distinct, inflexed or spiraled in bud; anthers basifixed (dorsifixed in Stixis), 2-celled, introrse, longitudinally dehiscent. Pistil 2(–8)-carpellate; gynophore ± as long as stamens; ovary ovoid and terete (linear and ridged in Borthwickia), 1-loculed, with 2 to several parietal placentae (3–6-loculed with axile placentation in Borthwickia and Stixis); ovules several to many, 2-tegmic; style obsolete or highly reduced, sometimes elongated and slender; stigma capitate or not obvious, rarely 3-branched. Fruit a berry or capsule, globose, ellipsoid, or linear, with tough indehiscent exocarp or valvately dehiscent. Seeds 1 to many per fruit, reniform to polygonal, smooth or with various sculpturing; embryo curved; endosperm small or absent. About 28 genera and ca. 650 species: worldwide in tropical, subtropical, and a few in temperate regions; four genera and 46 species (10 en- demic) in China.
    [Show full text]
  • Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae
    fpls-08-01050 June 16, 2017 Time: 14:0 # 1 ORIGINAL RESEARCH published: 20 June 2017 doi: 10.3389/fpls.2017.01050 Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae Yuan Huang1,2†, Jun Wang3†, Yongping Yang4*, Chuanzhu Fan3* and Jiahui Chen1,4* 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China, 2 School of Life Sciences, Yunnan Normal University, Kunming, China, 3 Department of Biological Sciences, Wayne State Edited by: University, Detroit, MI, United States, 4 Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Fulvio Cruciani, Chinese Academy of Sciences, Kunming, China Sapienza Università di Roma, Italy Reviewed by: Chloroplast genomes of plants are highly conserved in both gene order and gene Tae-Jin Yang, Seoul National University, content. Analysis of the whole chloroplast genome is known to provide much more South Korea informative DNA sites and thus generates high resolution for plant phylogenies. Yuanhu Xuan, Here, we report the complete chloroplast genomes of three Salix species in family Shenyang Agricultural University, China Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is Angelica Cibrian, generally consistent with previous studies but resolved with higher statistical support. Center for Research and Advanced Studies of the National Polytechnic Incongruences of phylogeny, however, are observed in genus Populus, which most Institute (CINVESTAV), Mexico likely results from homoplasy. By comparing three Salix chloroplast genomes with the *Correspondence: published chloroplast genomes of other Salicaceae species, we demonstrate that the Jiahui Chen synteny and length of chloroplast genomes in Salicaceae are highly conserved but [email protected] Yongping Yang experienced dynamic evolution among species.
    [Show full text]
  • Poplars and Willows: Trees for Society and the Environment / Edited by J.G
    Poplars and Willows Trees for Society and the Environment This volume is respectfully dedicated to the memory of Victor Steenackers. Vic, as he was known to his friends, was born in Weelde, Belgium, in 1928. His life was devoted to his family – his wife, Joanna, his 9 children and his 23 grandchildren. His career was devoted to the study and improve- ment of poplars, particularly through poplar breeding. As Director of the Poplar Research Institute at Geraardsbergen, Belgium, he pursued a lifelong scientific interest in poplars and encouraged others to share his passion. As a member of the Executive Committee of the International Poplar Commission for many years, and as its Chair from 1988 to 2000, he was a much-loved mentor and powerful advocate, spreading scientific knowledge of poplars and willows worldwide throughout the many member countries of the IPC. This book is in many ways part of the legacy of Vic Steenackers, many of its contributing authors having learned from his guidance and dedication. Vic Steenackers passed away at Aalst, Belgium, in August 2010, but his work is carried on by others, including mem- bers of his family. Poplars and Willows Trees for Society and the Environment Edited by J.G. Isebrands Environmental Forestry Consultants LLC, New London, Wisconsin, USA and J. Richardson Poplar Council of Canada, Ottawa, Ontario, Canada Published by The Food and Agriculture Organization of the United Nations and CABI CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © FAO, 2014 FAO encourages the use, reproduction and dissemination of material in this information product.
    [Show full text]
  • Nova Scotia Provincial Status Report on Hoary Willow Salix Candida
    i Nova Scotia Provincial Status Report on Hoary Willow Salix candida Flűeggé ex Willd. prepared for The Nova Scotia Species at Risk Working Group by Ruth E. Newell E.C. Smith Herbarium K.C. Irving Environmental Science Centre Acadia University Wolfville, Nova Scotia B4P 2R6 Funding provided by the Nova Scotia Species at Risk Conservation Fund Submitted December 16th, 2010 ii EXECUTIVE SUMMARY Wildlife Species Description and Significance Salix candida (Hoary Willow) is a low, deciduous, dioecious shrub, densely white woolly on current season’s twigs and lower leaf surfaces. The mature medial leaves are narrowly elliptic or oblanceolate, usually at least 4x as long as wide. Leaf margins are entire and slightly to strongly rolled under. Flowering occurs concurrently with leaf emergence. Female flowers have stalks 0.1 to 1.2 mm long and tomentose pistils. The anthers of male flowers are purple later changing to yellow. The fruit is a tomentose, pear-shaped capsule. Reproduction is both sexual and asexual by layering. Salix candida is an extremely rare species in Nova Scotia occurring in a rare habitat type i.e., rich, calcareous fens or marshes. Distribution In Nova Scotia, Hoary Willow occurs within the Black River system at the northwest end of Lake Ainslie, Inverness County, Cape Breton Island. Here it is known from four rich calcareous fens in close proximity to the river floodplain plus a single plant in a calcareous graminoid marsh. Field work failed to confirm the presence of Salix candida in Huntington, Cape Breton County - a record based on a herbarium specimen from Cape Breton University herbarium.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Assessment of Nutrient Composition and Antioxidant Activity of Some Popular Underutilized Edible Crops of Nagaland, India
    Natural Resources, 2021, 12, 44-58 https://www.scirp.org/journal/nr ISSN Online: 2158-7086 ISSN Print: 2158-706X Assessment of Nutrient Composition and Antioxidant Activity of Some Popular Underutilized Edible Crops of Nagaland, India Chitta Ranjan Deb* , Neilazonuo Khruomo Department of Botany, Nagaland University, Lumami, India How to cite this paper: Deb, C.R. and Abstract Khruomo, N. (2021) Assessment of Nu- trient Composition and Antioxidant Activ- In Nagaland ~70% of population lives in rural areas and depends on forest ity of Some Popular Underutilized Edible products for livelihood. Being part of the biodiversity hotspot, state is rich in Crops of Nagaland, India. Natural Resources, biodiversity. The present study was an attempt made to understand the nutri- 12, 44-58. https://doi.org/10.4236/nr.2021.122005 tional properties of 22 popular underutilized edible plants (UEP) Kohima, Phek, Tuensang districts. Results revealed moisture content of 22 studied Received: December 25, 2020 plants ranged between 4.8 to 88.15 g/100g, while protein content varied be- Accepted: February 23, 2021 tween 0.00269 - 0.773 g/100g with highest in Terminalia chebula (0.773 g/100g) Published: February 26, 2021 fruit while lowest protein content was in Setaria italica (0.00269 g/100g). To- Copyright © 2021 by author(s) and tal carbohydrate content was between 0.198 - 5.212 g/100g with highest in Scientific Research Publishing Inc. Setaria italica (5.212 g/100g) and lowest in Juglans regia (0.198 g/100g). Of This work is licensed under the Creative the 22 samples, maximum antioxidant activity was in Terminalia chebula fruits Commons Attribution International License (CC BY 4.0).
    [Show full text]
  • Biogeography and Diversification of Brassicales
    Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0).
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]
  • Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
    Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property.
    [Show full text]
  • Guide to the Willows of Shoshone National Forest
    United States Department of Agriculture Guide to the Willows Forest Service Rocky Mountain Research Station of Shoshone National General Technical Report RMRS-GTR-83 Forest October 2001 Walter Fertig Stuart Markow Natural Resources Conservation Service Cody Conservation District Abstract Fertig, Walter; Markow, Stuart. 2001. Guide to the willows of Shoshone National Forest. Gen. Tech. Rep. RMRS-GTR-83. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 79 p. Correct identification of willow species is an important part of land management. This guide describes the 29 willows that are known to occur on the Shoshone National Forest, Wyoming. Keys to pistillate catkins and leaf morphology are included with illustrations and plant descriptions. Key words: Salix, willows, Shoshone National Forest, identification The Authors Walter Fertig has been Heritage Botanist with the University of Wyoming’s Natural Diversity Database (WYNDD) since 1992. He has conducted rare plant surveys and natural areas inventories throughout Wyoming, with an emphasis on the desert basins of southwest Wyoming and the montane and alpine regions of the Wind River and Absaroka ranges. Fertig is the author of the Wyoming Rare Plant Field Guide, and has written over 100 technical reports on rare plants of the State. Stuart Markow received his Masters Degree in botany from the University of Wyoming in 1993 for his floristic survey of the Targhee National Forest in Idaho and Wyoming. He is currently a Botanical Consultant with a research emphasis on the montane flora of the Greater Yellowstone area and the taxonomy of grasses. Acknowledgments Sincere thanks are extended to Kent Houston and Dave Henry of the Shoshone National Forest for providing Forest Service funding for this project.
    [Show full text]
  • Propagating Native Salicaceae for Afforestation and Restoration in New York City’S Five Boroughs
    REFEREED RESEARCH Propagating native Salicaceae for afforestation and restoration in New York City’s five boroughs Ronald S Zalesny Jr, Richard A Hallett, Nancy Falxa-Raymond, Adam H Wiese, and Bruce A Birr ABSTRACT Identifying superior Salicaceae genotypes for afforestation and restoration activities in urban areas can greatly increase the provision of ecosystem services for long-term ecological sustainability. To address this opportunity, we collected native Populus L. (Salicaceae) and Salix L. (Salicaceae) scions from 3 sites on Staten Island, New York, and conducted a propagation study followed by greenhouse and nursery scale-up activities. Our objectives were to: 1) identify hormone treatments that enhanced root initiation and early growth of the native genotypes; 2) incorporate Salicaceae prop - agation methodology into phyto-recurrent selection; and 3) establish a population of genotypes that can be used for afforestation and restoration efforts throughout New York City. For Objective 1, we tested the response of 112 native genotypes and 11 common clones to 3 root hormone treatments (36-h water soak plus 12-h soak in 1% IBA + 0.5% NAA; 48-h water soak plus powder dip in 0.3% IBA; 48-h water soak plus 5-s dip soak in 20% IBA) and a water soak control. After 75 d of growth, the control treatment was more effective than the 0.3% IBA powder dip and as effective as the other treatments. Given broad clonal variation, there is a high probability of selecting genotypes for both afforestation and restoration. Although Salix exhibited greater relative propagation success than Populus , both genera should be used to in - crease overall genetic diversity.
    [Show full text]
  • Cai Thesis.Pdf
    Lianas and trees in tropical forests in south China Lianen en bomen in tropisch bos in zuid China Promotor: Prof. Dr. F.J.J.M. Bongers Persoonlijk hoogleraar bij de leerstoelgroep Bosecologie en bosbeheer Wageningen Universiteit Co-promotor: Prof. Dr. K-F. Cao Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences, Yunnan, China Samenstelling promotiecommissie: Prof. Dr. L.H.W. van der Plas, Wageningen Universiteit Prof. Dr. M.J.A. Werger, Universiteit Utrecht Dr. H. Poorter, Universiteit Utrecht Dr. S.A. Schnitzer, University of Wisconsin-Milwaukee, USA Dit onderzoek is uitgevoerd binnen de C.T. de Wit onderzoeksschool Production Ecology & Resource Conservation (PE&RC), Wageningen Universiteit en Researchcentrum. Lianas and trees in tropical forests in south China Zhi-quan Cai Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. M.J. Kropff, in het openbaar te verdedigen op woensdag 28 maart 2007 des namiddags te 16.00 uur in de Aula Cai, Z-Q (2007) Lianas and trees in tropical forests in south China. PhD thesis, Department of Environmental Sciences, Centre for Ecosystem Studies, Forest Ecology and forest Management Group, Wageningen University, the Netherlands. Keywords: lianas, trees, liana-tree interaction, plant morphology, plant ecophysiology, growth, biodiversity, south China, Xishuangbanna ISBN 978-90-8504-653-0 This study was supported by the National Natural Science Foundation in China (grant no. 30500065) and a sandwich-PhD grant from Wageningen
    [Show full text]