Associated B Cell Lymphoma and Nasopharyngeal Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Associated B Cell Lymphoma and Nasopharyngeal Carcinoma Contribution of tumour cell signalling and the microenvironment to the pathogenesis of EBV- associated B cell lymphoma and nasopharyngeal carcinoma BY MAHA IBRAHIM A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Institute of Cancer and Genomic Sciences College of Medical and Dental Sciences University of Birmingham May 2018 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract In this thesis I have explored different components of the pathogenesis of several related EBV associated cancers. In the first part of the thesis I focus on the microenvironment of two of these cancers, nasopharyngeal carcinoma (NPC) and diffuse large B cell lymphoma (DLBCL). Our group has developed a therapeutic vaccine against EBV which has already been shown to be safe in patients with NPC. Therefore, in the first results chapter (chapter 3), I present a description of the phenotyping of expression of the immune microenvironment including immune checkpoint (ICP) genes and MHC class I and class II genes in NPC tissues. I showed for the first time in NPC tissue samples, two types of PD-L1 expressing tumours: diffuse and marginal. In re-analysis of published data, I found co- expression of immune checkpoint genes and their receptors in EBV positive NPC samples; information which is likely to inform the design of combination immunotherapy in NPC patients. I have shown in my re-analysis of EBV positive NPC that PD-L1 is not up-regulated by LMP-1. In chapter 4, I show the results of studies of the expression of collagen and collagen receptors in DLBCL in which I have identified the over-expression of a potentially novel immune checkpoint receptor, LAIR-1, on the macrophages infiltrating this tumour. In the second part of the thesis I switch my line of inquiry to the tumour cells of EBV-associated cancers, this time focussing on Hodgkin lymphoma (HL), another EBV-associated lymphoma. During the course of the work presented in this chapter I was able to define a role for aberrant sphingosine-1-phosphate (S1P) signalling in driving PI3-K activation mediated through up-regulation of S1PR1 and downregulation of S1PR2 receptors in HL. I also showed that in turn, PI3-K signalling increases the expression of potentially oncogenic downstream transcription factors, such as BATF3 which I have shown to be overexpressed in HL. These data suggest that antagonists of S1P could be considered for the treatment of patients with HL. Acknowledgment I would like to thank the following establishments for generously funding my project while giving me the opportunity to pursue my postgraduate studies in such reputable University here in the UK: - The Egyptian Ministry of Higher Education - Southern Egypt Cancer Institute, Assiut University Also, I would like to recognize and thank all the staff members of the University of Birmingham for facilitating/assisting in my research. The specialized EBV Center is definitely a state of the art research center I would like to sincerely dedicate my special thanks and great gratitude to my principle supervisor Professor Paul Murray for all the sincere effort, his precious generous time he usually gave me and his sincere pieces of advices he has been providing me for the past four years. I would like to thank him for his continuous support, enthusiasm, positivity, patience, and willingness to share with me his great experience and vast knowledge in the field of oncology. He has such an amazing knowledge that is topped with his wonderful so helpful, kind, generous and thoughtful personality. His continuous enthusiasm and devotion have been the main drive for me throughout the entire time of my PHD studies. Professor Paul is not only a great resource for myself, members in PGM group but also has been a great resource for all groups in the Cancer Science Centre. Without him, this work would never succeeded. Also, I would like to extend my recognition as well as my gratitude to my co- supervisor Dr. Graham Taylor. Dr. Taylor's intellectual, valuable experience, patience was always available to guide me in my study. For certain his meticulousity for details had left a positive impact on my research and academic career. I am very grateful to Dr. Wenbin Wei as well as Dr. Robert Hollows for all the support they have provided me with through the bioinformatics work in my thesis. Also, I am greatly thankful to Dr.Abeer Shaaban. Her experience in pathology is remarkable. Thank you Dr. Abeer for sparing the time and effort to help me in my project. My special gratitude and thanks to all my lovely colleagues in the PGM group. - Tracey Perry and Lauren Lupino, Navta Massand, Grace Mitchel, thank you for teaching me all the necessary lab skills and technical support to master my PHD work here. - Ghada Mohamed, Sandra margielewska, Naheema Gordon, Regina Andrijes, Victoria Stavrou and Vera Novitskaia, thank you all for being there for me through all these years. Thank you for making me happy and enjoy work in a friendly smiley warm and fun environment. I can never forget all the assistance and support I have received from the following research groups: - Dr. Frank Mussai group; Dr. Caramla De Santo for the vast knowledge in the macrophage work that they shared with me. - Professor Ben's group; Dr. Neeraj Lal, Dr Galeb Gassous, Chris Bagnall for the Vectra help. - Professor Hisham Mehanna, Dr. Jill Brookes, Dr. Alex Dowel, Dr William Simmons, Dr Isla Humphreys, Dr. Nicholas Davies and Dr Christopher Dawson for all their enormous help, support and sincere advice. Also, I would like to show my appreciation and thanks to my family. Especially, my parents: Professor AbdelKalek and my mother Madeha El-Rafei who have been a source of inspiration to me throughout my life. I would like to let them know that their continuous encouragement and prayers have sustained me that far. Many thanks for all your sacrifices and love. You were behind every step of my work. If it wasn't for my parents, my brothers (Ahmed and Mahmoud) and my sister Shahnaz, I can never forget your support. Thank you all. Finally, although words can’t adequately express my feelings, I would like to express my deepest gratitude to my husband who showed me a lot of nice feelings and support. He has always been encouraging me to be enthusiastic. Thank you Ahmed El Amir Mohamed. Maha Ibrahim CONTENTS 1. INTRODUCTION 1 1.1 Epstein-Barr virus 3 1.1.1 EBV is a transforming B lymphotropic virus 3 1.1.2 Asymptomatic infection of B cells 6 1.2 Diffuse large B cell lymphoma 6 1.2.1 Incidence of Diffuse large B cell lymphoma 7 1.2.2 Histology of DLBCL 7 1.2.3 DLBCL in the WHO classifications 11 1.2.4 Cell of origin (COO) Classification of DLBCL 13 1.2.5 Immunophenotyping 16 1.2.6 Prognostic factors in DLBCL 17 1.3 Hodgkin lymphoma 18 1.3.1 Histology of HL 18 1.3.2 Origin of HRS cells of cHL 19 1.3.3 Suppression of the B cell phenotype in HRS cells 21 1.3.4 Deregulated cellular signalling in classical HL 22 1.4 Nasopharyngeal carcinoma 25 1.5 Contribution of EBV to B cell Lymphoma (DLBCL and HL) and 30 NPC 1.5.1 EBV-associated B cell lymphomas 30 1.5.2 Contribution of EBV latent genes to the pathogenesis of 30 lymphomas 1.5.3 Suppression of the EBV lytic cycle as a potential pathogenic 34 event in EBV-positive cHL 1.5.4 EBV and DLBCL; additional remarks 37 1.5.5 EBV association and contribution of EBV genes in NPC 38 1.5.5.1 Genetic factors in NPC development 38 1.5.5.2 Viral and cellular factors influencing tumour immunity 40 1.6 Tumour microenvironment 43 1.6.1 Collagen and collagen receptors 48 1.6.1.1 Collagen in haematolymphoid neoplasms 49 1. 6.2 Collagen receptors 50 1.6.2.1 Discoidin domain receptor-1 (DDR-1) 50 1.6.2.2 Leukocyte-associated Ig-like receptor-1 (LAIR-1) 51 1.6.3 PD-L1 52 1.6.4 Tumour microenvironment of NPC 56 1.6.5 MHC class I and class II 58 1.7 Sphingolipids 61 1.7.1 S1P synthesis and degradation 61 1.7.2 The sphingolipid rheostat 63 1.7.3 S1P signalling through its receptors 63 1.7.4 Over-expression of SPHK1 and cancer 66 1.7.5 Induction of aberrant cell signalling by S1P in cancer cells 67 1.7.6 Contribution of SPHK1-S1P signalling to altered cell migration in 68 cancer 1.7.7 Therapeutic targeting of S1P or its receptors 69 1.8 Aims of the Study 71 2. MATERIAL AND METHODS 73 2.1 Tissue samples 74 2.1.1 Nasopharyngeal carcinoma 74 2.1.2 DLBCL samples 74 2.1.2.1 Construction of tissue microarray of DLBCL 74 2.1.3 HL samples 76 2.2 Immunohistochemistry (IHC) 76 2.2.1 Positive and negative controls 76 2.2.2 Sectioning of tissues 76 2.2.3 Haematoxylin and eosin (H&E) protocol 76 2.3 Optimisation of antibodies 77 2.4 IHC 77 2.4.1 Citrate Antigen Retrieval 78 2.4.2 Cytospins preparation for IHC/IF 79 2.5 A20 syngeneic xenograft mouse model of DLBCL 80 2.6 Immunofluorescence (IF) 80 2.6.1 Detection of antigen by singleplex/multiplex immunofluorescence 80 (IF) using Opal staining method 2.6.2 Automated IHC and multiplex staining 89 2.6.3 Digital semi-automated quantitative scoring using Vectra scanner
Recommended publications
  • Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation
    Review Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation Chiara Rizzo 1, Giulia Grasso 1, Giulia Maria Destro Castaniti 1, Francesco Ciccia 2 and Giuliana Guggino 1,* 1 Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; [email protected] (C.R.); [email protected] (G.G.); [email protected] (G.M.D.C.) 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-6552260 Received: 30 April 2020; Accepted: 29 May 2020; Published: 3 June 2020 Abstract: Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players.
    [Show full text]
  • Recombinant Human NCR3/Nkp300 Protein
    Leader in Biomolecular Solutions for Life Science Recombinant Human NCR3/NKp300 Protein Catalog No.: RP00179 Recombinant Sequence Information Background Species Gene ID Swiss Prot Natural Cytotoxicity Triggering Receptor 3, NCR3, also known as NKp30, or CD337, Human 259197 O14931 is a natural cytotoxicity receptor. NKp30 is expressed on both resting and activated NK cells of the CD56dim, CD16+ subset that account for more that 85% of NK cells Tags found in peripheral blood and spleen. NKp30 is absent from the CD56bright, CD16- C-Fc & 6×His subset that constitutes the majority of NK cells in lymph node and tonsil, however, its expression is up-regulated in these cells upon IL-2 activation .NKp30 is a Synonyms member of the immunoglobulin superfamily and one of three existing natural 1C7;CD337;DAAP-90L16.3;LY117;MALS cytotoxicity-triggering receptors. NKp30 is a glycosylated protein and is thought to ;NCR3;NKp30 be selectively expressed in resting and activated natural killer cells. NKp30 is a stimulatory receptor on human NK cells implicated in tumor immunity, and is capable of promoting or terminating dendritic cell maturation. NCR3 may play a role in inflammatory and infectious diseases. Product Information Source Purification Basic Information HEK293 cells > 95% by SDS- PAGE. Description Recombinant Human NCR3/NKp300 Protein is produced by HEK293 cells Endotoxin expression system. The target protein is expressed with sequence (Leu19-Thr138) < 0.1 EU/μg of the protein by LAL of human NCR3/NKp300 (Accession #NP_001138938.1) fused with an Fc, 6×His tag method. at the C-terminus. Formulation Bio-Activity Lyophilized from a 0.22 μm filtered Measured by its binding ability in a functional ELISA.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Supplementary Table S5. Differentially Expressed Gene Lists of PD-1High CD39+ CD8 Tils According to 4-1BB Expression Compared to PD-1+ CD39- CD8 Tils
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Supplementary Table S5. Differentially expressed gene lists of PD-1high CD39+ CD8 TILs according to 4-1BB expression compared to PD-1+ CD39- CD8 TILs Up- or down- regulated genes in Up- or down- regulated genes Up- or down- regulated genes only PD-1high CD39+ CD8 TILs only in 4-1BBneg PD-1high CD39+ in 4-1BBpos PD-1high CD39+ CD8 compared to PD-1+ CD39- CD8 CD8 TILs compared to PD-1+ TILs compared to PD-1+ CD39- TILs CD39- CD8 TILs CD8 TILs IL7R KLRG1 TNFSF4 ENTPD1 DHRS3 LEF1 ITGA5 MKI67 PZP KLF3 RYR2 SIK1B ANK3 LYST PPP1R3B ETV1 ADAM28 H2AC13 CCR7 GFOD1 RASGRP2 ITGAX MAST4 RAD51AP1 MYO1E CLCF1 NEBL S1PR5 VCL MPP7 MS4A6A PHLDB1 GFPT2 TNF RPL3 SPRY4 VCAM1 B4GALT5 TIPARP TNS3 PDCD1 POLQ AKAP5 IL6ST LY9 PLXND1 PLEKHA1 NEU1 DGKH SPRY2 PLEKHG3 IKZF4 MTX3 PARK7 ATP8B4 SYT11 PTGER4 SORL1 RAB11FIP5 BRCA1 MAP4K3 NCR1 CCR4 S1PR1 PDE8A IFIT2 EPHA4 ARHGEF12 PAICS PELI2 LAT2 GPRASP1 TTN RPLP0 IL4I1 AUTS2 RPS3 CDCA3 NHS LONRF2 CDC42EP3 SLCO3A1 RRM2 ADAMTSL4 INPP5F ARHGAP31 ESCO2 ADRB2 CSF1 WDHD1 GOLIM4 CDK5RAP1 CD69 GLUL HJURP SHC4 GNLY TTC9 HELLS DPP4 IL23A PITPNC1 TOX ARHGEF9 EXO1 SLC4A4 CKAP4 CARMIL3 NHSL2 DZIP3 GINS1 FUT8 UBASH3B CDCA5 PDE7B SOGA1 CDC45 NR3C2 TRIB1 KIF14 TRAF5 LIMS1 PPP1R2C TNFRSF9 KLRC2 POLA1 CD80 ATP10D CDCA8 SETD7 IER2 PATL2 CCDC141 CD84 HSPA6 CYB561 MPHOSPH9 CLSPN KLRC1 PTMS SCML4 ZBTB10 CCL3 CA5B PIP5K1B WNT9A CCNH GEM IL18RAP GGH SARDH B3GNT7 C13orf46 SBF2 IKZF3 ZMAT1 TCF7 NECTIN1 H3C7 FOS PAG1 HECA SLC4A10 SLC35G2 PER1 P2RY1 NFKBIA WDR76 PLAUR KDM1A H1-5 TSHZ2 FAM102B HMMR GPR132 CCRL2 PARP8 A2M ST8SIA1 NUF2 IL5RA RBPMS UBE2T USP53 EEF1A1 PLAC8 LGR6 TMEM123 NEK2 SNAP47 PTGIS SH2B3 P2RY8 S100PBP PLEKHA7 CLNK CRIM1 MGAT5 YBX3 TP53INP1 DTL CFH FEZ1 MYB FRMD4B TSPAN5 STIL ITGA2 GOLGA6L10 MYBL2 AHI1 CAND2 GZMB RBPJ PELI1 HSPA1B KCNK5 GOLGA6L9 TICRR TPRG1 UBE2C AURKA Leem G, et al.
    [Show full text]
  • Fate Mapping Analysis of Lymphoid Cells Expressing the Nkp46 Cell Surface Receptor
    Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor Emilie Narni-Mancinellia,b,c,1, Julie Chaixa,b,c,1,2, Aurore Fenisa,b,c, Yann M. Kerdilesa,b,c, Nadia Yessaada,b,c, Ana Reyndersa,b,c, Claude Gregoirea,b,c, Herve Luchea,b,c, Sophie Ugolinia,b,c, Elena Tomaselloa,b,c, Thierry Walzera,b,c,3, and Eric Viviera,b,c,d,4 aCentre d’Immunologie de Marseille-Luminy, Université de la Méditerranée UM 631, Campus de Luminy Case 906, 13288 Marseille, France; bInstitut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 631, 13009 Marseille, France; cCentre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France; and dAssistance Publique, Hôpitaux de Marseille, Hôpital de la Conception, 13385 Marseille, France Edited* by Christophe Benoist, Harvard Medical School, Boston, MA, and approved September 19, 2011 (received for review July 26, 2011) NKp46 is a cell surface receptor expressed on natural killer (NK) the selectivity of expression of eGFP in NDE mice mirrored that of cells, on a minute subset of T cells, and on a population of innate endogenous NKp46 in a fraction of transgenic mice, variegation at lymphoid cells that produce IL-22 and express the transcription the transgenic locus led to unpredictable variation in the pene- factor retinoid-related orphan receptor (ROR)-γt, referred to as NK trance of the transgene expression in mouse littermates. Another cell receptor (NKR)+ROR-γt+ cells. Here we describe Nkp46iCre knock- transgenic mouse expressing the improved Cre (iCre) recombinase in mice in which the gene encoding the improved Cre (iCre) recom- under the control of the Nkp46 promoter was recently reported binase was inserted into the Nkp46 locus.
    [Show full text]
  • Natural Killer Cell Lymphoma Shares Strikingly Similar Molecular Features
    Leukemia (2011) 25, 348–358 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu ORIGINAL ARTICLE Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic cd T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro J Iqbal1, DD Weisenburger1, A Chowdhury2, MY Tsai2, G Srivastava3, TC Greiner1, C Kucuk1, K Deffenbacher1, J Vose4, L Smith5, WY Au3, S Nakamura6, M Seto6, J Delabie7, F Berger8, F Loong3, Y-H Ko9, I Sng10, X Liu11, TP Loughran11, J Armitage4 and WC Chan1, for the International Peripheral T-cell Lymphoma Project 1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; 2Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 3Departments of Pathology and Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China; 4Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; 5College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA; 6Departments of Pathology and Cancer Genetics, Aichi Cancer Center Research Institute, Nagoya University, Nagoya, Japan; 7Department of Pathology, University of Oslo, Norwegian Radium Hospital, Oslo, Norway; 8Department of Pathology, Centre Hospitalier Lyon-Sud, Lyon, France; 9Department of Pathology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea; 10Department of Pathology, Singapore General Hospital, Singapore and 11Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA Natural killer (NK) cell lymphomas/leukemias are rare neo- Introduction plasms with an aggressive clinical behavior.
    [Show full text]
  • Anti-NCR3 / Nkp30 Antibody (ARG59803)
    Product datasheet [email protected] ARG59803 Package: 100 μl anti-NCR3 / NKp30 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes NCR3 / NKp30 Tested Reactivity Hu, Ms, Rat Tested Application ICC/IF, IHC-P Host Rabbit Clonality Polyclonal Isotype IgG Target Name NCR3 / NKp30 Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 20-140 of Human NCR3 (NP_667341.1). Conjugation Un-conjugated Alternate Names NK-p30; 1C7; CD antigen CD337; Activating natural killer receptor p30; NKp30; Natural cytotoxicity triggering receptor 3; MALS; LY117; Natural killer cell p30-related protein; CD337 Application Instructions Application table Application Dilution ICC/IF 1:50 - 1:100 IHC-P 1:100 - 1:200 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 22 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/3 Bioinformation Gene Symbol NCR3 Gene Full Name natural cytotoxicity triggering receptor 3 Background The protein encoded by this gene is a natural cytotoxicity receptor (NCR) that may aid NK cells in the lysis of tumor cells.
    [Show full text]
  • Immune Suppressive Landscape in the Human Esophageal Squamous Cell
    ARTICLE https://doi.org/10.1038/s41467-020-20019-0 OPEN Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment ✉ Yingxia Zheng 1,2,10 , Zheyi Chen1,10, Yichao Han 3,10, Li Han1,10, Xin Zou4, Bingqian Zhou1, Rui Hu5, Jie Hao4, Shihao Bai4, Haibo Xiao5, Wei Vivian Li6, Alex Bueker7, Yanhui Ma1, Guohua Xie1, Junyao Yang1, ✉ ✉ ✉ Shiyu Chen1, Hecheng Li 3 , Jian Cao 7,8 & Lisong Shen 1,9 1234567890():,; Cancer immunotherapy has revolutionized cancer treatment, and it relies heavily on the comprehensive understanding of the immune landscape of the tumor microenvironment (TME). Here, we obtain a detailed immune cell atlas of esophageal squamous cell carcinoma (ESCC) at single-cell resolution. Exhausted T and NK cells, regulatory T cells (Tregs), alternatively activated macrophages and tolerogenic dendritic cells are dominant in the TME. Transcriptional profiling coupled with T cell receptor (TCR) sequencing reveal lineage con- nections in T cell populations. CD8 T cells show continuous progression from pre-exhausted to exhausted T cells. While exhausted CD4, CD8 T and NK cells are major proliferative cell components in the TME, the crosstalk between macrophages and Tregs contributes to potential immunosuppression in the TME. Our results indicate several immunosuppressive mechanisms that may be simultaneously responsible for the failure of immuno-surveillance. Specific targeting of these immunosuppressive pathways may reactivate anti-tumor immune responses in ESCC. 1 Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2 Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 3 Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
    [Show full text]
  • NK Cells and Cancer: You Can Teach Innate Cells New Tricks
    UCSF UC San Francisco Previously Published Works Title NK cells and cancer: you can teach innate cells new tricks. Permalink https://escholarship.org/uc/item/5t11r9h0 Journal Nature reviews. Cancer, 16(1) ISSN 1474-175X Authors Morvan, Maelig G Lanier, Lewis L Publication Date 2016 DOI 10.1038/nrc.2015.5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEWS NK cells and cancer: you can teach innate cells new tricks Maelig G. Morvan and Lewis L. Lanier Abstract | Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer. Innate lymphoid cell Although they were discovered more than 40 years ago, other immune cells expressing NK cell receptors that may (ILC). A lymphocyte that natural killer (NK) cells have recently been attracting contribute to their antitumour immune responses. Given participates in the innate attention for their potential in immune-based ther- the successful anticancer therapeutic approaches involv- immune responses. ILCs are apies. Initially believed to be just an annoying back- ing blockade of T cell-directed immune checkpoints, we present in RAG-deficient (Rag1–/– and Rag2–/–) mice, ground activity in cytotoxicity assays or an artefact, discuss how these and new combination strategies could so do not require gene NK cells are now considered to be an important part also affect the antitumour functions of NK cells.
    [Show full text]
  • Human CD Marker Chart Reviewed by HLDA1 Bdbiosciences.Com/Cdmarkers
    BD Biosciences Human CD Marker Chart Reviewed by HLDA1 bdbiosciences.com/cdmarkers 23-12399-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1a R4, T6, Leu6, HTA1 b-2-Microglobulin, CD74 + + + – + – – – CD93 C1QR1,C1qRP, MXRA4, C1qR(P), Dj737e23.1, GR11 – – – – – + + – – + – CD220 Insulin receptor (INSR), IR Insulin, IGF-2 + + + + + + + + + Insulin-like growth factor 1 receptor (IGF1R), IGF-1R, type I IGF receptor (IGF-IR), CD1b R1, T6m Leu6 b-2-Microglobulin + + + – + – – – CD94 KLRD1, Kp43 HLA class I, NKG2-A, p39 + – + – – – – – – CD221 Insulin-like growth factor 1 (IGF-I), IGF-II, Insulin JTK13 + + + + + + + + + CD1c M241, R7, T6, Leu6, BDCA1 b-2-Microglobulin + + + – + – – – CD178, FASLG, APO-1, FAS, TNFRSF6, CD95L, APT1LG1, APT1, FAS1, FASTM, CD95 CD178 (Fas ligand) + + + + + – – IGF-II, TGF-b latency-associated peptide (LAP), Proliferin, Prorenin, Plasminogen, ALPS1A, TNFSF6, FASL Cation-independent mannose-6-phosphate receptor (M6P-R, CIM6PR, CIMPR, CI- CD1d R3G1, R3 b-2-Microglobulin, MHC II CD222 Leukemia
    [Show full text]
  • Downregulation of Carnitine Acyl-Carnitine Translocase by Mirnas
    Page 1 of 288 Diabetes 1 Downregulation of Carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion Mufaddal S. Soni1, Mary E. Rabaglia1, Sushant Bhatnagar1, Jin Shang2, Olga Ilkayeva3, Randall Mynatt4, Yun-Ping Zhou2, Eric E. Schadt6, Nancy A.Thornberry2, Deborah M. Muoio5, Mark P. Keller1 and Alan D. Attie1 From the 1Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; 2Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, New Jersey; 3Sarah W. Stedman Nutrition and Metabolism Center, Duke Institute of Molecular Physiology, 5Departments of Medicine and Pharmacology and Cancer Biology, Durham, North Carolina. 4Pennington Biomedical Research Center, Louisiana State University system, Baton Rouge, Louisiana; 6Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York. Corresponding author Alan D. Attie, 543A Biochemistry Addition, 433 Babcock Drive, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, (608) 262-1372 (Ph), (608) 263-9608 (fax), [email protected]. Running Title: Fatty acyl-carnitines enhance insulin secretion Abstract word count: 163 Main text Word count: 3960 Number of tables: 0 Number of figures: 5 Diabetes Publish Ahead of Print, published online June 26, 2014 Diabetes Page 2 of 288 2 ABSTRACT We previously demonstrated that micro-RNAs 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of micro-RNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including non-fuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT, Slc25a20) is a direct target of these miRNAs.
    [Show full text]
  • RT² Profiler PCR Array (384-Well Format) Human Inflammatory Response & Autoimmunity
    RT² Profiler PCR Array (384-Well Format) Human Inflammatory Response & Autoimmunity Cat. no. 330231 PAHS-3803ZE For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 7900HT (384-well block), Format E ViiA™ 7 (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (384-well block) Format G Description The Human Inflammatory Response & Autoimmunity RT² Profiler PCR Array profiles the expression of 370 key genes involved in immune response during autoimmunity and inflammation. It represents the expression of inflammatory cytokines, chemokines, and their receptors. It also contains genes related to the production and metabolism of cytokines. Genes involved in cytokine-cytokine receptor interactions are as well as thoroughly researched panels of genes involved in the acute-phase, inflammatory, and humoral immune responses. Using real-time PCR, you can easily and reliably analyze the expression of a focused panel of genes related to autoimmunity and inflammation with this array. For further details, consult the RT² Profiler PCR Array Handbook. Sample & Assay Technologies Shipping and storage RT² Profiler PCR Arrays in formats E and G are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. For long term storage, keep plates at –20°C. Note: Ensure that you have the correct RT² Profiler PCR Array format for your real-time cycler (see table above). Note: Open the package and store
    [Show full text]