Orbiting a Binary SPHERE Characterisation of the HD 284149 System?

Total Page:16

File Type:pdf, Size:1020Kb

Orbiting a Binary SPHERE Characterisation of the HD 284149 System? A&A 608, A106 (2017) Astronomy DOI: 10.1051/0004-6361/201731003 & c ESO 2017 Astrophysics Orbiting a binary SPHERE characterisation of the HD 284149 system? M. Bonavita1; 2, V. D’Orazi1, D. Mesa1, C. Fontanive2, S. Desidera1, S. Messina4, S. Daemgen3, R. Gratton1, A. Vigan5, M. Bonnefoy7, A. Zurlo5; 20, J. Antichi13; 1, H. Avenhaus3; 6; 16, A. Baruffolo1, J. L. Baudino19, J. L. Beuzit7, A. Boccaletti10, P. Bruno4, T. Buey10, M. Carbillet20, E. Cascone14, G. Chauvin7, R. U. Claudi1, V. De Caprio14, D. Fantinel1, G. Farisato1, M. Feldt6, R. Galicher10, E. Giro1, C. Gry5, J. Hagelberg7, S. Incorvaia15, M. Janson6; 9, M. Jaquet5, A. M. Lagrange7, M. Langlois5, J. Lannier7, H. Le Coroller5, L. Lessio1, R. Ligi5, A. L. Maire6, M. Meyer3; 18, F. Menard7; 8, C. Perrot10, S. Peretti12, C. Petit11, J. Ramos6, A. Roux7, B. Salasnich1, G. Salter5, M. Samland6, S. Scuderi4, J. Schlieder6; 17, M. Surez11, M. Turatto1, and L. Weber12 1 INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 2 Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 3 Institute for Astronomy, ETH Zurich, Wolfgang-Pauli Strasse 27, 8093 Zurich, Switzerland 4 INAF–Osservatorio Astronomico di Catania, via Santa Sofia, 78 Catania, Italy 5 Aix Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 13013 Marseille, France 6 Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 7 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 8 European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 9 Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 10 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France 11 ONERA (Office National d’Études et de Recherches Aérospatiales), BP 72, 92322 Châtillon, France 12 Observatoire Astronomique de l’Université de Genève, Chemin des Maillettes 51, 1290 Sauverny, Switzerland 13 INAF–Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy 14 INAF–Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy 15 INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, via E. Bassini 15, 20133 Milano, Italy 16 Universidad de Chile, Camino el Observatorio, 1515 Santiago, Chile 17 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 18 Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109, USA 19 Department of Physics, University of Oxford, Parks Rd, Oxford OX1 3PU, UK 20 Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile Received 13 April 2017 / Accepted 18 July 2017 ABSTRACT Aims. In this paper we present the results of the SPHERE observation of the HD 284149 system, aimed at a more detailed characteri- sation of both the primary and its brown dwarf companion. Methods. We observed HD 284149 in the near-infrared with SPHERE, using the imaging mode (IRDIS+IFS) and the long-slit spectroscopy mode (IRDIS-LSS). The data were reduced using the dedicated SPHERE pipeline, and algorithms such as PCA and TLOCI were applied to reduce the speckle pattern. 00 Results. The IFS images revealed a previously unknown low-mass (∼0.16 M ) stellar companion (HD 294149 B) at ∼0.1 , compatible with previously observed radial velocity differences, as well as proper motion differences between Gaia and Tycho-2 measurements. The known brown dwarf companion (HD 284149 b) is clearly visible in the IRDIS images. This allowed us to refine both its pho- tometry and astrometry. The analysis of the medium resolution IRDIS long slit spectra also allowed a refinement of temperature and spectral type estimates. A full reassessment of the age and distance of the system was also performed, leading to more precise values of both mass and semi-major axis. Conclusions. As a result of this study, HD 284149 ABb therefore becomes the latest addition to the (short) list of brown dwarfs on wide circumbinary orbits, providing new evidence to support recent claims that object in such configuration occur with a similar frequency to wide companions to single stars. Key words. stars: individual: HD 284149 – brown dwarfs – binaries: visual – stars: rotation – techniques: high angular resolution ? The reduced spectrum is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A106 Article published by EDP Sciences A106, page 1 of 15 A&A 608, A106 (2017) 1. Introduction region (Daemgen et al. 2015). Together with several other tar- gets of the same survey, HD 284149 has been proposed to be Several new sub-stellar companions to nearby young stars have part of the so-called Taurus-Ext association (Luhman et al. 2017; been directly imaged in the last decade, spanning a wide range Kraus et al. 2017; Daemgen et al. 2015), a group of stars with of masses and separations (see e.g. Chauvin et al. 2005a,b; similar space position and kinematics of the Taurus star forming Marois et al. 2008, 2010; Lagrange et al. 2010; Biller et al. region but distinctly older ages. A dedicated age estimate was 2010; Carson et al. 2013; Delorme et al. 2013; Rameau et al. then performed for HD 284149 by Bonavita et al.(2014), using 2013; Bailey et al. 2014; Bonavita et al. 2014; Gauza et al. 2015; +25 several youth indicators, leading to an adopted age of 25−10 Myr. Stone et al. 2016; Wagner et al. 2016). These objects, some They therefore finally estimated the mass of HD 284149 b to be of which have masses near and below 15MJup (see e.g. +18 32−14 MJup. From the available photometry they were able to in- Marois et al. 2008, 2010; Lagrange et al. 2010; Rameau et al. fer a spectral type between M8 and L1 and an effective tem- 2013; Bailey et al. 2014; Currie et al. 2014; Macintosh et al. +95 perature of 2537−182 K, but no spectroscopic characterisation 2015; Naud et al. 2014; Artigau et al. 2015; Bowler et al. 2017), has been performed up to now, leaving these estimates highly may represent the bottom end of the stellar companion mass uncertain. function as well as the top end of the planet population, Here we present the result of the observations of HD 284149 though both scenarios pose challenges to conventional formation performed with SPHERE, aimed at a precise characterisation of models. the whole system. Section 2 contains a detailed description of On one hand, the binary star formation process (e.g. the observations and data reduction while an update to the stel- Bate et al. 2003) rarely predicts such low mass ratios. On the lar characteristics given the new information available, includ- other hand, the standard core accretion model would struggle to ing those coming from the Gaia mission, is given in Sect. 3. The form super-Jupiter planets at >50 AU. Even though the alter- results are described and discussed in Sect. 4 and include the native gravitational instability (GI) model might become more description of a newly discovered close stellar companion, an plausible at large separations (see Meru & Bate 2010), espe- update of the astrometry of the known wide brown dwarf com- cially around more massive stars with larger disks, it is still panion and the comparison with the models of the medium res- unclear whether or not such an hypothesis is correct (see e.g. olution spectra obtained with the IRDIS LSS mode. Janson et al. 2012). Some of the most recent GI models (see e.g. Forgan & Rice 2013; Forgan et al. 2015) seem to suggest that the most likely 2. Observations and data reduction outcome of such formation process is a large fraction of rela- HD 284149 was observed with SPHERE in IRDIFS mode on tively massive objects at large semi-major axis. Such a popula- 2015-10-25 and with IRDIFS_EXT mode on 2015-11-27 as part tion would be easily detectable with direct imaging, and the lack of the SpHere INfrared survey for Exoplanet (SHINE) GTO of detections can be used to place strong constraints on how fre- campaign. The second epoch observations were taken without quently disk fragmentation occurs (see e.g. Vigan et al. 2017). coronagraph to confirm a faint candidate that was imaged for the An in-depth characterisation of the few known members of first time very close to the edge of the coronagraphic mask in the this population is therefore highly desirable, but the lack of first observation. In order to take full advantage of the angular multi-wavelength spectroscopy and photometry make precise differential imaging technique (ADI, see Marois et al. 2006a), characterisation of these systems quite challenging, leading to for both epochs the target was observed in pupil-stabilised mode poorly constrained values of some fundamental properties such to allow the rotation of the field of view. The reduction of as mass, radius and effective temperature. New dedicated instru- all the IRDIS and IFS data sets was performed through the ments, which allow both precise multi band photometry and low SPHERE Data Center (DC) using the SPHERE Data Reduction and medium resolution spectroscopy, are now becoming avail- and Handling (DRH) automated pipeline (Pavlov et al. 2008). able and allow a better characterisation of low mass companions. In the case of the IFS data, the DRH pipeline is complemented SPHERE (Beuzit et al. 2008), the new planet finder mounted at with additional routines that allow for an improved wavelength the VLT, is one of those. calibration as well as for a correction of both coherent and in- SPHERE includes three scientific modules: IFS (Claudi et al.
Recommended publications
  • A Revised Age for Upper Scorpius and the Star Formation History Among the F-Type Members of the Scorpius–Centaurus Ob Association
    The Astrophysical Journal, 746:154 (22pp), 2012 February 20 doi:10.1088/0004-637X/746/2/154 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION Mark J. Pecaut1, Eric E. Mamajek1,3, and Eric J. Bubar1,2 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA 2 Department of Biology and Physical Sciences, Marymount University, Arlington, VA 22207-4299, USA Received 2011 August 8; accepted 2011 December 2; published 2012 February 2 ABSTRACT We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus–Lupus (UCL), and Lower Centaurus–Crux (LCC) subgroups of Scorpius–Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types ∼F4 and ∼F2, respectively.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Eduardo Martin CSIC-INTA Centro De Astrobiologia (CAB), Madrid
    Eduardo Martin CSIC-INTA Centro de Astrobiologia (CAB), Madrid /℗≤? ULTRACOOL DWARF (UCD=VERY LATE-M, L, T, Y) = VERY LOW-MASS STARS + BROWN DWARF + YOUNG GIANT PLANETS SUBSTELLAR MASS OBJECT = BROWN DWARF + GIANT PLANET UCDs: Definition! Ultracool dwarfs: Dwarfs with spectral type later than M7 (Teff<2600K). Dust grain condensation in atmospheres (Fe, Al2O3, MgSiO3). ! M. Cushing et al. 2003 ApJ 582, 1066 NIR spectral sequence for UCDs Brown dwarf: Degenerate e- plasma Limited nuclear fusion Hayashi & Nakano 1963, Kumar 1963, Chabrier & Baraffe 2000 Martín et al. 1997,1999; Kirkpatrick et al. 1999,2000; Burgasser et al. 2002 Exoplanet search sensitivity critically depends on age UScoCTIO 108b (V. Béjar et al. 2008 ApJ, 673, L185) 2MASS search for red objects (J-Ks>1) around 500 candidates members of USco Discovery image: J-band 2MASS Colour composite image: IJK’ (WHT,TNG) ρ ~ 4.6” (670UA) θ = 177° Discovery image: I-band IAC80 The Upper Scorpius association •" Distance ~ 145pc •" Age ~ 5 Myr Spectroscopy of UScoCTIO 108 A & B UScoCTIO 108 B: • " : M9.5-L3 • " Low gravity features • " Activity •Teff" = 2150 ± 300 K UScoCTIO 108 A: • " : M7 • " Low gravity features • " Li is totally preserved • " Signatures of an accretion disks Teff= 2700 ± 100 K Physical parameters of UScoCTIO 108 AB 60 ± 20 M UScoCTIO 108 A: -1.95 ± 0.15 Jup UScoCTIO 108 B: -3.14 ± 0.20 14+2-8 Mjup q≈0.2 B. Riaz et al. 2013 A&A, 559, 109 NIR variability & PM B.P. Bowler et al. 2014 ApJ, in press 2M1207b compared with BDs and PMOs in the Pleiades Deeper H2O bands in low-g UCD spectra Zapatero-Osorio, Martin et al 2014 ApJ Lett.
    [Show full text]
  • 3 the Generalised Schrödinger Equation
    Editorial Board Editor in Chief Mark Zilberman, MSc, Shiny World Corporation, Toronto, Canada Scientific Editorial Board Viktor Andrushhenko, PhD, Professor, Academician of the Academy of Pedagogical Sciences of Ukraine, President of the Association of Rectors of pedagogical universities in Europe John Hodge, MSc, retired, USA Petr Makuhin, PhD, Associate Professor, Philosophy and Social Communications faculty of Omsk State Technical University, Russia Miroslav Pardy, PhD, Associate Professor, Department of Physical Electronics, Masaryk University, Brno, Czech Republic Lyudmila Pet'ko, Executive Editor, PhD, Associate Professor, National Pedagogical Dragomanov University, Kiev, Ukraine Volume 8, Number 2 Publisher : Shiny World Corp. Address : 9200 Dufferin Street P.O. Box 20097 Concord, Ontario L4K 0C0 Canada E-mail : [email protected] Web Site : www.IntellectualArchive.com Series : Journal Frequency : Every 3 months Month : April - June 2019 ISSN : 1929-4700 DOI : 10.32370/IA_2019_02 Trademark © 2019 Shiny World Corp. All Rights Reserved. No reproduction allowed without permission. Copyright and moral rights of all articles belong to the individual authors. Physics M. Pardy The Complex Mass from Henstock-Kurzweil-Feynman-Pardy Integral ……………. 1 John C. Hodge STOE beginnings ……………………………………………………………….…………. 11 John C. Hodge STOE Explains "Planet 9" ………………………………………………………………… 13 John C. Hodge STOE Explanation for the ``Ether wind" ………………………………………………… 15 V. Litvinenko , A. Shapovalov, Low Inductive and Resistance Energy Capacitor …….………….………………….… 19 A. Ovsyannik Astronomy W. Duckss Why do Hydrogen and Helium Migrate from Some Planets and Smaller Objects? ... 24 Technics Modern Reading of the 40 Principles of TIPS Using the Example of the Technology V. Korobov for Activation of Fuel Mixtures ……………………………………………………………. 32 Computer Science A. Kravchenko The Practical Side of IoT Implementation in Smart Cities …………………………....
    [Show full text]
  • Direct Imaging Discovery of a Second Planet Candidate Around the Possibly Transiting Planet Host CVSO 30 ⋆
    Astronomy & Astrophysics manuscript no. CVSO c ESO 2016 March 17, 2016 Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30 ⋆ T. O. B. Schmidt1, 2, R. Neuhäuser2, C. Briceño3, N. Vogt4, St. Raetz5, A. Seifahrt6, C. Ginski7, M. Mugrauer2, S. Buder2, 8, C. Adam2, P. Hauschildt1, S. Witte1, Ch. Helling9, and J. H. M. M. Schmitt1 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany, e-mail: [email protected] 2 Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, 07745 Jena, Germany 3 Cerro Tololo Inter-American Observatory CTIO/AURA/NOAO, Colina El Pino s/n. Casilla 603, 1700000 La Serena, Chile 4 Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, 2340000 Valparaíso, Chile 5 European Space Agency ESA, ESTEC, SRE-S, Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands 6 Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA 7 Sterrewacht Leiden, PO Box 9513, Niels Bohrweg 2, NL-2300RA Leiden, the Netherlands 8 Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 9 School of Physics and Astronomy SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, UK Received 2015; accepted ABSTRACT Context. Direct Imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can both be followed astrometrically on their orbits and observed spectroscopically, and thus provide an essential tool for our understanding of the early Solar System. Aims. We surveyed the 25 Ori association for Direct Imaging companions, having an age of only few million years.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Full Program
    1 Schedule Abstracts Author Index 2 Schedule Schedule ............................................................................................................................... 3 Abstracts ............................................................................................................................... 5 Monday, September 12, 2011, 8:30 AM - 10:00 AM ................................................................................ 5 01: Overview of Observations and Welcome ....................................................................................... 5 Monday, September 12, 2011, 10:30 AM - 12:00 PM .............................................................................. 7 02: Radial Velocities ............................................................................................................................. 7 Monday, September 12, 2011, 2:00 PM - 3:30 PM ................................................................................ 10 03: Transiting Planets ......................................................................................................................... 10 Monday, September 12, 2011, 4:00 PM - 5:30 PM ................................................................................ 13 04: Transiting Planets II ...................................................................................................................... 13 Tuesday, September 13, 2011, 8:30 AM - 10:00 AM .............................................................................. 16 05: Planets
    [Show full text]
  • Astrometric Follow-Up Observations of Directly Imaged Sub-Stellar Companions to Young Stars and Brown Dwarfs∗
    Mon. Not. R. Astron. Soc. 000, 1–24 (2002) Printed 25 September 2018 (MN LATEX style file v2.2) Astrometric follow-up observations of directly imaged sub-stellar companions to young stars and brown dwarfs∗ C. Ginski1y, T. O. B. Schmidt2, M. Mugrauer3, R. Neuhäuser3, N. Vogt4, R. Errmann3;5, and A. Berndt3 1Sterrewacht Leiden, P.O. Box 9513, Niels Bohrweg 2, 2300RA Leiden, The Netherlands 2Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany 3Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2, 07745 Jena, Germany 4Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile 5Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany Accepted 2014 August 4. Received 2014 August 1; in original form 2014 July 15 ABSTRACT The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenar- ios we search for signatures in the orbit dynamics of the systems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose we utilized VLT/NACO to take several well calibrated high resolution images of 6 target systems and analyze them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical Least-Squares Monte-Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion.
    [Show full text]
  • Download Full-Text
    International Journal of Astronomy 2020, 9(1): 3-11 DOI: 10.5923/j.astronomy.20200901.02 The Processes that Determine the Formation and Chemical Composition of the Atmosphere of the Body in Orbit Weitter Duckss Independent Researcher, Zadar, Croatia Abstract The goal of this article is to analyze the formation of an atmosphere on the orbiting planets and to determine the processes that participate in the formation of an atmospheric chemical composition, as well as in determining it. The research primarily analyzes the formation of atmospheres on the objects of different sizes (masses) and at the same or different orbital distances. This paper analyzes the influence of a star's temperature, the space and the orbit's distance to an object's temperature level, as well as the influence of the operating temperature of atoms and chemical compounds to chemical composition and the representation of elements and compounds in an atmosphere. The objects, which possess different masses and temperatures, are able to create and do create different compositions and sizes of atmospheres in the same or different distances from their main objects (Saturn/Titan or Pluto). The processes that are included in the formation of an atmosphere are the following: operating temperatures of compounds and atoms, migrations of hydrogen, helium and the other elements and compounds towards a superior mass. The lack of oxygen and hydrogen is additionally related to the level of temperature of space, which can be classified into internal (characterized by the lack of hydrogen) and the others (characterized by the lack of oxygen). Keywords Atmosphere, Chemical composition of the atmosphere, Migration of the atmosphere the atmosphere even though they are not in a gaseous state at 1.
    [Show full text]