The Biology and Fishery of Common Octopus (Octopus Vulgaris

Total Page:16

File Type:pdf, Size:1020Kb

The Biology and Fishery of Common Octopus (Octopus Vulgaris THE BIOLOGY AND FISHERY OF COMMON OCTOPUS (OCTOPUS VULGARIS, CUVIER 1797) IN THE KENYAN SOUTH COAST GIDEON MBITHI KIVENGEA A THESIS SUBMITTED TO THE UNIVERSITY OF NAIROBI IN FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY SCHOOL OF BIOLOGICAL SCIENCES, UNIVERSITY OF NAIROBI NOVEMBER, 2014 Declaration ii Dedication This work is dedicated to my parents, the late Mr. Wilson Kivengea Nzivo and Mrs. Mary Kivengea iii Acknowledgements Foremost, I would like to express my sincere gratitude to my supervisors Prof. M. J. Ntiba, Dr. D.O. Sigana and Dr. A. W. Muthumbi for the continuous support during my research work, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance was important during research and write up of this thesis. I have been extremely lucky to have supervisors who cared so much about my work, and who responded to my questions promptly. I could not have imagined having better supervisors and mentors for my Ph.D study. I would also like to thank all the staff of University of Nairobi, School of Biological Sciences, for their support in preparation for this work. In particular, I would like to thank Mr. Francis M. Nyaga and Mr. James Samoei Kipyego, the Hydrobiology Laboratory Technicians, for their assistance by providing laboratory equipment and chemicals when I needed them. I am extremely grateful to the Director, Kenya Marine and Fisheries Research Institute (KMFRI), Dr. Johnson Kazungu, for allowing me to do my laboratory work at the Institute. The help of Mr. Boaz Okeyo Orembo and Mr. James Reuben Gonda, the KMFRI Laboratory Technicians is also highly appreciated. Let me thank, in a special way, Mr. Daniel Ocharo and Mr Kenneth Omondi, the KMFRI field officers, for their assistance during my data collection. My sincere thanks also go to the artisanal fishermen and the staff of the State Department of Fisheries at Mombasa, Shimoni and Vanga and all those who helped me in one way or another in my sampling exercises. I also thank Mr. Edwin Oloo for his assistance during data collection on marketing and industrial processing of octopus. iv I am very grateful to Dr. George Ombakho, the Director, Directorate of Research Management and Development, and the entire staff of the Ministry of Education Science and Technology for their encouragement and financial support which enabled me to undertake this study. Last, but not the least, I would like to thank my wife Mrs. Stellah Mueni Mbithi and my two Children, Charity Mutave Mbithi and Angela Nthenya Mbithi; they have been a constant source of emotional and moral support during my study period. v Table of Contents Contents Page Title…………………………………………………………………………………………. i Declaration…………………………………………………………………………………. ii Dedication………………………………………………………………………………….. iii Acknowledgements………………………………………………………………………… iv Table of Contents………………………………………………………………………….. vi List of Tables……………………………………………………………………………..... xi List of Figures………………………………………………………………………………. xii List of Plates……………………………………………………………………………….. xv Acronyms…..………………………………………………………………………………. xvi Abstract……………………………………………………………………………………... xviii CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW…………… 1 1.1 Background………………………………………………………………………… 1 1.2 Problem Statement…………………………………………………………………. 3 1.3 Overall objective of the study……………………………………………………… 3 1.3.1 Specific objectives of the study……………………………………………………. 3 1.4 Significance of the study…………………………………………………………... 4 1.5 Scope and limitations of the study…………………………………………………. 4 1.6 Literature Review………………………………………………………………….. 5 1.6.1 Marine fisheries landing trends - a global perspective……………………………. 5 1.6.2 Global landing trends of octopus………………………………………………….. 7 1.6.3 National marine fisheries landing trends………………………………………….. 8 1.6.4 Description and behaviour of common octopus………………………………….. 10 vi 1.6.5 Growth and Temporal distribution of common octopus…………………………. 12 1.6.6 Reproductive biology of common octopus……………………………………….. 15 1.6.7 Food and feeding habits of common octopus…………………………………….. 18 1.6.8 The fishery, processing and marketing of common octopus……………………… 20 1.6.9 Fisheries legal and regulatory framework in Kenya………………………………. 21 CHAPTER 2: STUDY AREA, GENERAL MATERIALS AND METHODS…………….. 23 2.1 Description of the Kenyan coastline……………………………………………….. 23 2.2 Description of the study sites………………………………………………………. 24 2.3 Characteristics of the common octopus……………………………………………. 25 2.4 Study design……………………………………………………………………….. 27 2.5 Common octopus fishing method………………………………………………….. 28 2.6 Treatment of specimens……………………………………………………………. 29 2.7 Preservation of specimens………………………………………………………… 30 CHAPTER 3: GROWTH AND TEMPORAL DISTRIBUTION OF COMMON OCTOPUS…………………………………………………………………………………... 31 3.1 Introduction………………………………………………………………………… 31 3.2 Materials and Methods……………………………………………………………. 32 3.2.1 Assessment of class size distribution of common octopus……………………….. 32 3.2.2 Assessment of relative weight growth of common octopus………………………. 32 3.2.3 Assessment of relative condition factor of common octopus……………………… 33 3.3 Results……………………………………………………………………………… 33 3.3.1 Dorsal mantle length (DML) class size frequency distribution……………………. 33 3.3.2 Monthly mean DML distribution………………………………………………….. 35 3.3.3 The BW class size frequency distribution of common octopus…………………… 37 vii 3.3.4 Monthly mean BW distribution of common octopus……………………………… 39 3.3.5 Length-weight relationship of common octopus at Shimoni………………………. 40 3.3.6 Length-weight relationship of common octopus at Vanga………………………… 42 3.3.7 Condition factor (K) of common octopus at Shimoni and Vanga…………………. 43 3.3.8 Monthly demographic structure of common octopus……………………………… 44 3.4 Discussion………………………………………………………………………….. 44 3.5 Summary and conclusions…………………………………………………………. 48 CHAPTER 4: REPRODUCTIVE BIOLOGY OF THE COMMON OCTOPUS IN KENYAN SOUTH COAST………………………………………………………………… 49 4.1 Introduction………………………………………………………………………… 49 4.2 Materials and Methods……………………………………………………………. 50 4.2.1 Assessment of sex ratio of common octopus………………………………………. 50 4.2.2 Assessment of size at first maturity in common octopus………………………….. 51 4.2.3 Assessment of maturity stages of gonads of common octopus……………………. 52 4.2.4 Assessment of the gonadosomatic index (GSI) of common octopus……………… 52 4.2.5 Assessment of relative fecundity of common octopus……………………………. 52 4.3 Results……………………………………………………………………………… 54 4.3.1 Sex ratio of common octopus……………………………………………………… 54 4.3.2 Size at sexual maturity of common octopus……………………………………….. 55 4.3.3 Maturity stages for female common octopus gonads ……………………………... 58 4.3.4 Maturity stages for male common octopus gonads……………………………….. 65 4.3.5 Gonadosomatic Index (GSI) of common octopus………………………………… 71 4.3.6 Fecundity of common octopus……………………………………………………. 73 4.4 Discussion………………………………………………………………………….. 74 viii 4.5 Summary and conclusions…………………………………………………………. 77 CHAPTER 5: FOOD AND FEEDING HABITS OF THE COMMON OCTOPUS……….. 79 5.1 Introduction………………………………………………………………………… 79 5.2 Materials and Methods…………………………………………………………….. 80 5.2.1 Collection and treatment of specimen……………………………………………... 80 5.2.2 Methods of stomach content analysis……………………………………………… 80 5.3 Results……………………………………………………………………………… 82 5.3.1 The stomach fullness indices of common octopus………………………………… 82 5.3.2 Common octopus stomach fullness analysis by length class………………………. 84 5.3.3 Common octopus frequency of occurrence (FO) analysis………………………… 87 5.3.4 Stomach contents analysis by length class………………………………………… 89 5.4 Discussion…………………………………………………………………………. 91 5.5 Summary and conclusions…………………………………………………………. 94 CHAPTER 6: THE FISHERY, PROCESSING AND MARKETING OF COMMON OCTOPUS………………………………………………………………………………….. 96 6.1 Introduction……………………………………………………………………….. 96 6.2 Materials and Methods…………………………………………………………….. 97 6.2.1 Assessment of the Catch Per Unit Effort (CPUE) of common octopus……………………………………………………………………………... 97 6.2.2 Assessment of common octopus landings…………………………………………. 97 6.2.3 Assessment of industrial and traditional value addition processes by use of a Questionnaire………………………………………………………………………. 98 6.3 Results……………………………………………………………………………… 99 6.3.1 Monthly common octopus landings……………………………………………….. 99 ix 6.3.2 Traditional processing of common octopus……………………………………….. 100 6.3.3 Industrial processing of common octopus…………………………………………. 102 6.3.4 Marketing of common octopus…………………………………………………….. 107 6.4 Discussion………………………………………………………………………….. 109 6.4.1 Common octopus catches………………………………………………………….. 109 6.4.2 Traditional processing of common octopus………………………………………. 110 6.4.3 Industrial processing of common octopus…………………………………………. 112 6.5 Summary and conclusions………………………………………………………… 115 CHAPTER 7: GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS…………………………………………………………………… 117 7.1 General discussion………………………………………………………………… 117 7.2 Conclusion………………………………………………………………………… 121 7.3 Recommendations…………………………………………………………………. 123 7.3.1 Future studies……………………………………………………………………… 123 7.3.2 Management and policy actions…………………………………………………… 123 REFERENCES……………………………………………………………………………… 124 x List of Tables Table Page 4.1 Monthly common octopus sex ratio variations at Shimoni 2010-2012…………….. 54 4.2 Monthly common octopus sex ratio variations at Vanga 2010 -2012……………… 55 4.3 The four female’s reproductive stages of common octopus ……………………….. 58 4.4 The four male reproductive stages of common octopus …………………………… 65 6.1 Common octopus logbook data sheet ……………………….……………………….
Recommended publications
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Octopus Consciousness: the Role of Perceptual Richness
    Review Octopus Consciousness: The Role of Perceptual Richness Jennifer Mather Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected] Abstract: It is always difficult to even advance possible dimensions of consciousness, but Birch et al., 2020 have suggested four possible dimensions and this review discusses the first, perceptual richness, with relation to octopuses. They advance acuity, bandwidth, and categorization power as possible components. It is first necessary to realize that sensory richness does not automatically lead to perceptual richness and this capacity may not be accessed by consciousness. Octopuses do not discriminate light wavelength frequency (color) but rather its plane of polarization, a dimension that we do not understand. Their eyes are laterally placed on the head, leading to monocular vision and head movements that give a sequential rather than simultaneous view of items, possibly consciously planned. Details of control of the rich sensorimotor system of the arms, with 3/5 of the neurons of the nervous system, may normally not be accessed to the brain and thus to consciousness. The chromatophore-based skin appearance system is likely open loop, and not available to the octopus’ vision. Conversely, in a laboratory situation that is not ecologically valid for the octopus, learning about shapes and extents of visual figures was extensive and flexible, likely consciously planned. Similarly, octopuses’ local place in and navigation around space can be guided by light polarization plane and visual landmark location and is learned and monitored. The complex array of chemical cues delivered by water and on surfaces does not fit neatly into the components above and has barely been tested but might easily be described as perceptually rich.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Eight Arms, with Attitude
    The link information below provides a persistent link to the article you've requested. Persistent link to this record: Following the link below will bring you to the start of the article or citation. Cut and Paste: To place article links in an external web document, simply copy and paste the HTML below, starting with "<a href" To continue, in Internet Explorer, select FILE then SAVE AS from your browser's toolbar above. Be sure to save as a plain text file (.txt) or a 'Web Page, HTML only' file (.html). In Netscape, select FILE then SAVE AS from your browser's toolbar above. Record: 1 Title: Eight Arms, With Attitude. Authors: Mather, Jennifer A. Source: Natural History; Feb2007, Vol. 116 Issue 1, p30-36, 7p, 5 Color Photographs Document Type: Article Subject Terms: *OCTOPUSES *ANIMAL behavior *ANIMAL intelligence *PLAY *PROBLEM solving *PERSONALITY *CONSCIOUSNESS in animals Abstract: The article offers information on the behavior of octopuses. The intelligence of octopuses has long been noted, and to some extent studied. But in recent years, play, and problem-solving skills has both added to and elaborated the list of their remarkable attributes. Personality is hard to define, but one can begin to describe it as a unique pattern of individual behavior that remains consistent over time and in a variety of circumstances. It will be hard to say for sure whether octopuses possess consciousness in some simple form. Full Text Word Count: 3643 ISSN: 00280712 Accession Number: 23711589 Persistent link to this http://0-search.ebscohost.com.library.bennington.edu/login.aspx?direct=true&db=aph&AN=23711589&site=ehost-live
    [Show full text]
  • Os Nomes Galegos Dos Moluscos 2020 2ª Ed
    Os nomes galegos dos moluscos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos moluscos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"mo uscos"2020.pd# Fotografía: caramuxos riscados (Phorcus lineatus ). Autor: David Vilasís. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . Licenza comp eta: https://creativecommons.org/ icences/%,!nc-nd/-.0/ ega code. anguages. 1 Notas introdutorias O que cont!n este documento Neste recurso léxico fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas) ! primeira edición d" Os nomes galegos dos moluscos é do ano #$%& Na segunda edición (2$#$), adicionáronse algunhas especies, asignáronse con maior precisión algunhas das denominacións vernáculas galegas, corrixiuse algunha gralla, rema'uetouse o documento e incorporouse o logo da (have. )n total, achéganse nomes galegos para *$+ especies de moluscos A estrutura )n primeiro lugar preséntase unha clasificación taxonómica 'ue considera as clases, ordes, superfamilias e familias de moluscos !'uí apúntanse, de maneira xeral, os nomes dos moluscos 'ue hai en cada familia ! seguir
    [Show full text]
  • Molluscs Gastropods
    Group/Genus/Species Family/Common Name Code SHELL FISHES MOLLUSCS GASTROPODS Dentalium Dentaliidae 4500 D . elephantinum Elephant Tusk Shell 4501 D . javanum 4502 D. aprinum 4503 D. tomlini 4504 D. mannarense 450A D. elpis 450B D. formosum Formosan Tusk Shell 450C Haliotis Haliotidae 4505 H. varia Variable Abalone 4506 H. rufescens Red Abalone 4507 H. clathrata Lovely Abalone 4508 H. diversicolor Variously Coloured Abalone 4509 H. asinina Donkey'S Ear Abalone 450G H. planata Planate Abalone 450H H. squamata Scaly Abalone 450J Cellana Nacellidae 4510 C. radiata radiata Rayed Wheel Limpet 4511 C. radiata cylindrica Rayed Wheel Limpet 4512 C. testudinaria Common Turtle Limpet 4513 Diodora Fissurellidae 4515 D. clathrata Key-Hole Limpets 4516 D. lima 4517 D. funiculata Funiculata Limpet 4518 D. singaporensis Singapore Key-Hole Limpet 4519 D. lentiginosa 451A D. ticaonica 451B D. subquadrata 451C Page 1 of 15 Group/Genus/Species Family/Common Name Code D. pileopsoides 451D Trochus Trochidae 4520 T. radiatus Radiate Top 4521 T. pustulosus 4522 T. stellatus Stellate Trochus 4523 T. histrio 4524 T. maculatus Maculated Top 452A T. niloticus Commercial Top 452B Umbonium Trochidae 4525 U. vestiarium Common Button Top 4526 Turbo Turbinidae 4530 T. marmoratus Great Green Turban 4531 T. intercostalis Ribbed Turban Snail 4532 T. brunneus Brown Pacific Turban 4533 T. argyrostomus Silver-Mouth Turban 4534 T. petholatus Cat'S Eye Turban 453A Nerita Neritidae 4535 N. chamaeleon Chameleon Nerite 4536 N. albicilla Ox-Palate Nerite 4537 N. polita Polished Nerite 4538 N. plicata Plicate Nerite 4539 N. undata Waved Nerite 453E Littorina Littorinidae 4540 L. scabra Rough Periwinkle 4541 L.
    [Show full text]
  • A New Rapid Method for the Authentication of Common Octopus
    foods Article A New Rapid Method for the Authentication of Common Octopus (Octopus vulgaris) in Seafood Products Using Recombinase Polymerase Amplification (RPA) and Lateral Flow Assay (LFA) Amaya Velasco 1,*, Graciela Ramilo-Fernández 1 , Françoise Denis 2, Luís Oliveira 3 , Peter Shum 4 , Helena Silva 3 and Carmen G. Sotelo 1 1 Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Pontevedra, Spain; [email protected] (G.R.-F.); [email protected] (C.G.S.) 2 BOREA MNHN, CNRS 8067, SU, IRD 207, UCN, UA-BIOSSE Le Mans Université, 72000 Le Mans, France; [email protected] 3 Instituto Português do Mar e da Atmosfera (IPMA, I.P.), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; [email protected] (L.O.); [email protected] (H.S.) 4 School of Biological and Environmental Sciences, Liverpool John Moores University (LJMU), Liverpool L2 2QP, UK; [email protected] * Correspondence: [email protected]; Tel.: +34-986231930 Abstract: The common octopus (Octopus vulgaris) is a highly valued cephalopod species which is Citation: Velasco, A.; marketed with different grades of processing, such as frozen, cooked or even canned, and is likely Ramilo-Fernández, G.; Denis, F.; to be mislabeled. Some molecular methods have been developed for the authentication of these Oliveira, L.; Shum, P.; Silva, H.; Sotelo, products, but they are either labor-intensive and/or require specialized equipment and personnel. C.G. A New Rapid Method for the This work describes a newly designed rapid, sensitive and easy-to-use method for the detection of Authentication of Common Octopus Octopus vulgaris in food products, based on Recombinase Polymerase Amplification (RPA) and a (Octopus vulgaris) in Seafood Products detection using a Lateral Flow assay (LFA).
    [Show full text]
  • Hermit Crabs - Paguridae and Diogenidae
    Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus
    [Show full text]
  • Aggregata Infection in the Common Octopus, Octopus Vulgaris (Linnaeus, 1758), Cephalopoda: Octopodidae, Reared in a Flow-Through System
    ISSN: 0001-5113 ACTA ADRIAT., UDC: 594.56:616.993 (262) AADRAY 46 (2): 193 - 199, 2005 Original scientific paper Aggregata infection in the common octopus, Octopus vulgaris (Linnaeus, 1758), Cephalopoda: Octopodidae, reared in a flow-through system Ivona MLADINEO* and Mladen JOZIĆ Laboratory of Aquaculture, Institute of Oceanography and Fisheries, P.O. Box 500, 21000 Split, Croatia *Corresponding author, e-mail: [email protected] Along with the introduction of the common octopus (Octopus vulgaris) to rearing systems in the Mediterranean by fattening or experimental paralarval production, emergence of diseases has become a concern. The most devastating infection of reared octopus stock is the coccidian parasite Aggregata sp. (Apicomplexa: Aggregatidae) that causes weight loss, excitation and behavioral changes, and miliar subcutaneous parasitic cysts. During eight months of experimental fattening of common octopus in the aquaculture facilities of the Institute of Oceanography and Fisheries (Split, Croatia), 7% mortality was attributed to infection by Aggregata sp. Although the detailed life cycle of the genus Aggregata is not yet completely elucidated, it is known that this heteroxenous coccidian uses crustaceans for merogony, which comprise 30% of the cephalopod’s diet. For the moment, only adequate zooprophylactic measures can prevent the emergence of the infection in the rearing system. Preventing introduction of adult specimens into the rearing system is a critical zooprophylactic measure, along with stocking only juvenile cephalopods that are uninfected by the coccidian through the food web in the natural environment and are, thus, unable to introduce the infection into the rearing system. The second measure involves avoiding crustaceans in the rearing diet.
    [Show full text]
  • CEPHALOPODS A3a.3.1 Introduction
    Offshore Energy SEA A3a.3 CEPHALOPODS A3a.3.1 Introduction This section describes the biology and ecology of the main cephalopod species found within UK waters. Cephalopods are short-lived, carnivorous invertebrates with rapid growth rates that play an important role in marine food webs. Two superorders of the class Cephalopoda are found within the area: the Decapodiformes (squid and cuttlefish) and the Octopodiformes (octopuses). Most cephalopods lack an external shell and are highly mobile predators. They possess complex eyes, similar to those of vertebrates and are often regarded as the most intelligent of invertebrates. The importance of cephalopod stocks to commercial fisheries is increasing, as fish stocks dwindle and become subject to tighter management (Boyle & Pierce 1994). Much of the work carried out on cephalopod distributions and abundances in UK waters is based on landings data and routine research vessel surveys co- ordinated by ICES. Information on the life history, distribution and abundance of these species has been taken from a review of UK cephalopods produced by Hastie et al. (2008), unless otherwise cited. An overview of important cephalopod species in UK waters is provided, followed by a brief description of features specific to each Regional Sea. A3a.3.2 UK context A number of species occur in UK waters, with varying degrees of frequency. Most cephalopods will be in one of five groups: the long-finned squids (Lolignids), the short-finned squids (Ommastrephids), bobtails (Sepiolids), cuttlefish and octopuses. Among the most frequently recorded species are: the long-finned squids, Alloteuthis subulata and Loligo forbesii; the short finned squid, Todarodes sagittatus; other squids, Gonatus fabricii and Onychoteuthis banksii; the bobtail squids, Rossia macrosoma, Sepiola atlantica and Sepietta oweniana; the octopus, Eledone cirrhosa.
    [Show full text]
  • Schwarz, Tamar Imogen (2016) the Origin of Vertebrate Steroids in Molluscs: Uptake, Metabolism and Depuration Studies in the Common Mussel
    Schwarz, Tamar Imogen (2016) The origin of vertebrate steroids in molluscs: uptake, metabolism and depuration studies in the common mussel. PhD thesis. https://theses.gla.ac.uk/7436/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] THE ORIGIN OF VERTEBRATE STEROIDS IN MOLLUSCS: UPTAKE, METABOLISM AND DEPURATION STUDIES IN THE COMMON MUSSEL TAMAR IMOGEN SCHWARZ Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow In collaboration with the Centre for the Environment, Fisheries and Aquaculture Science (Cefas) April 2016 ©Tamar I. Schwarz, 2016 1 Abstract Many studies have found vertebrate sex steroids, such as testosterone (T), 17 β-oestradiol (E 2) and progesterone (P) to be present in molluscan tissues. The underlying assumption of most, if not all, these studies has been that these steroids are formed endogenously and furthermore, act as reproductive hormones in the same way that they do in vertebrates (i.e.
    [Show full text]
  • Drilling Behaviour of Octopus Mimus Gould Tito Corteza, Bernardino G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Drilling behaviour of Octopus mimus Gould Tito Corteza, Bernardino G. Castrob, Angel Guerrac,* aUniversidad Arturo Prat, Avenida 11 de Septiembre, 2120 Iquique, Chile bDepartamento de Ecologia y Biologia Animal, Facultad de Ciencias, Apdo. 874, Universidad de Vigo, 36200 Vigo (Pontevedra), Spain cInstituto de Investigaciones Marinas (CSIC), 36208 Vigo (Pontevedra), Spain *Corresponding author: Tel: 134 86 231930; fax: 134 86 292762; e-mail: [email protected] Abstract The hole-drilling behaviour of the common octopus in North Chilean waters, Octopus mimus, on nine of its molluscan prey was studied in 70 specimens of 10–2000 g body weight in the laboratory. The occurrence of perforation was low, only 24.50% of the ingested prey were drilled. The bivalve Protothaca thaca (Molina) was the prey most frequently perforated, on 73.30% of occasions. The mean length of the P. thaca ingested increased significantly with octopus weight (r2 = 0.982, p < 0.001) whether or not clams had previously been drilled. The form of the holes was usually a truncated cone with an oval section. The dimensions (length and width) of the external openings of the holes were significantly dependent on octopus weight and clam length (p < 0.001 in both cases). However, the dimensions of the internal openings of the holes were only dependent on octopus size. Location of the holes differed according to the prey species. Holes made in Mytilidae shells did not have any specific position, while the apex was the area selected for drilling the gastropod Concholepas concholepas (Brugière).
    [Show full text]