A Component of Leafminer Management Lorna Nyangarisa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Survey for the Invasive Leafminer Pest Liriomyza Huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza Langei
Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei Scheffer, S. J., Lewis, M. L., Gaimari, S. D., & Reitz, S. R. (2014). Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei. Journal of Economic Entomology, 107(5), 1959-1964. doi:10.1603/EC13279 10.1603/EC13279 Entomological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse MOLECULAR ENTOMOLOGY Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei 1,2 1 3 4 SONJA J. SCHEFFER, MATTHEW L. LEWIS, STEPHEN D. GAIMARI, AND STUART R. REITZ J. Econ. Entomol. 107(5): 1959Ð1964 (2014); DOI: http://dx.doi.org/10.1603/EC13279 ABSTRACT Liriomyza huidobrensis (Blanchard) is a highly destructive invasive leafminer pest currently causing extensive damage to vegetable and horticultural crops around the world. Liriomyza langei Frick is a leafminer pest native to California that cannot currently be morphologically distin- guished from L. huidobrensis. We used a DNA-barcoding approach, a published PCR-RFLP method, and a new multiplex PCR method to analyze 664 ßies matching the morphological description of huidobrensisÐlangei. We found no evidence for the presence of L. huidobrensis in our extensive samples from California. In addition to the new molecular method, this work is important because it provides deÞnitive data that the California “pea leafminer” is currently, and has probably always been, L. langei. These data will also be important in the event that the highly invasive L. -
California Pea Leafminer, Liriomyza Langei (Diptera: Agromyzidae)
DACS-P-01666 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Charles H. Bronson, Commissioner of Agriculture California Pea Leafminer, Liriomyza langei (Diptera: Agromyzidae) Gary J. Steck, [email protected], Taxonomic Entomologist, Florida Department of Agriculture and Consumer Services, Division of Plant Industry W. N. Dixon, [email protected], Bureau Chief, Entomology, Nematology and Plant Pathology, Florida Department of Agriculture and Consumer Services, Division of Plant Industry Liriomyza langei Frick is a dipteran (Agromyzidae) leaf miner (Fig. 1) that is considered a pest of economic importance in California. (http://www.doacs.state.fl.us/pi/enpp/ento/entcirc/ent378.pdf). Affected crops include field and glasshouse- grown vegetables and flowers. In Salinas Valley of Monterey Co., CA, “This insect has gone from a sporadic fall pest, relatively easily controlled, to a pest throughout most of the vegetable growing season that is essentially not able to be controlled in many crops. This is at least partly due to evolution of insecticide resistance; changes in tillage practices may also have contributed to the problem. Lettuce is the worst affected crop, but nearly all of the fresh vegetables grown in the area are hosts for this leafminer” (Chaney 1995). Other vegetable crops suffering severe economic loss include celery (Apium graveolens) and garden pea (Pisum sativum); floral crops include baby’s breath (Gypsophila paniculata), Chrsysanthemum, and Aster. BIOLOGY: Females puncture leaves to feed on plant sap and lay eggs within the leaf tissues. The eggs hatch after two to four days and larvae feed between the upper and lower surface of the leaves, making distinctive winding, whitish tunnels or mines that are often the first clue that leaf miners are present. -
Jordan Beans RA RMO Dir
Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation. -
Request for Comments on Regulatory Options for Pea Leaf Miner
FOR INFORMATION AND ACTION DA-2008-76 December 19, 2008 SUBJECT: Request for Comments on Regulatory Options for Pea Leaf Miner TO: STATE AND TERRITORY AGRICULTURAL REGULATORY OFFICIALS The Animal and Plant Health Inspection Service (APHIS) is soliciting your comments to help us determine options for the continued regulation of Liriomyza huidobrensis, commonly known as pea leaf miner. Pea leaf miner is an exotic, highly polyphagous leaf miner capable of inflicting severe damage to crops such as field- and glasshouse-grown vegetables and flowers. Pea leaf miner is a mining fly of the insect family Agromyzidae. Pea leaf miner can be found in Asia, Africa, Central and South America, Europe, the Middle East, and Oceania. This fly was also considered to be present in the States of California, Hawaii, Oregon, and Washington. However, there is now evidence that the fly in the United States previously believed to be pea leaf miner is not Liriomyza huidobrensis. Research has identified the fly present in the United States as Liriomyza langei. The fly was differentiated by molecular diagnosis from pea leaf miner but is morphologically almost identical. This research is summarized in the attached Center for Plant Health Science and Technology (CPHST) report entitled, “Is Liriomyza langei a real species or a biotype of L. huidobrensis?”. For regulatory purposes, APHIS believes that pea leaf miner and L. langei can be considered different species and distinct taxa. However, we recognize that we should not regulate one fly and not the other without scientific evidence indicating biological differences affecting pest character between species so taxonomically similar. -
Biological Control of Liriomyza Leafminers: Progress and Perspective
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 004 Review Biological control of Liriomyza leafminers: progress and perspective Tong-Xian Liu1*, Le Kang2, Kevin M. Heinz3 and John Trumble4 Address: 1 Department of Entomology, Texas AgriLife Research, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA. 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 3 Department of Entomology, Texas A&M University, College Station, TX, USA. 4 Department of Entomology, University of California, Riverside, CA, USA. *Correspondence: Tong-Xian Liu. Fax. 01 956-968-0641. Email: [email protected] Received: 6 October 2008 Accepted: 15 December 2008 doi: 10.1079/PAVSNNR20094004 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2008 (Online ISSN 1749-8848) Abstract There are more than 330 Liriomyza species (Diptera: Agromyzidae) and many are economically important pests of field crops, ornamentals and vegetables. Given the substantial economic losses associated with various aspects of Liriomyza feeding as well as the ability of these insects to rapidly develop resistance to insecticides, researchers from many countries have attempted to use bio- logical control to manage these pests. Unfortunately, progress on the science and implementation of effective Liriomyza biological control is hampered by the literature being scattered widely and in many different languages. A primary goal of this review is to consolidate the available infor- mation and provide an analysis of the published work. -
5.1.4 Halticoptera Arduine (Walker 1843) Synonyms: Dicyclus Arduine
5.1.4 Halticoptera arduine (Walker 1843) Synonyms: Dicyclus arduine (Walker 1843) Halticoptera arduine (Walker 1843) Taxonomic position: Hymenoptera, Pteromalidae: Miscogastrinae Authors: N. Mujica, C. Prudencio, P. Carhuapoma, & J. Kroschel Hosts Halticoptera arduine is found parasitizing leafminer species (Diptera: Agromyzidae) of economic importance such as Amauromyza maculosa (Malloch) in Lacttuca sp. and Chrysantemum sp., Cerodontha dorsalis (Loew) in cereals; Japanagromyza Sasakawa in Phaseolus sp., Liriomyza huidobrensis (Blanchard), Liriomyza sativae Blanchard, and L. trifolii (Burgess) in vegetables; Liriomyza graminivora Hering in maize (Zea mays L.); and Liriomyza quadrata Malloch in potato (Solanum tuberosum L.) and tomato (Lycopersicum esculentum Mill.). Also, H. arduine has been recovered from leafminer flies of minor importance infesting wild plants such as Amauromyza Hendel sp., Calycomyza malvae (Burgess), Calycomyza Hendel, Chromatomyia platensis (Brethes), Liriomyza commelinae Frost, Liriomyza sabaziae Spencer, and Melanagromyza Hendel. Morphology Egg Eggs are 0.4 x 0.15 mm in size and are hymenopteriform; a caudal extension with three hooks (like an anchor) allows the egg to adhere to the internal organs of the host. Corium is transparent and smooth, pale yellow. Larva Four larval instars are described. First instar is hymenopteriform (0.35 x 0.15 mm) with 13 segments, including the conical cephalic capsule with triangular mandibles that are the most sclerotic part of the body. Second (1.93 x 1.04 mm) and third (2.29 x 1.30 mm) instars are vermiform (Photo 1A). Fourth instar is typically hymenopteriform with 13 segments, showing the oral region in the cephalic segment (2.49 x 1.34 mm). Pupa Pupation occurs within the host puparium. -
Biological Control of Liriomyza Leafminers: Progress and Perspective
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 004 Review Biological control of Liriomyza leafminers: progress and perspective Tong-Xian Liu1*, Le Kang2, Kevin M. Heinz3 and John Trumble4 Address: 1 Department of Entomology, Texas AgriLife Research, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA. 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 3 Department of Entomology, Texas A&M University, College Station, TX, USA. 4 Department of Entomology, University of California, Riverside, CA, USA. *Correspondence: Tong-Xian Liu. Fax. 01 956-968-0641. Email: [email protected] Received: 6 October 2008 Accepted: 15 December 2008 doi: 10.1079/PAVSNNR20094004 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2008 (Online ISSN 1749-8848) Abstract There are more than 330 Liriomyza species (Diptera: Agromyzidae) and many are economically important pests of field crops, ornamentals and vegetables. Given the substantial economic losses associated with various aspects of Liriomyza feeding as well as the ability of these insects to rapidly develop resistance to insecticides, researchers from many countries have attempted to use bio- logical control to manage these pests. Unfortunately, progress on the science and implementation of effective Liriomyza biological control is hampered by the literature being scattered widely and in many different languages. A primary goal of this review is to consolidate the available infor- mation and provide an analysis of the published work. -
Pest Categorisation of Liriomyza Bryoniae
SCIENTIFIC OPINION ADOPTED: 30 January 2020 doi: 10.2903/j.efsa.2020.6038 Pest categorisation of Liriomyza bryoniae EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Ewelina Czwienczek, Franz Streissl and Alan MacLeod Abstract The EFSA Panel on Plant Health performed a pest categorisation of Liriomyza bryoniae (Diptera: Agromyzidae) for the EU. L. bryoniae (the tomato leaf miner; EPPO code: LIRIBO) is a polyphagous Palaearctic species which probably originates from southern Europe, where it occurs commonly outdoors and has now spread to many parts of central and northern Europe, where it is only found in greenhouses. The species is also reported in North Africa and in several countries in Asia. L. bryoniae can have multiple overlapping generations per year. Eggs are inserted in the leaves of host plants. Three larval instars feed internally within leaves and stems of field vegetables. Pupation generally takes place in the soil and very occasionally on the upper or lower surfaces of the leaves. L. bryoniae is regulated in the EU by Commission Implementing Regulation (EU) 2019/2072 (Annex III) in specific protected zones only (the Republic of Ireland and Northern Ireland in the United Kingdom). However, L. bryoniae is not specifically mentioned in any of the annexes of Commission Implementing Regulation 2019/2072 concerning controls regarding certain protected zones. -
Journal of Medicinal Plants Studies Cryptic but Some Potential
Journal of Medicinal Plants Studies Year: 2014, Volume: 2, Issue: 3 Pages: (44-50) ISSN: 2320-3862 Online Available at www.plantsjournal.com Journal of Medicinal Plants Studies Cryptic but some potential Insecticidal Plants of India Shweta Subramaniam 1, Sandeep Kaushik 1* 1. Department of Botany, University of Delhi, Delhi – 110007, India [Email: [email protected]] Plants have evolved a wide variety of chemical compounds which are known as secondary metabolites for protecting themselves against insect herbivory. These chemicals have evolved as a result of long period of coevolution which has taken place between the plants and the insect over a period of centuries. Plant based insecticides are safe for use and hence have been researched to develop insecticides for commercial utilization. The paper gives detailed information of sevenless known insecticidal plants of India. Keyword: Insecticidal Plants, Potential, Insects 1. Introduction release cyanide (Schardl & Chen, 2010) [1]. The Plant defense mechanisms against insect biochemicals have evolved as a result of long herbivory are diverse. These could be mechanical period of coevolution which has taken place or biochemical. Mechanical defense mechanisms between the plants and the insect over centuries. include the presence of trichomes, glands, thick The secondary metabolites protect the plants from cuticle, presence of wax, presence of spines on herbivore attacks. The better the plants are the leaves, etc. Some plants have evolved equipped with defensive chemicals, the more is defensive symbioses with microbes or the success of the plants to grow successfully and myrmecophily where they harbour protective ants produce offsprings. or recruit parasitoids and predators that attack the herbivores (Schardl. -
The Role of Ecological Compensation Areas in Conservation Biological Control
The role of ecological compensation areas in conservation biological control ______________________________ Promotor: Prof.dr. J.C. van Lenteren Hoogleraar in de Entomologie Promotiecommissie: Prof.dr.ir. A.H.C. van Bruggen Wageningen Universiteit Prof.dr. G.R. de Snoo Wageningen Universiteit Prof.dr. H.J.P. Eijsackers Vrije Universiteit Amsterdam Prof.dr. N. Isidoro Università Politecnica delle Marche, Ancona, Italië Dit onderzoek is uitgevoerd binnen de onderzoekschool Production Ecology and Resource Conservation Giovanni Burgio The role of ecological compensation areas in conservation biological control ______________________________ Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op maandag 3 september 2007 des namiddags te 13.30 in de Aula Burgio, Giovanni (2007) The role of ecological compensation areas in conservation biological control ISBN: 978-90-8504-698-1 to Giorgio Multaque tum interiisse animantum saecla necessest nec potuisse propagando procudere prolem. nam quaecumque vides vesci vitalibus auris aut dolus aut virtus aut denique mobilitas est ex ineunte aevo genus id tutata reservans. multaque sunt, nobis ex utilitate sua quae commendata manent, tutelae tradita nostrae. principio genus acre leonum saevaque saecla tutatast virus, vulpis dolus et gfuga cervos. at levisomma canum fido cum pectore corda et genus omne quod est veterino semine partum lanigeraeque simul pecudes et bucera saecla omnia sunt hominum tutelae tradita, Memmi. nam cupide fugere feras pacemque secuta sunt et larga suo sine pabula parta labore, quae damus utilitatiseorum praemia causa. at quis nil horum tribuit natura, nec ipsa sponte sua possent ut vivere nec dare nobis praesidio nostro pasci genus esseque tatum, scilicet haec aliis praedae lucroque iacebant indupedita suis fatalibus omnia vinclis, donec ad interutum genus id natura redegit. -
Pea Leafminer, Liriomyza Huidobrensis (Blanchard) (Insecta: Diptera: Agromyzidae)1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY111 Pea Leafminer, Liriomyza huidobrensis (Blanchard) (Insecta: Diptera: Agromyzidae)1 Gary J. Steck2 Introduction Larva-infested produce and cut flowers have been intercepted many times at Florida ports of entry. Liriomyza huidobrensis (Blanchard), the pea leafminer, is a highly polyphagous leaf miner capable Distribution of inflicting severe damage to crops. Affected crops include field- and glasshouse-grown vegetables and L. huidobrensis is apparently indigenous to flowers. The pea leaf miner apparently originated in cooler, mostly highland areas of Latin America South America and has spread to other continents (Spencer 1992). In South America, it is known from where established populations are growing ever more Argentina, Brazil, Chile including Juan Fernandez difficult to control. For example, in the Salinas Island, Colombia, Peru, Venezuela; in Central Valley (Monterey Co., CA), Chaney (1995) reported America: Belize, Costa Rica, El Salvador, Guatemala, that "This insect has gone from a sporadic fall pest, Honduras, Nicaragua, Panama; in the Caribbean: relatively easily controlled, to a pest throughout most Dominican Republic, Guadeloupe ("introduced but of the vegetable-growing season that is essentially not not established?" [Martinez et al. 1993]); in North able to be controlled in many crops." This is at least America: California (probably in all southern partly due to a shift in the pea leafminer's counties and along the coast and inland valleys at susceptibility to insecticides. Changes in tillage least as far north as Placer Co. [Spencer 1981]; a practices, especially reduced tillage on major pest in Salinas Valley of Monterey Co.); semi-permanent beds, may also be contributing to the Hawaii; Europe: Belgium, Netherlands, UK.; Middle problem. -
5.1.5 Phaedrotoma Scabriventris (Nixon 1955) Synonyms: Opius
5.1.5 Phaedrotoma scabriventris (Nixon 1955) Synonyms: Opius scabriventris (Nixon 1955) Opius (Opius) scabriventris (Nixon 1955) Opius (Gastrosema) scabriventris (Nixon 1955) Taxonomic position: Hymenoptera, Braconidae (Opiinae) Authors: N. Mujica, C. Valencia, P. Carhuapoma, & J. Kroschel Hosts Phaedrotoma scabriventris parasitizes leafminer species (Diptera: Agromyzidae) of economic importance: Liriomyza huidobrensis Blanchard, L. brassicae Riley, L. sativae Blanchard, and L. trifolii (Burgess) in vegetables. P. scabriventris has also been recovered from leafminer flies of minor importance infesting wild plants as Calycomyza cruciata Valladares, C. humeralis Roser, C. lantanae Frick, C. malvae Burgess, C. verbenivora Spencer, Chromatomyia platensis Brethes, Haplopeodes cordobensis Valladares, H. lycivora Valladares, Haplopeodes spp., Liriomyza cesalpiniae Valladare, L. commelinae Frost, L. near to sabaziae, Phytomyza crassisseta Zetterstedt, and P. williamsoni Blanchard. Morphology Egg Hymenoptera in form and monoembryonic, oval and elongated, slightly widening toward the back (0.1006 x 0.0478 mm) (Photo 1A). Opaque white at first, but shortly before hatching turns white and transparent, showing the developed first larval stage and still wrapped by corium. Larva P. sacbriventris has four larval instars. The first instar is creamy‐white and semi‐transparent, caudate‐mandibled, with 13 segments along the body (Photo 1B). These include three thoracic segments, nine abdominals, and a rectangular head capsule strongly sclerotized (0.1497 x 0.1439 mm). Total body length is 0.4406 x 0.1439 mm from the mandibles to the small tail. In the second instar, the head capsule appears to be smaller (0.1121 x 0.1146 mm) in proportion to the body (0.5605 x 0.1146 mm), which is now wider and globular.