Scandium Fathi Habashi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding. -
Almost Forgotten Anniversaries in 2019 Introduction
Almost Forgotten Anniversaries in 2019 Katharina Lodders Department of Earth and Planetary Sciences and Mc Donnell Center for the Space Sciences, Campus Box 1169, Washington University, Saint Louis MO 63130, USA Keywords: history, chemical elements, abundances Abstract: As we celebrate the International Year of the Periodic Table, the 50th anniversary of Apollo 11 and the meteorite falls of Allende and Murchison in 1969, other noteworthy science events with round birthdays seem to be overlooked and almost forgotten Several scientific organizations celebrate the birthdays of their foundation; and key events and discoveries related to meteoritics, astronomy, geo- and cosmochemistry, and nuclear sciences can be commemorated this year, including the anniversaries of the discoveries of eleven chemical elements, and the advancements of our knowledge of the elemental and isotopic abundances. Introduction. Introduction The 150th anniversary of the discovery of the periodic system of the elements by Dmitri Ivanovich Mendeleev (8 Feb. 1834 – 2 Feb. 1907) and independently by Julius Lothar Meyer (19 August 1830 – 11 April 1895) is the reason for celebrating the International Year of the Periodic Table in 2019. Not only that, but several scientific organizations celebrate the birthdays of their foundation: The Astronomical Society of the Pacific (1889), The American Astronomical Society (1899), the American Geophysical Union (1919), the Mineralogical Society of America (1919), and the International Astronomical Union IAU (1919). The anniversaries in 2019 give us reasons to reflect on the major impacts of space exploration. In 1969, the first men landed on the moon and Apollo 11 safely returned with lunar rocks for study. The same year was blessed by the fall of the important carbonaceous chondrites Allende and Murchison. -
Historical Development of the Periodic Classification of the Chemical Elements
THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence -
The Development of the Periodic Table and Its Consequences Citation: J
Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1. -
The Rare Earths II
Redis co very of the Elements The Ra re Earth s–The Con fusing Years I A gallery of rare earth scientists and a timeline of their research I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] The rare earths after Mosander. In the pre - vi ou s HEXAGON “Rediscovery” article, 1p we were introduced to the 17 rare earths, found in the f-block and the Group III chemical family of Figure 1. Important scientists dealing with rare earths through the nineteenth century. Johan Gadolin the Periodic Table. Because of a common (1760 –1852) 1g —discovered yttrium (1794). Jöns Jacob Berzelius (1779 –1848) and Martin Heinrich valence electron configuration, the rare earths Klaproth (1743 –1817) 1d —discovered cerium (1803). Carl Gustaf Mosander (1787 –1858) 1p —discovered have similar chemical properties, and their lanthanum (1839), didymium (1840), terbium, and erbium (1843). Jean-Charles deGalissard Marignac chemical separation from one another can be (1817 –1894) 1o —discovered ytterbium (1878) and gadolinium (1880). Per Teodor Cleve (1840 –1905) 1n — difficult. From preparations of the first two rare discovered holmium and thulium (1879). Lars Fredrik Nilson (1840 –1899) 1n —discovered scandium earth element s—yttrium and ceriu m—the (1879). Paul-Émile Lecoq de Boisbaudran (1838 –1912) —discovered samarium (1879) and dysprosium Swedish chemist Carl Gustaf Mosander (Figure (1886). 1b Carl Auer von Welsbach (1858 –1929) 1c —discovered praseodymium and neodymium (1885); 1, 2) was able to separate four additional ele - co-discovered lutetium (1907). -
Project Note Weston Solutions, Inc
PROJECT NOTE WESTON SOLUTIONS, INC. To: Canadian Radium & Uranium Corp. Site File Date: June 5, 2014 W.O. No.: 20405.012.013.2222.00 From: Denise Breen, Weston Solutions, Inc. Subject: Determination of Significant Lead Concentrations in Sediment Samples References 1. New York State Department of Environmental Conservation. Technical Guidance for Screening Contaminated Sediments. March 1998. [45 pages] 2. U.S. Environmental Protection Agency (EPA) Office of Emergency Response. Establishing an Observed Release – Quick Reference Fact Sheet. Federal Register, Volume 55, No. 241. September 1995. [7 pages] 3. International Union of Pure and Applied Chemistry, Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances. Atomic Weights of Elements: Review 2000. 2003. [120 pages] WESTON personnel collected six sediment samples (including one environmental duplicate sample) from five locations along the surface water pathway of the Canadian Radium & Uranium Corp. (CRU) site in May 2014. The sediment samples were analyzed for Target Analyte List (TAL) Metals and Stable Lead Isotopes. 1. TAL Lead Interpretation: In order to quantify the significance for Lead, Thallium and Mercury the following was performed: 1. WESTON personnel tabulated all available TAL Metal data from the May 2014 Sediment Sampling event. 2. For each analyte of concern (Lead, Thallium, and Mercury), the highest background concentration was selected and then multiplied by three. This is the criteria to find the significance of site attributable release as per Hazard Ranking System guidelines. 3. One analytical lead result (2222-SD04) of 520 mg/kg (J) was qualified with an unknown bias. In accordance with US EPA document “Using Data to Document an Observed Release and Observed Contamination”, 2222-SD03 lead concentration was adjusted by dividing by the factor value for lead of 1.44 to equal 361 mg/kg. -
RBRC-32 BNL-6835.4 PARITY ODD BUBBLES in HOT QCD D. KHARZEEV in This ~A~Er We Give a Pedawwicalintroduction~0 Recent Work Of
RBRC-32 BNL-6835.4 PARITY ODD BUBBLES IN HOT QCD D. KHARZEEV RIKEN BNL Research Center, Br$ookhauenNational Laboratory, . Upton, New York 11973-5000, USA R.D. PISARSKI Department of Physics, Brookhaven National Laboratoy, Upton, New York 11973-5000, USA M.H.G. TYTGAT Seruice de Physique Th&orique, (7P 225, Uniuersitc4Libre de Bruzelles, B[ud. du !t%iomphe, 1050 Bruxelles, Belgium We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N + m. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the reconfining phrrse transition. The meet interesting possibility is if the reconfining transition, at T = Td, is of second order. Then we argue that Witten’s relation implies that the topological suscepti~lfity vanishes in a calculable fdion at Td. Ae noted by Witten, this implies that for sufficiently light quark messes, metaetable etates which act like regions of nonzero O — parity odd bubbles — can arise at temperatures just below Td. Experimentally, parity odd bubbles have dramatic signature% the rI’ meson, and especially the q meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as q + rr”ro, are allowed. The most direct way to detect parity violation is by measuring a parity odd global seymmetry for charged pions, which we define. 1 Introduction In this .-~a~er we give a Pedawwicalintroduction~0 recent work of ours? We I consider an SU(IV) gau”ge t~e~ry in the limit of a large number of colors, N + co, This is, of course, a familiar limit? We use the large N expansion I to investigate the behavior of the theory at nonzero temperature, especially for the topological susceptibility. -
Astrid Cleve Von Euler Född 11 Januari 1875, Död 8 April 1968, Dotter Till Professor (Uppsala) Per Teodor Cleve Och Författaren Caralma Öhbom
Sveriges första kvinnliga doktor i naturvetenskapliga ämnen var lärare på Norra Real 1912-16 Astrid Cleve von Euler född 11 januari 1875, död 8 april 1968, dotter till professor (Uppsala) Per Teodor Cleve och författaren Caralma Öhbom. Disputerade i botanik den 27 maj 1898 vid Uppsala universitet. Astrid Cleve utbildade sig till botanist och blev fil. kand. 1894 och disputerade i Uppsala 1898. Hon var därmed den tredje kvinnan i Sverige som disputerade. (Ellen Fries var den första kvinnan som doktorerade, 1883 i historia). Hon var starkt målinriktad på att bli forskare men när hon som kvinna inte accepterades som sådan, blev hon lärare istället. Hon fick mycket goda betyg i undervisningsskicklighet och därmed tjänst som lärare på Norra Real. Naturligtvis inte som lektor på gymnasiet - kvinnor kunde inte få sådan tjänst - men genom sin kompetens kom hon ändå att vikariera som lektor med en lön som så småningom blev 75,9 procent av vad hennes manliga kolleger fick. Lönefrågan diskuterades i många instanser innan den här procentsatsen fastställdes. Man var helt enkelt rädd att statuera exempel. ”... doktor Cleve von Euler gjorda framställningen knappast lärer kunna anses vara prejudicerande i avseende å kvinnors anställning i statstjänst. Ett dylikt bifall kommer framför allt ej att beröra det mycket omstridda spörsmålet om kvinnas lämplighet eller icke såsom undervisare för manliga lärjungar å högre stadium, ...” Astrid Cleve gifte sig den 2 september 1902 med Hans von Euler, som 1929 skulle få nobelpriset i kemi. Han var invandrare från Tyskland, men hade då bott i Sverige tillräckligt länge - och var av ”god frejd” - för att få gifta sig här. -
Carl Wilhelm Scheele (1742-1786) in the Literature Between the 19Th and 21Th Centuries
Revista CENIC. Ciencias Químicas ISSN: 1015-8553 ISSN: 2221-2442 [email protected] Centro Nacional de Investigaciones Científicas Cuba Immortal fame of the Swedish apothecary and chemist: Carl Wilhelm Scheele (1742-1786) in the literature between the 19th and 21th centuries Sztejnberg, Aleksander Immortal fame of the Swedish apothecary and chemist: Carl Wilhelm Scheele (1742-1786) in the literature between the 19th and 21th centuries Revista CENIC. Ciencias Químicas, vol. 49, no. 1, 2018 Centro Nacional de Investigaciones Científicas, Cuba Available in: https://www.redalyc.org/articulo.oa?id=181661081016 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Aleksander Sztejnberg. Immortal fame of the Swedish apothecary and chemist: Carl Wilhelm Scheele (... Articulos de Revision Immortal fame of the Swedish apothecary and chemist: Carl Wilhelm Scheele (1742-1786) in the literature between the 19th and 21th centuries Fama inmortal del boticario y químico sueco Carl Wilhelm Scheele (1742-1786) en los siglos XIX y XXI Aleksander Sztejnberg a Redalyc: https://www.redalyc.org/articulo.oa? University of Opole, Polonia id=181661081016 [email protected] Received: 02 August 2018 Accepted: 04 September 2018 Abstract: In this article the literature on Carl Wilhelm Scheele (1742-1786) is reviewed, including books on chemistry and the history of chemistry, published between the 18th and the 21st century in different countries in order to: 1) familiarize readers with the names of authors of biographies and biographical notes about Carl Wilhelm Scheele, published in books in 1833-2017, 2) discusse the priority problem for the discovery of oxygen by Joseph Priestley (1733-1804) and Scheele, 3) familiarize readers with literature sources regarding Scheele's letter to Antoine Laurent Lavoisier (1743-1794), written on September 30, 1774, 4) show the causes of Scheele’s premature death, 5) familiarize readers with opinions about Scheele expressed by chemists in 1819-1942. -
204200Orig1s000 204200Orig2s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204200Orig1s000 204200Orig2s000 MEDICAL REVIEW(S) CLINICAL REVIEW Application Type NDA Application Number(s) 204-200 and 204-640 Priority or Standard Standard Submit Date(s) March 7, 2012 Received Date(s) March 7, 2012 PDUFA Goal Date January 7, 2013 Division / Office DPARP/OND Reviewer Name(s) Peter Starke, MD Review Completion Date October 29, 2012 Established Name Epinephrine injection, USP, 1mg/mL (Proposed) Trade Name Adrenalin® Therapeutic Class Catecholamine Applicant JHP Pharmaceuticals, LLC Formulation(s) Solution for injection Proposed Dosing Hypersensitivity reactions: IM or SC Regimen injection(b) (4) [Ophthalmic use: Topical irrigation or intraocular bolus injection] Proposed Indication(s) Hypersensitivity reactions: severe acute anaphylactic reactions, (b) (4) [Ophthalmic use: induction and maintenance of mydriasis during cataract surgery] Intended Population(s) Hypersensitivity reactions: No age restrictions [Ophthalmic use: No age restrictions] Reference ID: 3209828 Clinical Review ● Peter Starke, MD NDA 204-200 ● Adrenalin® (epinephrine) MEDICAL OFFICER REVIEW Division of Pulmonary, Allergy and Rheumatology Products (DPARP) SUBMISSIONS REVIEWED IN THIS DOCUMENT Document Date CDER Stamp Date Submission Comments March 7, 2012 March 7, 2012 SD-1, eCTD-0000 New NDA submission April 9, 2012 April 9, 2012 SD-2, eCTD-0001 PREA waiver request – Anaphylaxis April 9, 2012 April 9, 2012 SD-3, eCTD-0002 PREA waiver request – Mydriasis April 18, 2012 April 18, 2012 SD-4, eCTD-0003 Request for proprietary name review Sept 5, 2012 Sept 6, 2012 SD-22, eCTD-0021 Draft Ophthalmic Labeling Oct 22, 2012 Oct 22, 2012 SD-27, eCDT-0026 Certification that EpiPen is the reference for the 505(b)(2) application RECOMMENDED REGULATORY ACTION NDA/SUPPLEMENTS: X APPROVAL COMPLETE RESPONSE OTHER ACTION: 2 Reference ID: 3209828 Clinical Review ● Peter Starke, MD NDA 204-200 ● Adrenalin® (epinephrine) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ........................................ -
Nov. Vortex 2019Vs 3 .Indd
AMERICAN CHEMICAL SOCIETY CALIFORNIA SECTION t Organization t VOLUME LXXXI NUMBER 9 NOVEMBER 2019 Non-Profi U.S. POSTAGE U.S. TIME VALUE CALIFORNIA SECTION CALIFORNIA AMERICAN CHEMICAL SOCIETY CHEMICAL AMERICAN PLEASE DO NOT DELAY - DATED NOTICE INSIDE NOTICE - DATED DO DELAY PLEASE NOT SEE REPORT ON PAGE 4 TABLE OF CONTENTS NOVEMBER MEETING PAGE 2 CHAIR'S MESSAGE PAGE 3 WCC MEETING REPORT (N. DAVIS) PAGE 4 IT'S ELEMENTARY PART 3 (B. MOTZER) PAGE 5 NATURAL GMO DEBUNKED (GMWATCH) PAGE 7 BUSINESS DIRECTORY PAGE 11 INDEX OF ADVERTISERS PAGE 11 BUSINESS DIRECTORY California Section AI and Chemistry: Protein Engineering and East Bay Biotech Tuesday – November 19, 2019 – 6:00 to 9:00 PM Amyris 5885 Hollis St. Suite 100 Emeryville, CA 94608 6:00 PM Networking (Refreshments provided) 7:00 PM Welcome, Panel, and Q&A 7:45 PM Concluding Remarks 7:50 PM Networking and Refreshments Discussion on East Bay research - Come join us to learn more about the future of chemistry, protein engineering, and artificial intelligence within the biotech industry. INDEXINDEX OFOF ADVERTISERSADVERTISERS RobertsonRobertson MiMicrolitcrolit BBPP RSVP here! Guests will sign a non-disclosure upon sign-in at the event. Event access is through the general access door facing Hollis Street. Our Distinguished Panelists: Yue Yang, PhD Loren Perelman, PhD Louis Metzger, PhD Amyris Riffyn Tierra Biosciences Director, Program Vice President, Scientific Chief Scientific Officer Management Solutions The event is FREE and open to the community. More information at: calacs.org or email [email protected] NOVEMBER 2019 P AGE 2 PAGE 11 THE VORTEX has been known to occur for decades and most forty years. -
High Strength Aluminum Alloys with Emphasis on Scandium Addition K
CAFP - 2008 Special Metal Casting and Forming Processes HIGH STRENGTH ALUMINUM ALLOYS WITH EMPHASIS ON SCANDIUM ADDITION K. Venkateswarlu, V. Rajinikanth, Ajoy Kumar Ray National Metallurgical Laboratory, Jamshedpur 831007 e-mail: [email protected] INTRODUCTION Aluminium is perhaps the youngest among the large group of metallic elements. It was first commercially produced in the year 1886 and rose in prominence meteorically to occupy today the second position in the total weight produced, next only to steel. Aluminium is a silvery white ductile metal with a FCC structure. It has excellent electrical and thermal conductivity (next only to copper and silver). It has low density (2.7 g/cc) which gives it a very high specific modulus and strength. Pure aluminium is the soft metal with the modulus value of 70 GPa and the yield strength of about 40 MPa. One of the most important properties of aluminium is to form a thin protective oxide layer on the surface. This layer is tenacious, adherent, deformable and impervious to most corroding elements. Aluminium is the common structural material because of the following properties. Light weight : Aluminium weighs roughly one third of iron and steel, but is one and a half times as heavy as magnesium. It finds application in reducing the weight of the component and structures particularly connected with transport, especially with aerospace application. High strength to weight ratio can be achieved in certain alloys, which show marked response to age hardening. High strength to weight ratio saves a lot commercially when dead weight is decreased and pay load of transport vehicle is increased.