Input by Indian Rivers Into the World Oceans

Total Page:16

File Type:pdf, Size:1020Kb

Input by Indian Rivers Into the World Oceans Proc. lndian Acad. ScL, Vol. 87 A (E & P sciences-z), No.7, July 1978,pp. 77-88, @ printed in India Input by Indian rivers into the world oceans V SUBRAMANIAN School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067 MS received 16 March 1978; revised 31 May 1978 Abstract. The chemical, sediment and total load carried by the major river basins in India-Ganges, Brahmaputra, Indus (Jhelum), Godavari, Krishna, Narmada, Tapti, Mahanadi and Cauvery have been calculated, based partly on new set of data and partly on existing data. There is a significant amount of chemical load transported by all the Indian rivers, and for global mass transfer calculation, these cannot and should not be ignored. The chemical mass transfer during the monsoon is not surpri­ singly small, as would be expected for excess discharge and dilution controlled run­ off. The sediment mass transfer from non-Hirnalyan rivers, all within the same range of magnitude, accounts for less than a tenth of that of the Ganges but during the monsoon, except for Cauvery, all the Indian rivers carry a sediment load of greater than 1000 ppm. The total mass transfer from the Indian subcontinent accounts for 6'5 per cent of the global transfer. Except for the Ganges and the Brahmaputra, the erosion rates are similar for all Indian basins, independent of their size and these rates are agreeable with the conti­ nental earth average. The Ganges-Brahmaputra basin erosion rates are highest on the continental earth. Based on the average rate of denudation of the Indian sub­ continent, the mean elevation of this landmass will be that of the present day mean sea level in 5 million years from now. The average denudation rate of 2'1 cmjl00 years is different from the calculated average sedimentation rate of 6'7 cmjl00 years in the Bay of Bengal suggesting that an accurate erosion rate in the continent is needed to determine sedimentation rate in the oceans. The chemical and sediment mass transfer rates appear to have a logarithmic linear relationship on a global scale, as against the reported negative logarithmic trend for North America alone. Keywords. Mass transfer: Indian rivers; chemical load; sediment load; total load; erosion rate; basin changes. 1. Introduction Continental mass transfer into the oceans in the present day environment need to be understood well for a variety ofreasons: the principal one among them is the possible fluctuation in the mass transfer in the geological past with implications on the evolu­ tion of the oceans, on one hand, and the sedimentary rocks, on the other. The pre­ sently accepted proposition on the constancy of chemical composition of the sea water for the last 600 million years implies similar invariance of the mass transfer over the same period. The sedimentary recycling model, propounded by Garrels and Mackenzie (1971a) depends very much on the uniform rate of continental input into world oceans since Cambrian time; however, Gregor (1970) calculated an erosion rate for the paleozoic period to be nearly four times that for the present day environ­ ment; on the other hand, Garrels and Mackenzie (1971b) calculated a depositional rate which is less than one fourth of paleozoic erosion rate of Gregor. Everi though 77 78 V.Suaramanian sedimentary rocks constitute a very insignificant portion of the total rock mass in the crustal earth, more than 90 per cent of rocks on the surface, the part of the earth intimately associated with weathering, erosion and mass transfer, represent some type of sediments. Hence mass transfer can be thought to involve, recycling of all the recent and ancient sedimentary rocks, whose mass is estimated to be 32 x 10~o kg. Based on the chemical analysis of a number ofmajor rivers in the world, compiled by Livingstone (1963) and data on the suspended sediment transport, compiled by Holeman (1968), Gibbs (1972a) has tabulated chemical and sediment mass transfer for these rivers. There are several limitations to the data compiled by various wor­ kers: First, there is no common agreement among the various set of data probably because of different sources of data; there is no agreement on the average mass trans­ port which is being continuously revised; but the principal deficiency of the existing numbers is the lack of accurate information on a number of Asian drainage basins and the total neglect of basins in Asia which are big enough to be quantitatively significant but whose discharge may not qualify it to be among the -largest basins of the world. To this category belongs basins such as Godavari. As pointed out by Mebeck (1976), middle-size homogenous basins are ideal for the mass transfer studies since in these basins several environmental factors can be well defined. In India, except [or the Ganges and Brahmaputra, all other important basins, namely, Goda­ vari, Mahanadi, Narmada, Tapti, Krishna and Cauvery are middle-size of the order of (1-3)105 km2 basin area and together they add up to half the basin size of Ganges and Brahmaputra. Hence, any mass transfer studies ignoring these second order basins will be quantitatively not reliable; with this limitation in mind, an attempt has been made in this paper to understand the net mass transfer from the entire Indian subcontinent into the world oceans. %. Sampling and source of additional data For the eight major basins in India, water samples were collected at a number of stations. For each basin, one station in the watershed and other in the mouth (for example, Hoshingabad and Broach for Narmada) were chosen. Two litres water samples were collected in polyethylene bottles, pH and alkalinity measured immedi­ ately (pH with Phillips portable pH meter and carbonate alkalinity by micropipette titration techniques), sealed tight and with wax outside and sent to the laboratory. The samples were filtered through millipore 0·45 micron membrane filters to collect the suspended matter and the filtered water was used for elemental analysis. Water samples were collected once during May 1-15 and again during July 15-Aug.. 15, 1977. Chlorinity was measured by AgNOa titration, Na and K by emission mode and Ca and Mg by absorption mode of AAS-l spectrophotometer. S04-2, P04- 3 and silicates were analysed by standard complexation techniques for fresh waters (Golterman 1970) using ECIl spectrophotometer; conductivity was measured with II syntronic direct reading conductivity meter, standardised with 0·1 N KCl solution. In dilute waters such as fresh waters, the conductivity values can be converted to total dissolved salts, by certain multiplication factors or.can be numerically equated to TDS (Davis and Dewiest, 1967). Such conversions were checked with the actual chemical analysis and were used only where the numbers matched; otherwise, the actual chemical.analyses were summed to get TDS. Input by Indian rivers into the world oceans 19 Data for the winter season were taken from the file of Central Soil and Material Research Station, New Delhi. The average values for 1972 to 1976 were taken for calculations. The discharge values and basin areas for the rivers were taken either from Rao (1975) or the Newsletters of the Indian National Committee for IHD (1972-77). Pooling of data from such diverse sources puts some limitationson the interpretation but in this paper a beginning has been made by pooling such data with the ones generated by the author; this is still not satisfactory and interpretations presented here are bound by these limitations. It is further realised here that monthly, preferably daily, sampling will better reflect the natural process but sampling costs and logistics dictate optimisation of fieldwork. It is hoped to refine the data presented here with continued observations during the next few years. As such, interpretations presented in this paper do not represent the last word in the mass transfer studies. 3. Chemical mass transfer Table I indicates the annual chemical and suspended load, total denudation and various rates calculations from the f3,W data (CSMRS, 1973 ar.d Subramanian, present manuscript) for the eight Indian river basins under investigation. For com­ parison, data for the major river basins, such as Amazon, Mississippi, _Congo, Mekong, etc. are computed in table 2. Continent-wise mass transfer are presented ill table 3. Based on their limited sampling, Carbonnel and Meybeck (197STcalcu1ated the chemical mass transfer from the Mekong basin to be a very significant portion ofthe total chemical load input into the world oceans; but a look into the respective values in tables I, 2 and 3 suggest that the entire Asian continent contributes a maximum 40 %of the chemical load and out of this, the Mekong's contribution is a mere 4 % and on the total input, Mekong accounts for less than 2% of the chemical load. All the Indian rivers together contribute about 6 %of the chemical load. Since the land mass ofIndia accounts for a mere 2 %of the continental earth, she contributes the chemical load much in excess of her size. In other words, compared to the chemi­ cal denudation rate of 2·3 x 104 kgjkm2 /yr for the continental earth, the chemical Table 1. Denudation rates for major Indian rivers Chemical Sediment Total Chemical Sediment Total Basinload loadrate rate denuda- lOt kg/yr load io- kg/km2/yr tion rate Cauvery 7-60 0·71 8'31 8·70 0·87 9'57 Krishna 15·01 8'50 23-51 6·11 HI 9-42 Godavari 22'02 16·20 38'22 7-32 5-30 12-60 Narmada 11-03 6'20 17-23 12·11 7·00 i9·10 Tapti 5-31 2·70 8'01 8'75 4'30 13'00 Mahanadi 8-41 7-10 15·51 6'43 5-40 11·80 Ganges 71'04 460'10 531-14 7-32 47-21 54'51 Brahmaputra 81-03 711'20 792>23 12·26 110'11 122-31 India Total 221'45 1212·71 1434'16 8'61 46'81 55-42 80 V Subramanian Table 1.
Recommended publications
  • Slowly Down the Ganges March 6 – 19, 2018
    Slowly Down the Ganges March 6 – 19, 2018 OVERVIEW The name Ganges conjures notions of India’s exoticism and mystery. Considered a living goddess in the Hindu religion, the Ganges is also the daily lifeblood that provides food, water, and transportation to millions who live along its banks. While small boats have plied the Ganges for millennia, new technologies and improvements to the river’s navigation mean it is now also possible to travel the length of this extraordinary river in considerable comfort. We have exclusively chartered the RV Bengal Ganga for this very special voyage. Based on a traditional 19th century British design, our ship blends beautifully with the timeless landscape. Over eight leisurely days and 650 kilometres, we will experience the vibrant, complex tapestry of diverse architectural expressions, historical narratives, religious beliefs, and fascinating cultural traditions that thrive along the banks of the Ganges. Daily presentations by our expert study leaders will add to our understanding of the soul of Indian civilization. We begin our journey in colourful Varanasi for a first look at the Ganges at one of its holiest places. And then by ship we explore the ancient Bengali temples, splendid garden-tombs, and vestiges of India’s rich colonial past and experience the enduring rituals of daily life along ‘Mother Ganga’. Our river journey concludes in Kolkatta (formerly Calcutta) to view the poignant reminders of past glories of the Raj. Conclude your trip with an immersion into the lush tropical landscapes of Tamil Nadu to visit grand temples, testaments to the great cultural opulence left behind by vanished ancient dynasties and take in the French colonial vibe of Pondicherry.
    [Show full text]
  • Placement Brochure 2018-19
    PLACEMENT BROCHURE 2018-19 Government College of Engineering Kalahandi, Bhawanipatna (A Constituent College of BPUT, Odisha) (http://gcekbpatna.ac.in/) • VISION & MISSION • STUDENT ACTIVITIES • GCEK AT A GLANCE • CLUBS • MESSAGE FROM THE PRINCIPAL • TRAINING AND PLACEMENT CELL • MESSAGE FROM THE PIC (T&P CELL) • PLACEMENT TEAM • INFRASTRUCTURE • HOW TO REACH @ GCEK • WHY RECRUIT US • T&P ACTIVITIES • DEPARTMENT DEMOGRAPHICS • OUR ALUMNI • COMPUTER SCIENCE & ENGINEERING • ACHIEVEMENTS • ELECTRICAL ENGINEERING • TRAINING AND INTERNSHIPS • MECHANICAL ENGINEERING • IN AND AROUND GCEK • CIVIL ENGINEERING • STUDENT COORDINATORS • BASIC SCIENCE & HUMANITIES • CONTACT US VISION MISSION • To produce high profile technical graduates with • To be an academic institution of excellence striving innovative thinking and technical skills to meet the persistently for advancement of technical education challenges of the society. and research in service to mankind. • To foster, promote and sustain scientific research in emerging fields of technology. • To establish interactions with leading technological institutions, research centres and industries of national and international repute. • To induct in each member of GCEK , the spirit of humanity , diligence and dedication to work for betterment of humankind. Government College of Engineering, Kalahandi was established in the year 2009 by an act of Govt. of Odisha and stands a humble spectacle where tradition meets modernisation, aspiration meets inspiration, where our aim is to keep scaling new heights. Functioning as a constituent college of BPUT, Odisha, the college offers 4 years Under Graduate B.Tech degree programme in Civil Engineering, Computer Science &Engineering, Electrical Engineering and Mechanical Engineering & Masters degree in Thermal Engineering and Power System Engineering. For structural enhancing the institute has been successful in keeping itself up to the standards by surpassing the expectation in producing a brand of engineers capable of adapting all over the world.
    [Show full text]
  • The Conservation Action Plan the Ganges River Dolphin
    THE CONSERVATION ACTION PLAN FOR THE GANGES RIVER DOLPHIN 2010-2020 National Ganga River Basin Authority Ministry of Environment & Forests Government of India Prepared by R. K. Sinha, S. Behera and B. C. Choudhary 2 MINISTER’S FOREWORD I am pleased to introduce the Conservation Action Plan for the Ganges river dolphin (Platanista gangetica gangetica) in the Ganga river basin. The Gangetic Dolphin is one of the last three surviving river dolphin species and we have declared it India's National Aquatic Animal. Its conservation is crucial to the welfare of the Ganga river ecosystem. Just as the Tiger represents the health of the forest and the Snow Leopard represents the health of the mountainous regions, the presence of the Dolphin in a river system signals its good health and biodiversity. This Plan has several important features that will ensure the existence of healthy populations of the Gangetic dolphin in the Ganga river system. First, this action plan proposes a set of detailed surveys to assess the population of the dolphin and the threats it faces. Second, immediate actions for dolphin conservation, such as the creation of protected areas and the restoration of degraded ecosystems, are detailed. Third, community involvement and the mitigation of human-dolphin conflict are proposed as methods that will ensure the long-term survival of the dolphin in the rivers of India. This Action Plan will aid in their conservation and reduce the threats that the Ganges river dolphin faces today. Finally, I would like to thank Dr. R. K. Sinha , Dr. S. K. Behera and Dr.
    [Show full text]
  • Mahanadi River Basin
    The Forum and Its Work The Forum (Forum for Policy Dialogue on Water Conflicts in India) is a dynamic initiative of individuals and institutions that has been in existence for the last ten years. Initiated by a handful of organisations that had come together to document conflicts and supported by World Wide Fund for Nature (WWF), it has now more than 250 individuals and organisations attached to it. The Forum has completed two phases of its work, the first centring on documentation, which also saw the publication of ‘Water Conflicts in MAHANADI RIVER BASIN India: A Million Revolts in the Making’, and a second phase where conflict documentation, conflict resolution and prevention were the core activities. Presently, the Forum is in its third phase where the emphasis of on backstopping conflict resolution. Apart from the core activities like documentation, capacity building, dissemination and outreach, the Forum would be intensively involved in A Situation Analysis right to water and sanitation, agriculture and industrial water use, environmental flows in the context of river basin management and groundwater as part of its thematic work. The Right to water and sanitation component is funded by WaterAid India. Arghyam Trust, Bangalore, which also funded the second phase, continues its funding for the Forums work in its third phase. The Forum’s Vision The Forum believes that it is important to safeguard ecology and environment in general and water resources in particular while ensuring that the poor and the disadvantaged population in our country is assured of the water it needs for its basic living and livelihood needs.
    [Show full text]
  • The Hooghly River a Sacred and Secular Waterway
    Water and Asia The Hooghly River A Sacred and Secular Waterway By Robert Ivermee (Above) Dakshineswar Kali Temple near Kolkata, on the (Left) Detail from The Descent of the Ganga, life-size carved eastern bank of the Hooghly River. Source: Wikimedia Commons, rock relief at Mahabalipuram, Tamil Nadu, India. Source: by Asis K. Chatt, at https://tinyurl.com/y9e87l6u. Wikimedia Commons, by Ssriram mt, at https://tinyurl.com/y8jspxmp. he Hooghly weaves through the Indi- Hooghly was venerated as the Ganges’s original an state of West Bengal from the Gan- and most sacred route. Its alternative name— ges, its parent river, to the sea. At just the Bhagirathi—evokes its divine origin and the T460 kilometers (approximately 286 miles), its earthly ruler responsible for its descent. Hindus length is modest in comparison with great from across India established temples on the Asian rivers like the Yangtze in China or the river’s banks, often at its confluence with oth- Ganges itself. Nevertheless, through history, er waterways, and used the river water in their the Hooghly has been a waterway of tremen- ceremonies. Many of the temples became fa- dous sacred and secular significance. mous pilgrimage sites. Until the seventeenth century, when the From prehistoric times, the Hooghly at- main course of the Ganges shifted decisively tracted people for secular as well as sacred eastward, the Hooghly was the major channel reasons. The lands on both sides of the river through which the Ganges entered the Bay of were extremely fertile. Archaeological evi- Bengal. From its source in the high Himalayas, dence confirms that rice farming communi- the Ganges flowed in a broadly southeasterly ties, probably from the Himalayas and Indian direction across the Indian plains before de- The Hooghly was venerated plains, first settled there some 3,000 years ago.
    [Show full text]
  • The River Ganges Where Is It?
    The River Ganges Where is it? • The river Ganges starts high up in the Himalayan mountains and flows through the northern part of India and into the Bay of Bengal. How big is it? • The river is 2,510 km long from its source to the sea. • Its average depth is about 16m, but at its deepest it is 30m deep. • At its widest it is 350km. Why is it special? The river Ganges is special for two main reasons. •Firstly because it provides India with an important and much needed water. •Secondly, the river plays an important part in the believes and everyday life of the Hindu population in India The river in daily life • The land around the river and water from the river itself is used for farming. • There are lots of industries along the river that use it for power and cleaning. • Ordinary people who live by the river use it to bathe in, wash their clothes in and for drinking water. Over 10 million people bathe in the river every day. River Ganga The River Ganga runs through the holy city of Varanasi in India • Hindu legend has it that the Goddess Ganga had the power to purify anything that touched her and she flowed from the heavens and purified the people of India. Hindu’s belief that bathing in the river Ganga purifies them and their sins are forgiven. Hinduism and the river • The river is very important in Hinduism, they see the river as a goddess. • Hindu’s believe that bathing in the river helps to cleanse the soul- people are baptised in the river and the ashes of people who have died are poured into the river.
    [Show full text]
  • Significance of Riverine Carbon Transport: a Case Study of a Large Tropical River, Godavari (India)
    Vol. 45 Supp. SCIENCE IN CHINA (Series C) October 2002 Significance of riverine carbon transport: A case study of a large tropical river, Godavari (India) M. M. Sarin, A. K. Sudheer & K. Balakrishna Physical Research Laboratory, Ahmedabad 380 009, India Correspondence should be addressed to M. M. Sarin (email: [email protected]) Received June 26, 2002 Abstract Although riverine carbon fluxes are a minor component of the global carbon cycle, the transfer of organic carbon from land to ocean represents a flux of potential carbon storage, irre- versible over 103 to 104 a. Future carbon transfers through river basins are expected to accelerate, with respect to both sources and sinks, because of the large-scale human driven land-use and land-cover changes. Thus, the increased amounts of carbon transported to and sequestered in marine sediments (through fertilization by river-borne inorganic nutrients) may be an important net sink for anthropogenic CO2. Particularly, the humid tropics of South Asia are regions very sensitive to this lateral C transport because of high precipitation and high rates of land use and cover change. In this paper we report on the role of upland tributaries in the transport processes influ- encing the lateral carbon and nitrogen fluxes of the Godavari, a large tropical river of India. By far, dissolved inorganic carbon (DIC) is the dominant form of carbon transport in the river basin. It con- stitutes as much as 75% to the total carbon load. Particulate and dissolved organic carbon (POC and DOC) fluxes account for 21% and 4%, respectively. In the upper basin, DOC fluxes exceed that of POC due to large-scale anthropogenic activities.
    [Show full text]
  • Bangladesh: Transboundary Rivers Problems and Prospects
    BANGLADESH: TRANSBOUNDARY RIVERS PROBLEMS AND PROSPECTS by Md. Jahid Hossain Jahangir Executive Engineer Joint Rivers Commission, Bangladesh Presented at the Expert Scoping Workshop on quantifying the benefits of transboundary water cooperation 6-7 June 2013, Amsterdam, the Netherlands BANGLADESH GENERAL INFORMATION ON BANGLADESH Total area of Bangladesh: 147,570 km2 Population: about 146.60 million 80% of the population live in rural areas The Topography of Bangladesh is generally flat. Most of the areas lie within 20m above MSL 80% floodplains, terraces 8% & 12% hills River and inland water bodies: 6.7 % Forest Cover: 17% Bangladesh enjoys a sub-tropical monsoon climate. Out of six seasons in a year, summer, monsoon and winter are predominate. Temperature in winter falls as low as 5º C , during summer the mean is about 30ºC and occasionally rises above 40º C. Normal annual rainfall: 1200 mm in the extreme west and as high as 5800 mm in the northeast. About 80% occurs in monsoon (Jun-Oct) Socio-economic aspects Agriculture support the vast majority of Bangladesh population, accounting for 32% of GDP, 13% of exports, and 60% of employment. Net cultivable area (NCA) is 8.53 Mha Irrigable area is 7.56 Mha. 5.00 Mha is currently irrigated Present cropping intensity is 183%. Of the total NCA, 35% is single cropped, 49% double cropped and 16% triple cropped. WATER AVAILABILTIES AND DEMANDS Total water resources in Bangladesh including ground water : about 1297 BCM Cross border surface water inflow: 1124 BCM More than 80% occurs during monsoon when Bangladesh does not need so much (Jun-Oct) Availability during dry season (Jan-Apr) is only 88 BCM while it needs 147 BCM Being the lowest riparian of the Major Himalayan Rivers, Bangladesh has no control over the huge cross- boundary flows and because of flat topography it also can not store the huge monsoon water Transboundary Rivers of Bangladesh Bangladesh is a great delta formed by the three mighty Himalayan Rivers: the Ganges, the Brahmaputra and the Meghna.
    [Show full text]
  • Reconciling Drainage and Receiving Basin Signatures of the Godavari River System
    Biogeosciences, 15, 3357–3375, 2018 https://doi.org/10.5194/bg-15-3357-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Reconciling drainage and receiving basin signatures of the Godavari River system Muhammed Ojoshogu Usman1, Frédérique Marie Sophie Anne Kirkels2, Huub Michel Zwart2, Sayak Basu3, Camilo Ponton4, Thomas Michael Blattmann1, Michael Ploetze5, Negar Haghipour1,6, Cameron McIntyre1,6,7, Francien Peterse2, Maarten Lupker1, Liviu Giosan8, and Timothy Ian Eglinton1 1Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland 2Department of Earth Sciences, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands 3Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, 741246 Mohanpur, West Bengal, India 4Division of Geological and Planetary Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA 5Institute for Geotechnical Engineering, ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich, Switzerland 6Laboratory of Ion Beam Physics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland 7Scottish Universities Environmental Research Centre AMS Laboratory, Rankine Avenue, East Kilbride, G75 0QF Glasgow, Scotland 8Geology and Geophysics Department, Woods Hole Oceanographic Institution, 86 Water Street, Woods Hole, Massachusetts 02543, USA Correspondence: Muhammed Ojoshogu Usman ([email protected]) Received: 12 January 2018 – Discussion started: 8 February 2018 Revised: 18 May 2018 – Accepted: 24 May 2018 – Published: 7 June 2018 Abstract. The modern-day Godavari River transports large sediment mineralogy, largely driven by provenance, plays an amounts of sediment (170 Tg per year) and terrestrial organic important role in the stabilization of OM during transport carbon (OCterr; 1.5 Tg per year) from peninsular India to the along the river axis, and in the preservation of OM exported Bay of Bengal.
    [Show full text]
  • Ganges Strategic Basin Assessment
    Public Disclosure Authorized Report No. 67668-SAS Report No. 67668-SAS Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized GANGES STRATEGIC BASIN ASSESSMENT: A Discussion of Regional Opportunities and Risks b Report No. 67668-SAS Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks World Bank South Asia Regional Report The World Bank Washington, DC iii GANGES STRATEGIC BASIN ASSESSMENT: A Discussion of Regional Opportunities and Risks Disclaimer: © 2014 The International Bank for Reconstruction and Development / The World Bank 1818 H Street NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org All rights reserved 1 2 3 4 14 13 12 11 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law.
    [Show full text]
  • Odisha Review
    ODISHA REVIEW VOL. LXXIV NO.4 NOVEMBER - 2017 SURENDRA KUMAR, I.A.S. Commissioner-cum-Secretary LAXMIDHAR MOHANTY, O.A.S Director DR. LENIN MOHANTY Editor Editorial Assistance Production Assistance Bibhu Chandra Mishra Debasis Pattnaik Bikram Maharana Sadhana Mishra Cover Design & Illustration D.T.P. & Design Manas Ranjan Nayak Hemanta Kumar Sahoo Photo Kishor Kumar Sinha Raju Singh Manoranjan Mohanty Niranjan Baral The Odisha Review aims at disseminating knowledge and information concerning Odisha’s socio-economic development, art and culture. Views, records, statistics and information published in the Odisha Review are not necessarily those of the Government of Odisha. Published by Information & Public Relations Department, Government of Odisha, Bhubaneswar - 751001 and Printed at Odisha Government Press, Cuttack - 753010. For subscription and trade inquiry, please contact : Manager, Publications, Information & Public Relations Department, Loksampark Bhawan, Bhubaneswar - 751001. Rs.5/- Five Rupees / Copy E-mail : [email protected] Visit : http://odisha.gov.in Contact : 9937057528(M) CONTENTS Good Governance ... ... 1 Baliyatra : A Festival of Odisha's Ancient Maritime Trade Dr. Rabindra Nath Dash ... 13 Measuring Fiscal Performance of Indian States with Special Dr. Bibhuti Ranjan Mishra ... 17 Reference to Odisha Prof. Asit Ranjan Mohanty Kalinga and Champa : A Study in Ancient Maritime Relations Dr. Benudhar Patra ... 22 Paika Rebellion of 1817 : The First Independence War of India Akshyaya Kumar Nayak ... 27 Boita Bandana Festival and Water Pollution Dr. Manas Ranjan Senapati ... 32 Odisha Welcomes the World as Tourist But Bids Farewell as Friend Debadutta Rath ... 34 Exploring the Lost River(s) at Konark : Chirashree Srabani Rath, ... 39 A Multi-Disciplinary Approach Rashmi Ranjan Behera, Subhomay Jana, Priyadarshi Patnaik, and William K.
    [Show full text]
  • Climate Change, Migration and Adaptation in Deltas: Key Findings
    CLIMATE CHANGE, MIGRATION AND ADAPTATION IN DELTAS Key findings from the DECCMA project BANGLADESH UNIVERSITY JADAVPUR UNIVERSITY OF GHANA OF ENGINEERING & UNIVERSITY INDIA TECHNOLOGY CONTENTS Our approach and research activities 1 Why are deltas important? 6 What we have done 8 What we have done: economic modelling 10 What we have done: integrated assessment modelling 12 Present situation in deltas 14 At risk from climate change – sea level rise, coastal erosion, flooding, salinization 16 Deltas play a key role in national economies 18 Migration from rural areas to nearby urban areas is a continuing trend, driven largely by economic opportunity 20 Migration has consequences in both sending and receiving areas 22 Environment is a proximate cause of migration 23 Displacement and planned relocation 24 Adaptation is occurring now 30 Livelihood adaptations 31 Structural adaptations 33 Migration as an adaptation 34 Sub-optimal policy and implementation framework for migration and adaptation 36 Future situation in deltas 38 Impacts of 1.5OC temperature increase 40 Climate change will lead to significant economic losses by 2050 42 More adaptation will be needed 44 Modelling what determines adaptation decisions 46 Influential drivers of adaptation decisions by male- and female-headed households 47 Engagement and impact 50 Raising the profile of delta residents with parliamentarians (Volta) 52 Inputs to the Coastal Development Authority Bill (Volta) 53 Requested to provide inputs to policy and highlighting delta migration (Mahanadi) 54 Partnership with the West Bengal State Department of Environment (Indian Bengal delta) 55 Capacity building 56 Outputs 63 DECCMA team members 72 OUR APPROACH OUR APPROACH AND RESEARCH ACTIVITIES 4 5 1.
    [Show full text]