Eduardo Martin CSIC-INTA Centro De Astrobiologia (CAB), Madrid

Total Page:16

File Type:pdf, Size:1020Kb

Eduardo Martin CSIC-INTA Centro De Astrobiologia (CAB), Madrid Eduardo Martin CSIC-INTA Centro de Astrobiologia (CAB), Madrid /℗≤? ULTRACOOL DWARF (UCD=VERY LATE-M, L, T, Y) = VERY LOW-MASS STARS + BROWN DWARF + YOUNG GIANT PLANETS SUBSTELLAR MASS OBJECT = BROWN DWARF + GIANT PLANET UCDs: Definition! Ultracool dwarfs: Dwarfs with spectral type later than M7 (Teff<2600K). Dust grain condensation in atmospheres (Fe, Al2O3, MgSiO3). ! M. Cushing et al. 2003 ApJ 582, 1066 NIR spectral sequence for UCDs Brown dwarf: Degenerate e- plasma Limited nuclear fusion Hayashi & Nakano 1963, Kumar 1963, Chabrier & Baraffe 2000 Martín et al. 1997,1999; Kirkpatrick et al. 1999,2000; Burgasser et al. 2002 Exoplanet search sensitivity critically depends on age UScoCTIO 108b (V. Béjar et al. 2008 ApJ, 673, L185) 2MASS search for red objects (J-Ks>1) around 500 candidates members of USco Discovery image: J-band 2MASS Colour composite image: IJK’ (WHT,TNG) ρ ~ 4.6” (670UA) θ = 177° Discovery image: I-band IAC80 The Upper Scorpius association •" Distance ~ 145pc •" Age ~ 5 Myr Spectroscopy of UScoCTIO 108 A & B UScoCTIO 108 B: • " : M9.5-L3 • " Low gravity features • " Activity •Teff" = 2150 ± 300 K UScoCTIO 108 A: • " : M7 • " Low gravity features • " Li is totally preserved • " Signatures of an accretion disks Teff= 2700 ± 100 K Physical parameters of UScoCTIO 108 AB 60 ± 20 M UScoCTIO 108 A: -1.95 ± 0.15 Jup UScoCTIO 108 B: -3.14 ± 0.20 14+2-8 Mjup q≈0.2 B. Riaz et al. 2013 A&A, 559, 109 NIR variability & PM B.P. Bowler et al. 2014 ApJ, in press 2M1207b compared with BDs and PMOs in the Pleiades Deeper H2O bands in low-g UCD spectra Zapatero-Osorio, Martin et al 2014 ApJ Lett. in prep. HST/WFPC2-PC imaging of 134 late-M and L dwarfs # (H. Bouy et al. 2003, AJ, 126, 1526) ! HST/WFC3 imaging of 34 L and T dwarfs # (M. Aberasturi et al. 2014, AJ, subm.) 34 L and T dwarfs Within 30 pc 0.13 arcsec/pix (Diffraction limit 0.096—0.14 arcsec) 4 dithers Exp 110s F110W 1200s F164N Dupuy & Kraus 2013, Science Binary fraction decreases sharply with diminishing primary mass No planets detected around T dwarfs yet J.-Y. Choi et al. 2013, ApJ 768, 129 PLANET follow-up of OGLE events The sharp drop in binary frequency at the low-mass tail suggests that there is a minimum total mass for binary formation No binaries known yet with Mtot<0.02 Msun (around 20 Mjup) Could this be used as a natural boundary between brown dwarfs and giant planets? More meaningful than D-burning limit?? Paucity of VLM binaries with q=0.4—0.2 Large gap btw q=0.2 and q=10-4 If real this gap could be used to distinguish binaries from planetary systems 2 Sample: 20 UCDs (M8—L2) from Phan Bao et al. (2008) I=17.5 – 14.5 J=12.7 – 11.1 VLT/FORS I-band 0.126 arcsec/pix Seeing < 0.9 arcsec Exp 1400 s 11 epochs over 2 years 15 nights Planet detection limits RV of nearby BD much more stable in the NIR than in the optical Martin et al. 2006 ApJ 27 27 High vsini for SpT>M4 a problem for very precise RV 28 28 Red optical spectra of 18 VLM stars observed by the Kepler space telescope (dM4.5—dM8.5) Kepler light curves of UDs Rotation periods and flare rates measured for most sources Planet detection limits Conclusions •" High contrast & spatial resolution imaging surveys of UDs have revealed the presence of orbiting companions. Sensitivity to planet search highly depends on age for this technique. •" Spectra of young planetary-mass objects similar to BDs, but accreting exoplanets may be a whole different story •" Binary frequency sharply drops with decreasing mass of central object. Binary separations get tighter for very low-mass systems. •" Mass ratio gap between 2M1207b (q=0.2) and MOA-2007- BLG-192Lb (q=10-4) •" Minimum total mass of known binaries 0.02 Msun (20 Mjup). •" Astrometry and infrared radial velocity are reaching sufficient precision to detect planets around UDs. Large surveys needed. •" Transits can provide detection of rocky planets around UDs in habitable region. Questions •" Mass ratio gap between 2M1207b (q=0.2) and MOA-2007- BLG-192Lb (q=10-4) Could there be a q gap separating binary BDs from BD-planet systems? •" Minimum total mass of known binaries 0.02 Msun (20 Mjup). Could this be a natural boundary to separate brown dwarfs from giant planets? •" Transits can provide detection of rocky planets around UDs in habitable region. Could this provide the best chance for characterization of potentially habitable planet using JWST? Eduardo L. Martín (CAB) Medium Class mission of the ESA Cosmic Vision 2015-2025 Euclid Independent Legacy Science Team on BDs David Barrado y Navascués (CAB & CAHA) Hervé Bouy (CAB) Nuria Huélamo (CAB) Nicolás Lodieu (IAC) Basmah Riaz (Univ. Herts., UK) Johannes Sahlmann (Obs. Geneve & CAB) Enrique Solano (CAB & SVO) Euclid Wide Survey 15,000 sq. deg. (required) VRI 24.5 mag. 10 sigma 0.1 arcsec / pix YJH 24 mag. 5 sigma 0.3 arcsec / pix NIR spectroscopy 1.2—1.8 microns R=250 Euclid Deep Survey 40 sq. deg. (2 regions) VRI 26.5 mag. 10 sigma 0.1 arcsec / pix YJH 26 mag. 5 sigma 0.3 arcsec / pix NIR spectroscopy 0.9—1.8 microns R=250 Spacecraft & Payload Launcher: Soyuz ST-2.1 B from Kourou Launch window: 2020 Orbit: Large Sun-Earth Lagrange point Lifetime: 7 years (required) Maximum science data rate: 850 Gbit/day Telescope: 1.2 m Korsch, f=24.5 m FOV: 0.787x0.709 sq. deg. Detectors: 36 x 4k x 4k CCD, 16 2k x 2k HgCdTe Ultracool dwarf surface density Efficient BD identification with VO tools M. Aberasturi et al. 2011, A&A, 534, L7 Pop II vs III ultracool dwarfs D. Saumon et al. 1994 ApJ Synthetic spectra indicate it will be possible to tell Pop II from Pop III UCDs using Euclid slitless spectra Expected SMO Euclid Legacy High precision astrometry, optical/NIR photometry and NIR spectra for about 1 million ultracool dwarfs! Semimajor axis and mass ratio for about 100,000 resolved ultracool binaries ! Parallaxes, proper motions & variability for about 3,000 ultracool dwarfs ! Discovery of rare ultracool dwarfs, such as Pop II or even Pop III brown dwarfs! Planets around BD search with imaging, astrometry & photometry ! ! !.
Recommended publications
  • Orbiting a Binary SPHERE Characterisation of the HD 284149 System?
    A&A 608, A106 (2017) Astronomy DOI: 10.1051/0004-6361/201731003 & c ESO 2017 Astrophysics Orbiting a binary SPHERE characterisation of the HD 284149 system? M. Bonavita1; 2, V. D’Orazi1, D. Mesa1, C. Fontanive2, S. Desidera1, S. Messina4, S. Daemgen3, R. Gratton1, A. Vigan5, M. Bonnefoy7, A. Zurlo5; 20, J. Antichi13; 1, H. Avenhaus3; 6; 16, A. Baruffolo1, J. L. Baudino19, J. L. Beuzit7, A. Boccaletti10, P. Bruno4, T. Buey10, M. Carbillet20, E. Cascone14, G. Chauvin7, R. U. Claudi1, V. De Caprio14, D. Fantinel1, G. Farisato1, M. Feldt6, R. Galicher10, E. Giro1, C. Gry5, J. Hagelberg7, S. Incorvaia15, M. Janson6; 9, M. Jaquet5, A. M. Lagrange7, M. Langlois5, J. Lannier7, H. Le Coroller5, L. Lessio1, R. Ligi5, A. L. Maire6, M. Meyer3; 18, F. Menard7; 8, C. Perrot10, S. Peretti12, C. Petit11, J. Ramos6, A. Roux7, B. Salasnich1, G. Salter5, M. Samland6, S. Scuderi4, J. Schlieder6; 17, M. Surez11, M. Turatto1, and L. Weber12 1 INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 2 Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 3 Institute for Astronomy, ETH Zurich, Wolfgang-Pauli Strasse 27, 8093 Zurich, Switzerland 4 INAF–Osservatorio Astronomico di Catania, via Santa Sofia, 78 Catania, Italy 5 Aix Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 13013 Marseille, France 6 Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 7 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 8 European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 9 Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 10 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ.
    [Show full text]
  • A Revised Age for Upper Scorpius and the Star Formation History Among the F-Type Members of the Scorpius–Centaurus Ob Association
    The Astrophysical Journal, 746:154 (22pp), 2012 February 20 doi:10.1088/0004-637X/746/2/154 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION Mark J. Pecaut1, Eric E. Mamajek1,3, and Eric J. Bubar1,2 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA 2 Department of Biology and Physical Sciences, Marymount University, Arlington, VA 22207-4299, USA Received 2011 August 8; accepted 2011 December 2; published 2012 February 2 ABSTRACT We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus–Lupus (UCL), and Lower Centaurus–Crux (LCC) subgroups of Scorpius–Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types ∼F4 and ∼F2, respectively.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • 3 the Generalised Schrödinger Equation
    Editorial Board Editor in Chief Mark Zilberman, MSc, Shiny World Corporation, Toronto, Canada Scientific Editorial Board Viktor Andrushhenko, PhD, Professor, Academician of the Academy of Pedagogical Sciences of Ukraine, President of the Association of Rectors of pedagogical universities in Europe John Hodge, MSc, retired, USA Petr Makuhin, PhD, Associate Professor, Philosophy and Social Communications faculty of Omsk State Technical University, Russia Miroslav Pardy, PhD, Associate Professor, Department of Physical Electronics, Masaryk University, Brno, Czech Republic Lyudmila Pet'ko, Executive Editor, PhD, Associate Professor, National Pedagogical Dragomanov University, Kiev, Ukraine Volume 8, Number 2 Publisher : Shiny World Corp. Address : 9200 Dufferin Street P.O. Box 20097 Concord, Ontario L4K 0C0 Canada E-mail : [email protected] Web Site : www.IntellectualArchive.com Series : Journal Frequency : Every 3 months Month : April - June 2019 ISSN : 1929-4700 DOI : 10.32370/IA_2019_02 Trademark © 2019 Shiny World Corp. All Rights Reserved. No reproduction allowed without permission. Copyright and moral rights of all articles belong to the individual authors. Physics M. Pardy The Complex Mass from Henstock-Kurzweil-Feynman-Pardy Integral ……………. 1 John C. Hodge STOE beginnings ……………………………………………………………….…………. 11 John C. Hodge STOE Explains "Planet 9" ………………………………………………………………… 13 John C. Hodge STOE Explanation for the ``Ether wind" ………………………………………………… 15 V. Litvinenko , A. Shapovalov, Low Inductive and Resistance Energy Capacitor …….………….………………….… 19 A. Ovsyannik Astronomy W. Duckss Why do Hydrogen and Helium Migrate from Some Planets and Smaller Objects? ... 24 Technics Modern Reading of the 40 Principles of TIPS Using the Example of the Technology V. Korobov for Activation of Fuel Mixtures ……………………………………………………………. 32 Computer Science A. Kravchenko The Practical Side of IoT Implementation in Smart Cities …………………………....
    [Show full text]
  • Direct Imaging Discovery of a Second Planet Candidate Around the Possibly Transiting Planet Host CVSO 30 ⋆
    Astronomy & Astrophysics manuscript no. CVSO c ESO 2016 March 17, 2016 Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30 ⋆ T. O. B. Schmidt1, 2, R. Neuhäuser2, C. Briceño3, N. Vogt4, St. Raetz5, A. Seifahrt6, C. Ginski7, M. Mugrauer2, S. Buder2, 8, C. Adam2, P. Hauschildt1, S. Witte1, Ch. Helling9, and J. H. M. M. Schmitt1 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany, e-mail: [email protected] 2 Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, 07745 Jena, Germany 3 Cerro Tololo Inter-American Observatory CTIO/AURA/NOAO, Colina El Pino s/n. Casilla 603, 1700000 La Serena, Chile 4 Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, 2340000 Valparaíso, Chile 5 European Space Agency ESA, ESTEC, SRE-S, Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands 6 Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA 7 Sterrewacht Leiden, PO Box 9513, Niels Bohrweg 2, NL-2300RA Leiden, the Netherlands 8 Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 9 School of Physics and Astronomy SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, UK Received 2015; accepted ABSTRACT Context. Direct Imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can both be followed astrometrically on their orbits and observed spectroscopically, and thus provide an essential tool for our understanding of the early Solar System. Aims. We surveyed the 25 Ori association for Direct Imaging companions, having an age of only few million years.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Full Program
    1 Schedule Abstracts Author Index 2 Schedule Schedule ............................................................................................................................... 3 Abstracts ............................................................................................................................... 5 Monday, September 12, 2011, 8:30 AM - 10:00 AM ................................................................................ 5 01: Overview of Observations and Welcome ....................................................................................... 5 Monday, September 12, 2011, 10:30 AM - 12:00 PM .............................................................................. 7 02: Radial Velocities ............................................................................................................................. 7 Monday, September 12, 2011, 2:00 PM - 3:30 PM ................................................................................ 10 03: Transiting Planets ......................................................................................................................... 10 Monday, September 12, 2011, 4:00 PM - 5:30 PM ................................................................................ 13 04: Transiting Planets II ...................................................................................................................... 13 Tuesday, September 13, 2011, 8:30 AM - 10:00 AM .............................................................................. 16 05: Planets
    [Show full text]
  • Astrometric Follow-Up Observations of Directly Imaged Sub-Stellar Companions to Young Stars and Brown Dwarfs∗
    Mon. Not. R. Astron. Soc. 000, 1–24 (2002) Printed 25 September 2018 (MN LATEX style file v2.2) Astrometric follow-up observations of directly imaged sub-stellar companions to young stars and brown dwarfs∗ C. Ginski1y, T. O. B. Schmidt2, M. Mugrauer3, R. Neuhäuser3, N. Vogt4, R. Errmann3;5, and A. Berndt3 1Sterrewacht Leiden, P.O. Box 9513, Niels Bohrweg 2, 2300RA Leiden, The Netherlands 2Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany 3Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2, 07745 Jena, Germany 4Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile 5Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany Accepted 2014 August 4. Received 2014 August 1; in original form 2014 July 15 ABSTRACT The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenar- ios we search for signatures in the orbit dynamics of the systems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose we utilized VLT/NACO to take several well calibrated high resolution images of 6 target systems and analyze them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical Least-Squares Monte-Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion.
    [Show full text]
  • Download Full-Text
    International Journal of Astronomy 2020, 9(1): 3-11 DOI: 10.5923/j.astronomy.20200901.02 The Processes that Determine the Formation and Chemical Composition of the Atmosphere of the Body in Orbit Weitter Duckss Independent Researcher, Zadar, Croatia Abstract The goal of this article is to analyze the formation of an atmosphere on the orbiting planets and to determine the processes that participate in the formation of an atmospheric chemical composition, as well as in determining it. The research primarily analyzes the formation of atmospheres on the objects of different sizes (masses) and at the same or different orbital distances. This paper analyzes the influence of a star's temperature, the space and the orbit's distance to an object's temperature level, as well as the influence of the operating temperature of atoms and chemical compounds to chemical composition and the representation of elements and compounds in an atmosphere. The objects, which possess different masses and temperatures, are able to create and do create different compositions and sizes of atmospheres in the same or different distances from their main objects (Saturn/Titan or Pluto). The processes that are included in the formation of an atmosphere are the following: operating temperatures of compounds and atoms, migrations of hydrogen, helium and the other elements and compounds towards a superior mass. The lack of oxygen and hydrogen is additionally related to the level of temperature of space, which can be classified into internal (characterized by the lack of hydrogen) and the others (characterized by the lack of oxygen). Keywords Atmosphere, Chemical composition of the atmosphere, Migration of the atmosphere the atmosphere even though they are not in a gaseous state at 1.
    [Show full text]