3 the Generalised Schrödinger Equation

Total Page:16

File Type:pdf, Size:1020Kb

3 the Generalised Schrödinger Equation Editorial Board Editor in Chief Mark Zilberman, MSc, Shiny World Corporation, Toronto, Canada Scientific Editorial Board Viktor Andrushhenko, PhD, Professor, Academician of the Academy of Pedagogical Sciences of Ukraine, President of the Association of Rectors of pedagogical universities in Europe John Hodge, MSc, retired, USA Petr Makuhin, PhD, Associate Professor, Philosophy and Social Communications faculty of Omsk State Technical University, Russia Miroslav Pardy, PhD, Associate Professor, Department of Physical Electronics, Masaryk University, Brno, Czech Republic Lyudmila Pet'ko, Executive Editor, PhD, Associate Professor, National Pedagogical Dragomanov University, Kiev, Ukraine Volume 8, Number 2 Publisher : Shiny World Corp. Address : 9200 Dufferin Street P.O. Box 20097 Concord, Ontario L4K 0C0 Canada E-mail : [email protected] Web Site : www.IntellectualArchive.com Series : Journal Frequency : Every 3 months Month : April - June 2019 ISSN : 1929-4700 DOI : 10.32370/IA_2019_02 Trademark © 2019 Shiny World Corp. All Rights Reserved. No reproduction allowed without permission. Copyright and moral rights of all articles belong to the individual authors. Physics M. Pardy The Complex Mass from Henstock-Kurzweil-Feynman-Pardy Integral ……………. 1 John C. Hodge STOE beginnings ……………………………………………………………….…………. 11 John C. Hodge STOE Explains "Planet 9" ………………………………………………………………… 13 John C. Hodge STOE Explanation for the ``Ether wind" ………………………………………………… 15 V. Litvinenko , A. Shapovalov, Low Inductive and Resistance Energy Capacitor …….………….………………….… 19 A. Ovsyannik Astronomy W. Duckss Why do Hydrogen and Helium Migrate from Some Planets and Smaller Objects? ... 24 Technics Modern Reading of the 40 Principles of TIPS Using the Example of the Technology V. Korobov for Activation of Fuel Mixtures ……………………………………………………………. 32 Computer Science A. Kravchenko The Practical Side of IoT Implementation in Smart Cities …………………………..... 52 Economics Workforce Training and Management Challenges in the Contemporary Smart A. Kravchenko Manufacturing (SM) …………………………………………………….………………..... 59 A. Kravchenko How Large Businesses Convert Volatility in Emerging Markets into Opportunity ..... 66 Law A. Kofanov, V. Anufriieva- Injukova, Theoretical and Practical Aspects of Arms Trafficking ………………………………… 74 M. Kulyk, Y. Tereshchenko, R. Kutsyi A. Kofanov, The Global Problem of the Third Millennium: Organized Transnational Cybercrime P. Bilenchuk, (Historiography) ……………………………………………………………………………. 86 O. Kofanova continued (continued) N. Kofanova, A. Kofanov, Decentralization of Authorities and Local Government Reform in Ukraine: Their E. Svoboda, Impact on the Efficiency of Public Law, Power and Strengthening of Democracy …. 91 N. Pavlovska, O. Romanenko Philosophy Olajiga Isaac Making Sense of the Cultural Other in the Fabric of Knowledge Vis-à-vis The Oladeji Yoruba Cultural Framework ……………………………………………………………… 108 L. Stoyanova Conceptual Ideas About the Creative Elite as a Creator of Creative Social Space ... 123 Socio – Phylosophical Creation of the Concept of “Soul”: the Experience of V. Cuba Postmodern Reflection ……………………………………………………………………. 132 The Foundations of Social and Personal in Archetypes N. Zaytseva in the Concept by K. G. Jung: A Phenomenological and Semiotic Presentation …… 144 Arts Education Social – Cultural Deviation of the Creative Environment: a Conceptual Approach to V. Rudoy the Phenomenon ………………………………………………………………..……….. 152 P. Naguliak, Traditional and Modern Methods of Painting on the Plener of Students of Art V. Rudoy Education …………………………………………………………………………………… 159 Education The Forming English Lexical Competence in Dialogic Speaking for Prospective I. Skril Experts of Hospitality and Restaurant Service …………………………………………. 170 L. Vorobiova Implementation of the Dalton Plan Ideas into Ukrainian Alternative Schooling …….. 175 R. Vdovychenko, Competence Approach to Student Youth Education …………………………………. 179 K. Shapochka Intensification of Cadet’s Foreign Language Competence Formation Through the L. Hrebeniuk Role-Playing Games ………………………………………………………………………. 183 O. Matviienko, Criteria, Indicators and Levels Future Primary School Teacher’s Readiness to T. Tutova Collaboration with Heterogeneous Groups of Students ………………………………. 190 Features of the Development of the Effective and Reflective Component of O. Voichun Students’ Civic Engagement at the University …………………………………………. 201 The Basic Methodological Approaches to Vocal-Choral Teaching Children of A. Hohol Primary School Age ……………………………………………………………………….. 211 The Practical Aspects of Conscious Attitude Formation to Fatherhood in Conditions K. Fediushkina of Vocational Educational Institutions …………………………………………………… 220 Social Work The System-Oriented Perspectives of Inculcating Innovative Technologies for I. Savelchuk Social Work ………………………………………………………………………………… 228 Book presentation O. Perova Olga Perova. “Art of Prywinko” …………………………………………………………... 235 Manuscript Guidelines …………………………………………………………………….. 236 DOI 10.32370/IA_2019_02_1 The complex mass from Henstock-Kurzweil-Feynman-Pardy integral Miroslav Pardy Department of Physical Electronics Masaryk University Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic e-mail:[email protected] Abstract The Feynman integral is generalised so as to involve the random fluctuations of vacuum, from this integral the generalized Schr¨odingerequation is derived and the energy spectrum for the Coulomb potential determined. 1 Introduction The purpose of this paper is to generalize the Feynman integral over paths in the case, where we consider random fluctuations of vacuum, and to derive the generalized Schr¨odingerequation. The article is the improved version of the author article (Pardy, 1973), where the Henstock-Kurzweil integral (Henstock, 1946; Morales, et al., 2017) is not involved in it. 1 IntellectualArchive Vol. 8, No. 2, April - June 2019 1 First, let us remember Feynman's fictitious experiment by means of which he arrives at the integral over paths (Feynman & Hibbs, 1965). A source of electrons is considered in this experiment and a movable detector is fixed at a certain distance from the source. Between the source and the detector is put a screen with two holes, 1 and 2, in it. Now, we investigate the probability that an electron will arrive in the detector at various vertical distances x from the source. If we block hole 2, the particle will pass through hole 1, and if we block hole 1 the particle will go through hole 2. The probability P1(x) to find a particle at point x will be given in the first case like this: 2 P1(x) = jϕ1(x)j ; (1) where ϕ1(x) is the complex function called the probability amplitude corresponding to the path going through hole 1 in the detector. In the second case the probability to find a particle at point x is P2(x) and it holds good: 2 P2(x) = jϕ2(x)j ; (2) where ϕ2(x) is the probability amplitude corresponding to the path going through hole 2 in the detector. If we leave open both holes, the probability of finding a particle at point x will be given like this: 2 P (x) = jϕ1(x) + ϕ2(x)j : (3) Now, let us consider that there is not only one screen between the source and the detector but that there are N screens, each of them having M holes, with width ∆(Ai;Bi)j, where Ai, Bi are x-coordinates of the borders of the holes, j being an index belonging to the jth screen, j = 1, 2, ··· , N and i being an index belonging to the ith hole, i = 1, 2, ···, M; ∆ denotes the length of the interval ( , ). We can say that the trajectory of the particle rises in such a way that the particle goes through interval (a1; b1) at the time t1 , through the interval (a2; b2) at the time t2 ··· , through the interval (an; bn) at the time tn, where (ai; bi) are intervals from the set of intervals (Ai;Bi)j. According to Feynman, the probability amplitude ϕ(x) belongs to this trajectory. If we choose another set of numbers tk,(ak; bk), we get other alternative path of the particle. It is obvious that there are a great many of these alternative trajectories, and therefore the total amplitude for the process is the sum of the amplitudes for each route considered separately. For the case N ! 1, 2 IntellectualArchive Vol. 8, No. 2, April - June 2019 2 M ! 1, all trajectories will be continuous functions of the time t, and the total probability amplitude for the transition of a particle from point a to point b is as follows: X U(b; a) = ϕ[x(t)]; (4) a!b P where a ! b in means summation over all trajectories from a to b and x(t) is the x-coordinate of a path. The amplitude is postulated as follows: 1 ϕ[x(t)] = expf(i=h¯)S[x(t)]g; (5) A where Z t S = b L[_x(t); x(t)]dt (6) ta is the classical Hamilton-Jacobi action function and L is the Lagrange function. Feynman & Hibbs (1965) have shown that the probability amplitude U(x; x0) concerning the transition of the particle from point x0 to point x satisfies the integral equation Z U(x; x0) = U(x; x1)U(x1; x0)dx1: (7) If we put U(x; x0) = (x);U(x1; x0) = (x1), we get Z (x) = U(x; x1) (x1)dx1; (8a) or, generally Z (x; t) = U(x; t; x1; t1) (x1; t1)dx1 (8b) and the function (x; t) may be interpreted as the wave function of quantum mechanics. For an infinitesimal transition from point xk and time kk in point xk+1 and time tk+1, we can write (Blokhintsev, 1966): 1 U(x ; k ; x ; t ) = expf(i=h¯)S[x ; x ; ∆t]g; (9) k+1 k+1 k k A k+1 k where " ! # m x − x S[x ; x ; ∆t] = k+1 k − V (x )∆t ∆t; (10) k+1 k 2 ∆t k+1 where ∆t = tk+1 − tk; tk+1 > tk. 3 IntellectualArchive Vol. 8, No. 2, April - June 2019 3 2 Random fluctuations of the Vacuum in the integral over paths Let us notice term eq. (4) X U(x1; x0) = ϕ[x(t)]: (11) x0!x We can see that all amplitudes exp (i=h¯)S[x(t)] are multiplied only by a constant 1=A. In other words, the Feynman sum is constructed in such a way that all trajectories are considered equivalent and therefore equally probable. The question arises, as to how the formulation of the problem must be changed if we include the random fluctuations of the vacuum.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Orbiting a Binary SPHERE Characterisation of the HD 284149 System?
    A&A 608, A106 (2017) Astronomy DOI: 10.1051/0004-6361/201731003 & c ESO 2017 Astrophysics Orbiting a binary SPHERE characterisation of the HD 284149 system? M. Bonavita1; 2, V. D’Orazi1, D. Mesa1, C. Fontanive2, S. Desidera1, S. Messina4, S. Daemgen3, R. Gratton1, A. Vigan5, M. Bonnefoy7, A. Zurlo5; 20, J. Antichi13; 1, H. Avenhaus3; 6; 16, A. Baruffolo1, J. L. Baudino19, J. L. Beuzit7, A. Boccaletti10, P. Bruno4, T. Buey10, M. Carbillet20, E. Cascone14, G. Chauvin7, R. U. Claudi1, V. De Caprio14, D. Fantinel1, G. Farisato1, M. Feldt6, R. Galicher10, E. Giro1, C. Gry5, J. Hagelberg7, S. Incorvaia15, M. Janson6; 9, M. Jaquet5, A. M. Lagrange7, M. Langlois5, J. Lannier7, H. Le Coroller5, L. Lessio1, R. Ligi5, A. L. Maire6, M. Meyer3; 18, F. Menard7; 8, C. Perrot10, S. Peretti12, C. Petit11, J. Ramos6, A. Roux7, B. Salasnich1, G. Salter5, M. Samland6, S. Scuderi4, J. Schlieder6; 17, M. Surez11, M. Turatto1, and L. Weber12 1 INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 2 Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 3 Institute for Astronomy, ETH Zurich, Wolfgang-Pauli Strasse 27, 8093 Zurich, Switzerland 4 INAF–Osservatorio Astronomico di Catania, via Santa Sofia, 78 Catania, Italy 5 Aix Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 13013 Marseille, France 6 Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 7 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 8 European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 9 Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 10 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ.
    [Show full text]
  • A Revised Age for Upper Scorpius and the Star Formation History Among the F-Type Members of the Scorpius–Centaurus Ob Association
    The Astrophysical Journal, 746:154 (22pp), 2012 February 20 doi:10.1088/0004-637X/746/2/154 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION Mark J. Pecaut1, Eric E. Mamajek1,3, and Eric J. Bubar1,2 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA 2 Department of Biology and Physical Sciences, Marymount University, Arlington, VA 22207-4299, USA Received 2011 August 8; accepted 2011 December 2; published 2012 February 2 ABSTRACT We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus–Lupus (UCL), and Lower Centaurus–Crux (LCC) subgroups of Scorpius–Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types ∼F4 and ∼F2, respectively.
    [Show full text]
  • Arxiv:0808.3207V1 [Astro-Ph] 23 Aug 2008 Nfgr .Nwonsaswr Rtdrcl Icvrdi C in Discovered Directly H first Were and Surroun Stars Variability Area Newborn the of 4
    Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. Chamaeleon Kevin L. Luhman Department of Astronomy and Astrophysics The Pennsylvania State University University Park, PA 16802, USA Abstract. The dark clouds in the constellation of Chamaeleon have distances of 160-180pc from the Sun and a total mass of ∼5000 M⊙. The three main clouds, Cha I, II, and III, have angular sizes of a few square degrees and maximum extinctions of AV ∼ 5-10. Most of the star formation in these clouds is occurring in Cha I, with the remainder in Cha II. The current census of Cha I contains 237 known members, 33 of which have spectral types indicative of brown dwarfs (>M6). Approximately 50 members of Cha II have been identified, including a few brown dwarfs. When interpreted with the evolutionary models of Chabrier and Baraffe, the H-R diagram for Cha I exhibits a median age of ∼2 Myr, making it coeval with IC 348 and slightly older than Taurus (∼1 Myr). TheIMF ofChaI reachesa maximumat a massof0.1-0.15 M⊙, and thus closely resembles the IMFs in IC 348 and the Orion Nebula Cluster. The disk fraction in Cha I is roughly constant at ∼ 50% from 0.01 to 0.3 M⊙ and increases to ∼ 65% at higher masses. In comparison, IC 348 has a similar disk fraction at low masses but a much lower disk fraction at M ∼> 1 M⊙, indicating that solar-type stars have longer disk lifetimes in Cha I. 1. Introduction The southern constellation of Chamaeleon contains one of the nearest groups of dark clouds to the Sun (d ∼ 160-180 pc).
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Modeling the Spatial Structure of Debris Disks
    MODELING THE SPATIAL STRUCTURE OF DEBRIS DISKS Simultaneous multi-wavelength modeling and predictions on the observability of planet-disk interaction Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Christian-Albrechts-Universit¨at zu Kiel vorgelegt von Steve Ertel Kiel, 2011 Referent: Prof. Dr. Sebastian Wolf Koreferent: Prof. Dr. Holger Kersten Tag der m¨undlichen Pr¨ufung: 07.02.2012 Zum Druck genehmigt: 07.02.2012 gez. Prof. Dr. Lutz Kipp, Dekan To those who are more important to me than this work Ach! was in tiefer Brust uns da entsprungen, Was sich die Lippe sch¨uchtern vorgelallt, Mißraten jetzt und jetzt vielleicht gelungen, Verschlingt des wilden Augenblicks Gewalt. Oft wenn es erst durch Jahre durchgedrungen Erscheint es in vollendeter Gestalt. Was gl¨anzt ist f¨ur den Augenblick geboren; Das Echte bleibt der Nachwelt unverloren. (Goethe, Faust, Vorspiel auf dem Theater) Abstract The content of the present thesis can be grouped in two main topics: (1) The modeling of the spatial dust distribution in debris disks from available high spatial resolution, high quality data. (2) The modeling of planet-disk interaction in debris disks, the investigation of the observability of this process with present and near future instruments, and the preparation and execution of new observations of debris disks. Debris disks are evolved dust disks (mostly) around main sequence stars. The dust de- tected in such disks must be transient or, more likely, continuously replenished by ongoing collisions of bigger objects like planetesimals left over from the planet formation process. A correlation between the existence of planets and debris disks is expected.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Beobachtung Und Modellierung Zirkumstellarer Scheiben
    Beobachtung und Modellierung zirkumstellarer Scheiben Staubentwicklung und Interpretation ihrer Beobachtungsgrößen Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) vorgelegt der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts Universität zu Kiel von Dipl.-Phys. Christian Gräfe Kiel, 2013 Erster Gutachter: Prof. Dr. rer. nat. Sebastian Wolf Zweiter Gutachter: Prof. Dr. rer. nat. Holger Kersten Tag der mündlichen Prüfung: 30.10.2013 Zum Druck genehmigt: 30.10.2013 der Dekan „Der Beginn aller Wissenschaften ist das Erstaunen, dass die Dinge sind, wie sie sind.“1 Abbildung 1: Künstlerische Darstellung einer zirkumstellaren Scheibe (ESO/Id: eso0827a) 1Aristoteles (* 384 v.Chr.; † 322 v.Chr.) Zusammenfassung Zirkumstellare Scheiben sind eine Folge des Sternentstehungsprozesses. Sie be- stehen aus Gas und Staub und gelten nach dem heutigen Verständnis als die Umgebung für die Entstehung von Planeten. Wie die Staubteilchen in der Größe von wenigen Nanometern zu Objekten von mehreren Metern im Durchmesser anwachsen und sich bis hin zu Planeten entwickeln, ist bislang im Detail noch kaum verstanden und stellt eine fundamentale Frage in der Astrophysik dar. Staubkornwachstum sowie radiale Segregation und vertikale Sedimentation der Staubteilchen innerhalb der Scheibe gehören dabei zu den wichtigsten Prozessen in der Entwicklung zirkumstellarer Scheiben. Für ein besseres Verständnis von der Entstehung von Planeten ist es erforderlich, die beobachtbaren Auswirkun- gen dieser und weiterer Entwicklungsprozesse zu studieren. Im ersten Teil dieser Dissertation wird, basierend auf hochaufgelösten Beobach- tungsdaten im Wellenlängenbereich vom nahen Infrarot bis zu Millimeterwellen- längen, die detaillierte Modellierung der zirkumstellaren Scheibe des Butterfly Stars präsentiert. Das unter Verwendung von Strahlungstransportmethoden ent- wickelte Modell ist dabei in der Lage, alle Beobachtungsergebnisse zu reprodu- zieren und liefert neue Erkenntnisse über die Staubeigenschaften in dieser Schei- be.
    [Show full text]
  • Why Do Hydrogen and Helium Migrate from Some Planets and Smaller
    Why do Hydrogen and Helium Migrate from Some Planets and Smaller Objects? Author Weitter Duckss Independent Researcher, Zadar, Croatia mail: [email protected] Project: https://www.svemir-ipaksevrti.com/ Abstract This article analyzes the processes through measuring the material incoming from the outer space onto Earth, through migrating of hydrogen and helium from our atmosphere and from other objects and through inability to detect the radioactive effects on stars and objects with melted interiorities. Habitable periods on such objects are determined through the processes. 1. Introduction The goal of the article is to give arguments, based on the existing data bases, that a constant growth of space objects, as well as their rotation and tidal forces, cause their warming up and radiation emissions, therefore making radioactive processes of fission and fusion – which are not detected on stars and other objects anyway – unnecessary. The article gives evidence of hydrogen and helium migrating towards the objects that have more mass and of temperature levels of stars being directly related to their chemical compositions and the objects in their orbits. The argumentation to support a habitable period will be derived from the natural processes of constant growth and matter gathering. 2. Why there is no radioactive emission, derived from the processes of fission and fusion, inside stars? All data bases indicate that astronomic research (or, evidence) support the existence of a constant (monotonous), omnipresent, slow gathering of matter. The processes are "more accelerated" in such part of the Universe where there is more matter gathered (in the form of nebulae, molecular clouds, etc.) during a long period of time, but gathering takes place constantly in the whole volume of the Universe as well.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Eduardo Martin CSIC-INTA Centro De Astrobiologia (CAB), Madrid
    Eduardo Martin CSIC-INTA Centro de Astrobiologia (CAB), Madrid /℗≤? ULTRACOOL DWARF (UCD=VERY LATE-M, L, T, Y) = VERY LOW-MASS STARS + BROWN DWARF + YOUNG GIANT PLANETS SUBSTELLAR MASS OBJECT = BROWN DWARF + GIANT PLANET UCDs: Definition! Ultracool dwarfs: Dwarfs with spectral type later than M7 (Teff<2600K). Dust grain condensation in atmospheres (Fe, Al2O3, MgSiO3). ! M. Cushing et al. 2003 ApJ 582, 1066 NIR spectral sequence for UCDs Brown dwarf: Degenerate e- plasma Limited nuclear fusion Hayashi & Nakano 1963, Kumar 1963, Chabrier & Baraffe 2000 Martín et al. 1997,1999; Kirkpatrick et al. 1999,2000; Burgasser et al. 2002 Exoplanet search sensitivity critically depends on age UScoCTIO 108b (V. Béjar et al. 2008 ApJ, 673, L185) 2MASS search for red objects (J-Ks>1) around 500 candidates members of USco Discovery image: J-band 2MASS Colour composite image: IJK’ (WHT,TNG) ρ ~ 4.6” (670UA) θ = 177° Discovery image: I-band IAC80 The Upper Scorpius association •" Distance ~ 145pc •" Age ~ 5 Myr Spectroscopy of UScoCTIO 108 A & B UScoCTIO 108 B: • " : M9.5-L3 • " Low gravity features • " Activity •Teff" = 2150 ± 300 K UScoCTIO 108 A: • " : M7 • " Low gravity features • " Li is totally preserved • " Signatures of an accretion disks Teff= 2700 ± 100 K Physical parameters of UScoCTIO 108 AB 60 ± 20 M UScoCTIO 108 A: -1.95 ± 0.15 Jup UScoCTIO 108 B: -3.14 ± 0.20 14+2-8 Mjup q≈0.2 B. Riaz et al. 2013 A&A, 559, 109 NIR variability & PM B.P. Bowler et al. 2014 ApJ, in press 2M1207b compared with BDs and PMOs in the Pleiades Deeper H2O bands in low-g UCD spectra Zapatero-Osorio, Martin et al 2014 ApJ Lett.
    [Show full text]