American Serpentine Leafminer: a Threat to Horticulture

Total Page:16

File Type:pdf, Size:1020Kb

American Serpentine Leafminer: a Threat to Horticulture R&D | EXOTIC PEST PROFILE L. trifolii damage to chrysanthemum. American serpentine leafminer: A threat to horticulture The American serpentine potato industries, and neither species is L. trifolii larvae feeds internally on living leafminer (Liriomyza trifolii) is a present in Australia. plant tissue, particularly plant leaves, small fly belonging to the family The following is an overview of reducing photosynthetic activity and Liriomyza trifolii (L. trifolii), commonly causing premature leaf drop. Unlike many Agromyzidae. It infects plant known as the American serpentine other leafminers, the American serpentine species from 29 plant families leafminer, focusing on the pest’s biology, leafminer is polyphagous (it has a broad including many vegetable, distribution, effect on horticultural host range from a number of families). ornamental and legume crops. industries worldwide, and chemical and It also has a high reproductive rate and Currently, Australia remains free biological control strategies. has developed resistance to several of this leafminer species but it is classes of broad-spectrum insecticides. Pest overview Ornamental crops, legumes and now well-established in nearby vegetables are affected by the pest. countries, including Indonesia. Adult L. trifolii can grow between 1-1.7 Host families include Apiaceae (celery), However, if the pest does millimetres. The thorax and abdomen are Asteraceae (chrysanthemum, gerbera, establish in Australia, it could grey/black with patchy yellow regions, lettuce), Brassicaceae (broccoli, threaten our horticulture industry. while the head is completely yellow. cauliflower), Cucurbitaceae (cucumber, AUSVEG Biosecurity Officer Females will use their ovipositor (a tubular melon, pumpkin), Fabaceae (beans, organ which can rasp through the leaf lentils), and Solanaceae (potato, tomato, Madeleine Quirk reports. surface) to insert eggs just below the leaf capsicum). surface that hatch between 2-5 days after Damage from this pest reduces both The Research, Development and being laid. Eggs are too small to be seen marketability and crop yield, and has Extension program for control, eradication by the naked eye, so a seemingly healthy resulted in economic losses to growers and preparedness for vegetable leafminer plant may be harbouring the pest without globally. Examples include: (MT16004) was developed in recognition us knowing. • Between US$18 and $21 million of the extensive impact that vegetable Inside the leaf tissue, colourless damage per year to Californian leafminer (VLM; Liriomyza sativae) could larvae grow to 3 mm, and as they move greenhouse ornamental growers in have on the vegetable, nursery and through three instar phases, the larvae the early 1980s. melon industries if it were to move into become yellow-orange and exit the leaf • $93 million in damage to the production areas with no management at the third instar phase. Larvae pupate Californian chrysanthemum industry plan in place. Project partners include externally to the leaf, usually in the soil between 1981 and 1985. Cesar, Plant Health Australia, Northern below the plant, from which adults • 80 per cent losses to celery growers Australia Quarantine Strategy (NAQS), emerge 7-14 days later. in Florida in 1980, estimated at the University of Melbourne and AUSVEG. The duration of L. trifolii’s life cycle US$9 million. The project has recently expanded varies with temperature. At 28 degrees to investigate two closely related Celsius (°C), a single cycle can be Risk of spread and establishment leafminers, Liriomyza trifolii and achieved in 14-15 days. At lower in Australia Liriomyza huidobrensis. These pests have temperatures, the cycle takes longer. been recognised as potential threats to Research has shown that adults will not Major risk entry pathways for leafminers Australia’s vegetable, nursery, melon, and feed or lay eggs at temperatures as low into Australia are by importation of as 12°C. infested ornamental host plants, cut 34 | Vegetables Australia Adult American serpentine leafminer. Images courtesy of Central Science Laboratory, Harpenden, British Crown, Bugwood.org. flowers, leafy vegetables and seedlings. keep leafminer populations in check. Further Reading Human-assisted entry can also occur, Overseas, several insecticides are used e.g. illegally on plant material. for the control of L. trifolii, including but • Capinera JL. 2017. American Globally, L. trifolii dispersal and not limited to abamectin, azadirachtin, serpentine leafminer, Liriomyza trifolii establishment has occurred rapidly, with chlorantraniliprole, cyromyzine, (Burgess). University of Florida. populations found on most continents, indoxacarb, spinetoram and spinosad. including Europe, Asia, Africa, Central Currently, Plant Health Australia (PHA) is America, the Caribbean, North America, seeking to obtain insecticide permits for South America and Oceania (American control of L. trifolii and other Liriomyza Samoa, Guam, Fiji and Tonga). It has leafminers in Australia as a preparedness recently been identified in Indonesia. measure for growers. PHA will be Movement of cut flowers and infested releasing a contingency plan in coming chrysanthemum cuttings have played a months, which includes further details on major role in the spread of L. trifolii from these applications. • Reitz SR, Gao Y & Lei Z. 2013. its original range in the Americas to other Nevertheless, many species of Insecticide use and the ecology regions in the world. parasitoid wasps have been recorded of invasive Liriomyza leafminer While L. trifolii is not yet present in attacking the pest. MT16004 project management. Australia, many horticultural production partners from Cesar and the University regions in Australia have climatic of Melbourne are currently reviewing conditions similar to locations overseas international literature to investigate the where it has already established, suite of parasitoids that attack L. trifolii and therefore could be at risk of worldwide, and they will cross-reference establishment. It is a heat-tolerant this list with those that already exist species, meaning it will thrive in in Australia. tropical locations, potentially tolerating They have already identified possible temperatures near 35°C. It does not parasitoid species for future control of adapt as well to cool-climate regions as L. sativae and have identified several other leafminers, but it could maintain wasp species attacking Torres Strait populations year-round in protected and Seisia populations. Some of these environments such as greenhouses. wasps are also found in other regions of Australia, which is promising for future Chemical and biological control management of vegetable leafminer. It Find out more is highly likely that the same, or similar, Any unusual plant pest should be reported L. trifolii can rapidly develop resistance suite of parasitoids that might control L. immediately to the relevant state or territory agriculture agency through the Exotic Plant Pest to various chemical groups, particularly sativae populations in Australia could also Hotline (1800 084 881). organophosphates, carbamates, diamides assist in potential control of L. trifolii. For further information, please contact AUSVEG’s and pyrethroids, which can make Extension and Engagement Team on 03 9882 0277 or email [email protected]. control difficult. Application of broad- This project has been funded by Hort Innovation spectrum insecticides often results in using the vegetable, nursery, melon and potato research and development levies and larger leafminer populations as these contributions from the Australian Government. insecticides reduce the reservoir of natural Project Number: MT16004 enemies (parasitoid wasps as well as other generalist predators like spiders), which Summer - 2019/20 | 35 R&D | PROJECT UPDATE Parasitoid wasp (Diglyphus isaea) compared against common wasp (Vespula germanica). Source: Elia Pirtle (parasitoid wasp), Shutterstock (common wasp). How parasitoid wasps are helping to fight the leafminer battle In 2017, a Hort Innovation Vegetable Fund project was established to recognise the damaging impact that vegetable leafminer could have on some of Australia’s fresh produce industries if it were to move into production regions. AUSVEG Biosecurity Officer Madeleine Quirk explores the role of parasitoid wasps in controlling vegetable leafminer populations in far-north Queensland, the importance of parasitoid wasps overseas, and research conducted into reservoirs of parasitoid wasps within Australia’s non-pest leafminers. Vegetable leafminer (Liriomyza sativae; numbers of leafminer larvae by directly News from the incursion front VLM), potato leafminer (Liriomyza feeding on host larvae to acquire nutrients huidobrensis) and American serpentine for the development of additional eggs in Cesar Research Scientist Dr Elia Pirtle has leafminer (Liriomyza trifolli) are exotic the wasp. undertaken extensive field research in the flies that cause significant damage to Dr Peter Ridland from the University Torres Strait and Cape York Peninsula, horticultural commodities overseas, and of Melbourne has conducted a studying parasitoid wasps and their potentially threaten Australia’s vegetable, literature review of the wasps that relationship with VLM. nursery, melon and potato industries. parasitise leafminer flies in Australia and “Some of our Australian species already VLM established itself in the Torres Strait internationally. show signs of very effective vegetable in 2008 and was subsequently
Recommended publications
  • Insecticides - Development of Safer and More Effective Technologies
    INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work.
    [Show full text]
  • Molecular Survey for the Invasive Leafminer Pest Liriomyza Huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza Langei
    Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei Scheffer, S. J., Lewis, M. L., Gaimari, S. D., & Reitz, S. R. (2014). Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei. Journal of Economic Entomology, 107(5), 1959-1964. doi:10.1603/EC13279 10.1603/EC13279 Entomological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse MOLECULAR ENTOMOLOGY Molecular Survey for the Invasive Leafminer Pest Liriomyza huidobrensis (Diptera: Agromyzidae) in California Uncovers Only the Native Pest Liriomyza langei 1,2 1 3 4 SONJA J. SCHEFFER, MATTHEW L. LEWIS, STEPHEN D. GAIMARI, AND STUART R. REITZ J. Econ. Entomol. 107(5): 1959Ð1964 (2014); DOI: http://dx.doi.org/10.1603/EC13279 ABSTRACT Liriomyza huidobrensis (Blanchard) is a highly destructive invasive leafminer pest currently causing extensive damage to vegetable and horticultural crops around the world. Liriomyza langei Frick is a leafminer pest native to California that cannot currently be morphologically distin- guished from L. huidobrensis. We used a DNA-barcoding approach, a published PCR-RFLP method, and a new multiplex PCR method to analyze 664 ßies matching the morphological description of huidobrensisÐlangei. We found no evidence for the presence of L. huidobrensis in our extensive samples from California. In addition to the new molecular method, this work is important because it provides deÞnitive data that the California “pea leafminer” is currently, and has probably always been, L. langei. These data will also be important in the event that the highly invasive L.
    [Show full text]
  • California Pea Leafminer, Liriomyza Langei (Diptera: Agromyzidae)
    DACS-P-01666 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Charles H. Bronson, Commissioner of Agriculture California Pea Leafminer, Liriomyza langei (Diptera: Agromyzidae) Gary J. Steck, [email protected], Taxonomic Entomologist, Florida Department of Agriculture and Consumer Services, Division of Plant Industry W. N. Dixon, [email protected], Bureau Chief, Entomology, Nematology and Plant Pathology, Florida Department of Agriculture and Consumer Services, Division of Plant Industry Liriomyza langei Frick is a dipteran (Agromyzidae) leaf miner (Fig. 1) that is considered a pest of economic importance in California. (http://www.doacs.state.fl.us/pi/enpp/ento/entcirc/ent378.pdf). Affected crops include field and glasshouse- grown vegetables and flowers. In Salinas Valley of Monterey Co., CA, “This insect has gone from a sporadic fall pest, relatively easily controlled, to a pest throughout most of the vegetable growing season that is essentially not able to be controlled in many crops. This is at least partly due to evolution of insecticide resistance; changes in tillage practices may also have contributed to the problem. Lettuce is the worst affected crop, but nearly all of the fresh vegetables grown in the area are hosts for this leafminer” (Chaney 1995). Other vegetable crops suffering severe economic loss include celery (Apium graveolens) and garden pea (Pisum sativum); floral crops include baby’s breath (Gypsophila paniculata), Chrsysanthemum, and Aster. BIOLOGY: Females puncture leaves to feed on plant sap and lay eggs within the leaf tissues. The eggs hatch after two to four days and larvae feed between the upper and lower surface of the leaves, making distinctive winding, whitish tunnels or mines that are often the first clue that leaf miners are present.
    [Show full text]
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • Arthropod Pest Management in Greenhouses and Interiorscapes E
    Arthropod Pest Management in Greenhouses and Interiorscapes E-1011E-1011 OklahomaOklahoma CooperativeCooperative ExtensionExtension ServiceService DivisionDivision ofof AgriculturalAgricultural SciencesSciences andand NaturalNatural ResourcesResources OklahomaOklahoma StateState UniversityUniversity Arthropod Pest Management in Greenhouses and Interiorscapes E-1011 Eric J. Rebek Extension Entomologist/ Ornamentals and Turfgrass Specialist Michael A. Schnelle Extension Ornamentals/ Floriculture Specialist ArthropodArthropod PestPest ManagementManagement inin GreenhousesGreenhouses andand InteriorscapesInteriorscapes Insects and their relatives cause major plant ing a hand lens. damage in commercial greenhouses and interi- Aphids feed on buds, leaves, stems, and roots orscapes. Identification of key pests and an un- by inserting their long, straw-like, piercing-suck- derstanding of appropriate control measures are ing mouthparts (stylets) and withdrawing plant essential to guard against costly crop losses. With sap. Expanding leaves from damaged buds may be tightening regulations on conventional insecti- curled or twisted and attacked leaves often display cides and increasing consumer sensitivity to their chlorotic (yellow-white) speckles where cell con- use in public spaces, growers must seek effective tents have been removed. A secondary problem pest management alternatives to conventional arises from sugary honeydew excreted by aphids. chemical control. Management strategies cen- Leaves may appear shiny and become sticky from tered around
    [Show full text]
  • Manual for Certificate Course on Plant Protection & Pesticide Management
    Manual for Certificate Course on Plant Protection & Pesticide Management (for Pesticide Dealers) For Internal circulation only & has no legal validity Compiled by NIPHM Faculty Department of Agriculture , Cooperation& Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India National Institute of Plant Health Management Hyderabad-500030 TABLE OF CONTENTS Theory Practical CHAPTER Page No. class hours hours I. General Overview and Classification of Pesticides. 1. Introduction to classification based on use, 1 1 2 toxicity, chemistry 2. Insecticides 5 1 0 3. fungicides 9 1 0 4. Herbicides & Plant growth regulators 11 1 0 5. Other Pesticides (Acaricides, Nematicides & 16 1 0 rodenticides) II. Pesticide Act, Rules and Regulations 1. Introduction to Insecticide Act, 1968 and 19 1 0 Insecticide rules, 1971 2. Registration and Licensing of pesticides 23 1 0 3. Insecticide Inspector 26 2 0 4. Insecticide Analyst 30 1 4 5. Importance of packaging and labelling 35 1 0 6. Role and Responsibilities of Pesticide Dealer 37 1 0 under IA,1968 III. Pesticide Application A. Pesticide Formulation 1. Types of pesticide Formulations 39 3 8 2. Approved uses and Compatibility of pesticides 47 1 0 B. Usage Recommendation 1. Major pest and diseases of crops: identification 50 3 3 2. Principles and Strategies of Integrated Pest 80 2 1 Management & The Concept of Economic Threshold Level 3. Biological control and its Importance in Pest 93 1 2 Management C. Pesticide Application 1. Principles of Pesticide Application 117 1 0 2. Types of Sprayers and Dusters 121 1 4 3. Spray Nozzles and Their Classification 130 1 0 4.
    [Show full text]
  • Leafminers - General (110)
    Pacific Pests, Pathogens and Weeds - Online edition Leafminers - General (110) Summary Worldwide distribution. There are several types attacking cucumber, bean, tomato, cabbage, and other families, and many plants in the cut flower trade. Damage is done by the larvae or maggot; the adult is a fly. Eggs laid beneath leaf surface; larvae hatch and mine the leaves, which dry up and fall early; loss of leaves may cause sunburn. Damage also done by female using ovipositors to feed on sap (both sexes feed on nectar). Biosecurity: not all species in all countries. Natural enemies: many exist giving effective control. Cultural control: remove weeds as they are leafminer hosts; collect and destroy trash after Photo 1. Adult vegetable leafminer, Liriomyza harvest. sativae (side view). The adults feed on sap Chemical control: Bt (Bacillus thuringiensis), spinosad, abamectin, cyromazine; resistance to from leaves and nectar. pyrethroids exists. Common Name Leafminers. See other fact sheets for accounts on separate species (Fact Sheet nos. 259, 262 and 377). Scientific Name Liriomyza sativae (vegetable leafminer); Liriomyza trifolii (chrysanthemum leafminer or American serpentine leafminer), Liriomyza huidobrensis (serpentine leafminer); Liriomyza brassicae (cabbage or serpentine leafminer). Photo 2. Adult chrysanthemum leafminer, Liriomyza trifolii (side view). Photo 3. Cabbage leafminer, Liriomyza brassicae (from above). Photo 4. Cabbage leafminer, Liriomyza brassicae (side view). Photo 5. Characteristic patterns of damage on tomato made by the larvae or maggots of a Liriomyza leafminer feeding just under the surface layer of the leaves. Photo 6. Cabbage leafminer, Liriomyza brassicae, mines on Nasturtium. Photo 7. Close-up of Photo 3, showing the mines of cabbage leafminer, Liriomyza brassicae.
    [Show full text]
  • American Serpentine Leaf Miner CP
    Liriomyza trifolii Contingency Plan Prepared for Horticulture Innovation Australia, as part of Project MT16004 (RD&E program for control, eradication and preparedness for vegetable leafminer) Rohan Burgess 1, Dr. Peter Ridland 2, Dr. Elia Pirtle 3 1 Plant Health Australia 2 The University of Melbourne 3 Cesar Australia December 7, 2020 This resource has been funded by Horticulture Innovation, through the Project MT16004 (RD&E program for control, eradication and preparedness for vegetable leafminer), using multiple research and development levies and contributions from the Australian Government. Hort Innovation is the grower-owned, not-for-profit research and development corporation for Australian horticulture. AMERICAN SERPENTINE LEAFMINER CONTINGENCY PLAN CONTINGENCY PLAN AMERICAN SERPENTINE LEAFMINER (LIRIOMYZA TRIFOLII) Central Science Laboratory, Harpenden, British Crown, Central Science Laboratory, Harpenden, British Crown, Bugwood.org Bugwood.org December 2020 This resource has been funded by Horticulture Innovation, through the Project MT16004 (RD&E program for control, eradication and preparedness for vegetable leafminer), using multiple research and development levies and contributions from the Australian Government. Hort Innovation is the grower-owned, not-for-profit research and development corporation for Australian horticulture. AMERICAN SERPENTINE LEAFMINER CONTINGENCY PLAN This Contingency Plan has been authored by Rohan Burgess (Plant Health Australia), Dr. Peter Ridland (The University of Melbourne) and Dr. Elia Pirtle (Cesar Australia), with contributions from Dr. Sharyn Taylor (Plant Health Australia), Dr. James Maino (Cesar Australia), and Dr. Paul Umina (Cesar Australia). Disclaimer The scientific and technical content of this document is current to the date published and all efforts have been made to obtain relevant and published information on these pests.
    [Show full text]
  • Request for Comments on Regulatory Options for Pea Leaf Miner
    FOR INFORMATION AND ACTION DA-2008-76 December 19, 2008 SUBJECT: Request for Comments on Regulatory Options for Pea Leaf Miner TO: STATE AND TERRITORY AGRICULTURAL REGULATORY OFFICIALS The Animal and Plant Health Inspection Service (APHIS) is soliciting your comments to help us determine options for the continued regulation of Liriomyza huidobrensis, commonly known as pea leaf miner. Pea leaf miner is an exotic, highly polyphagous leaf miner capable of inflicting severe damage to crops such as field- and glasshouse-grown vegetables and flowers. Pea leaf miner is a mining fly of the insect family Agromyzidae. Pea leaf miner can be found in Asia, Africa, Central and South America, Europe, the Middle East, and Oceania. This fly was also considered to be present in the States of California, Hawaii, Oregon, and Washington. However, there is now evidence that the fly in the United States previously believed to be pea leaf miner is not Liriomyza huidobrensis. Research has identified the fly present in the United States as Liriomyza langei. The fly was differentiated by molecular diagnosis from pea leaf miner but is morphologically almost identical. This research is summarized in the attached Center for Plant Health Science and Technology (CPHST) report entitled, “Is Liriomyza langei a real species or a biotype of L. huidobrensis?”. For regulatory purposes, APHIS believes that pea leaf miner and L. langei can be considered different species and distinct taxa. However, we recognize that we should not regulate one fly and not the other without scientific evidence indicating biological differences affecting pest character between species so taxonomically similar.
    [Show full text]
  • Biological Control of Liriomyza Leafminers: Progress and Perspective
    CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 004 Review Biological control of Liriomyza leafminers: progress and perspective Tong-Xian Liu1*, Le Kang2, Kevin M. Heinz3 and John Trumble4 Address: 1 Department of Entomology, Texas AgriLife Research, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA. 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 3 Department of Entomology, Texas A&M University, College Station, TX, USA. 4 Department of Entomology, University of California, Riverside, CA, USA. *Correspondence: Tong-Xian Liu. Fax. 01 956-968-0641. Email: [email protected] Received: 6 October 2008 Accepted: 15 December 2008 doi: 10.1079/PAVSNNR20094004 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2008 (Online ISSN 1749-8848) Abstract There are more than 330 Liriomyza species (Diptera: Agromyzidae) and many are economically important pests of field crops, ornamentals and vegetables. Given the substantial economic losses associated with various aspects of Liriomyza feeding as well as the ability of these insects to rapidly develop resistance to insecticides, researchers from many countries have attempted to use bio- logical control to manage these pests. Unfortunately, progress on the science and implementation of effective Liriomyza biological control is hampered by the literature being scattered widely and in many different languages. A primary goal of this review is to consolidate the available infor- mation and provide an analysis of the published work.
    [Show full text]
  • Integrated Pest Management in the Global Arena
    Integrated Pest Management in the Global Arena This Handbook is dedicated to all the participants of the Michigan State University’s International IPM Short Course and to the faculty members who have provided support to this course. Integrated Pest Management in the Global Arena Edited by K.M. Maredia Professor Institute of International Agriculture and Department of Entomology Michigan State University East Lansing Michigan USA D. Dakouo Senior Research Scientist INERA Bobo-Dioulasso Burkina Faso and D. Mota-Sanchez Research Associate Department of Entomology Michigan State University East Lansing Michigan USA CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 44 Brattle Street Wallingford 4th Floor Oxon OX10 8DE Cambridge, MA 02138 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 Email: [email protected] E-mail: [email protected] Website: www.cabi-publishing.org ©CAB International 2003. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Integrated pest management in the global arena /edited by K.M. Maredia, D. Dakouo, D. Mota-Sanchez p. cm. Includes bibliographical references. ISBN 0-85199-652-3 1. Pests--Integrated control. I. Maredia, Karim M. II. Dakouo, D. (Dona), 1951- III. Mota-Sanchez, D. (David), 1960- SB950.I4575 2003 632′.9--dc21 2002154965 ISBN 0 85199 652 3 Typeset by AMA DataSet, UK Printed and bound in the UK by Cromwell Press, Trowbridge Contents Contributors ix Preface xv Acknowledgments xvii Foreword xix Acronyms and Abbreviations xxi 1Introduction and Overview 1 K.M.
    [Show full text]
  • Leaf Miner Species CP
    Contingency Plan – Cereal Leafminers (Agromyza ambigua, A. megalopsis, Cerodontha denticornis, Chromatomyia fuscula, Ch. nigra) Industry Biosecurity Plan for the Grains Industry Threat Specific Contingency Plan Cereal Leafminers Agromyza ambigua, Agromyza megalopsis, Cerodontha denticornis, Chromatomyia fuscula, Chromatomyia nigra Prepared by Dr Peter Ridland and Plant Health Australia January 2009 Disclaimer: The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Page 1 of 40 Contingency Plan – Cereal Leafminers (Agromyza ambigua, A. megalopsis, Cerodontha denticornis, Chromatomyia fuscula, Ch. nigra) 1 Purpose of this Contingency Plan.........................................................................................................
    [Show full text]