The Eastern Asian–Eastern North American Floristic Disjunction

Total Page:16

File Type:pdf, Size:1020Kb

The Eastern Asian–Eastern North American Floristic Disjunction Land Bridge Travelers of the Tertiary: The Eastern Asian–Eastern North American Floristic Disjunction David Yih he eastern Asian–eastern North Ameri- remains the classic disjunction. It continues to can floristic disjunction is a curious phe- stimulate new scientific papers, with each suc- Tnomenon that has fascinated botanists cessive generation applying new research tools for over 200 years: the existence of an entire to its mysteries. catalog of species and genera shared by two Recognition of the disjunction began in vastly separated regions and found nowhere the 1750s with botanists making lists of spe- else. It has inspired generations of researchers cies found in both regions. By the mid-1800s and given impetus to such fields as biogeogra- botanists had collected enough materials to phy and paleobotany. Scientists now recognize lead them to the astounding conclusion that many different disjunct patterns around the the flora of eastern North America (ENA) had world, but the eastern Asian–eastern North more in common with eastern Asia (EA) than American was the first to be discovered, and it did with western North America. Most of I C REDI L T E D ETER P ENA meets EA: A garden path separates the eastern North American species Allegheny spurge (Pachysandra procum- bens, left) from the eastern Asian species Japanese spurge (Pachysandra terminalis). The Eastern Asian–Eastern North American Floristic Disjunction 15 what were once thought to be identical spe- Sequoia (redwood) and Taxodium (baldcypress), cies are now considered congeners (distinct genera now confined to North America, have species belonging to the same genus), so the been found in eastern Asia. disjunction is more about shared genera than At present, the similarity is limited by pro- shared species, and it is now clear that east- nounced differences in biodiversity. Disjunct ern North America has more in common with genera tend to have more species in Asia than western North America than with eastern Asia. in America. The extreme example is Lindera, However, it is also clear that eastern Asia and with 80 species in eastern Asia but only 2 in eastern North America have more in common North America. Indeed, eastern Asia, with its than eastern Asia and western North America 2,753 genera of seed plants, has a biodiversity and that a remarkable disjunction phenomenon far greater than that of eastern North America, exists. Today, the list of EA-ENA botanical “dis- which has only 1,230. According to one expla- juncts” (shared taxa peculiar to the two regions) nation, the Paleocene forests of both regions includes about 65 genera, a handful of closely were equally rich in species until severe cli- related genera, and a few species (Wen 1999). matic fluctuations in North America resulted Most of the genera are temperate; only a in many extinctions. Another possibility is that few come from subtropical or tropical zones. the complex topography of eastern Asia pro- And most disjuncts are woody plants. Many of moted a greater rate of speciation there due to the herbaceous ones are early-leafing species adapted to thrive on the forest floor. Some EA- ENA disjunct genera that have familiar repre- Table 1 sentative species in the Northeast are listed in WOODY Table 1 (Li 1952), along with generalized com- mon names for the species. Campsis Trumpet vine Carya Hickory DISJUNCT REGIONS Catalpa Catalpa The majority of eastern Asian disjuncts grow in the Sino-Japanese Floristic Region, which Cornus Dogwood extends from China’s western Yunnan and Gleditsia Honey locust Sichuan provinces through central, eastern, and Hamamelis Witchhazel most of southern China to Korea and Japan. The richest association of disjunct genera occurs in Liquidambar Sweetgum central China, along the longest river in Asia: Liriodendron Tuliptree the Yangtze (Li 1952). On the American side, Lyonia Maleberry the richest disjunct area is along the Appala- chian Mountains. The two areas are the only Mitchella Partridgeberry instances globally of the mixed mesophytic for- Nyssa Tupelo est, one of the most biodiverse temperate forest Pachysandra Pachysandra types in the world. Western botanists have reported experienc- Parthenocissus Virginia creeper ing a sense of déjà vu in the forests of China. Sassafras Sassafras Add to the disjuncts the more wide-ranging spe- cies that also occur in both regions, and the HERBACEOUS level of similarity becomes quite high. A recent study found that 67% of the seed plant gen- Panax Ginseng era in Maine occur on Japan’s Honshu Island Phryma Lopseed (Qian 2002). The similarity was even greater in Podophyllum Mayapple ages past. Several genera that are now endemic to eastern Asia occur in fossil form in North Saururus Lizard’s tail America, e.g., the familiar Ginkgo and Metase- Symplocarpus Skunk cabbage quoia (dawn redwood), while fossil remains of 16 Arnoldia 69/3 • February 2012 The Sino-Japanese Floristic Region. I I C C REDI REDI L T L T E E D D ETER ETER P P Manchurian catalpa (Catalpa bungei), left, is native to China, while northern catalpa (Catalpa speciosa), right, is native to the central and eastern United States and southern Ontario. The Eastern Asian–Eastern North American Floristic Disjunction 17 H C OSE R Y CREE C AN N avid D OF Courtesy Showy flowers are a feature shared by Chinese trumpet creeper (Campsis grandiflora), left, and the familiar trumpet creeper (Campsis radicans) of North America, right. peninsula and in North America, including ayer M members of genera familiar to New England botanists: Asplenium, Lycopodium, Anemone, obert R Heuchera, and Spirea. Commercial exploitation of the phenomenon had already begun. Père Lafitau, a French Jesuit, had discovered Ameri- can ginseng (Panax quinquefolius) growing near Montreal in 1716, and French Canadians were neglecting their farms in the rush to collect wild ginseng for export to China (Kingsford 1888). In 1784, C. P. Thunberg, a Swedish botanist, included in his Flora Japonica twenty species first described for North America (Boufford and Spongberg 1983). The following year, the Ital- ian botanist Luigi Castiglioni began a two-year sojourn in the United States. Castiglioni’s mis- sion was to bring back useful seeds to Italy, and he is credited with introducing to continental Lindera obtusiloba (seen here in fall color at the Arnold Arbore- tum) is one of the many Lindera species native to eastern Asia. Europe such trees as black locust (later to show invasive tendencies), catalpa, and arborvitae. In the abundance of varied habitats and natural 1790 he published his Viaggio negli Stati Uniti barriers that could allow different populations dell’ America, with elegant botanical drawings of a species to evolve separately (Sargent 1913; of such American sights as the franklintree, Qian and Ricklefs 2000). The EA–ENA disjunc- already rare in the wild and soon to be extinct tion is now recognized not only among plants, outside of cultivation. It also contains the first but among taxa of fungi, arachnids, millipedes, explicit discussion of the floristic similarity of insects, and freshwater fish, as well (Wen 1999). eastern North America to Japan, the only part But botanists can take credit for being the first of eastern Asia for which published floras were to notice and document the phenomenon. then available. Overlooked by nearly all who would later treat the disjunction, he received A THEORY BLOOMS scant credit for his role in its discovery (Li The earliest hint came in the 1750 dissertation 1955). Brief comments in the work of Pursh and of Halenius, a student of Linnaeus. It mentions then Nuttall reveal little beyond an incipient nine species found both on Siberia’s Kamchatka recognition of the disjunction, though Nuttall PETER DEL TREDICI MICHAEL DOSMANN C virginiana blooms inlatewinterorvery earlyspringwhilecommonwitchhazel( Though theirflowerslooksimilar, ultivated 18 ), right,bloomsinlatefallorearlywintereastern North America. C Arnoldia 69/3 hinese ginseng( Panax ginseng • February 2012 C hinese witchhazel( ), left,andafruiting specimenof Americanginseng( Hamamelis mollis Hamamelis ), left, ), left, Panax quinquefolius ), right. PETER DEL TREDICI NANCY ROSE The Eastern Asian–Eastern North American Floristic Disjunction 19 KY C undertook to note the geographical distribu- ENTU K tions of North American genera. It remained OF for Asa Gray, the preeminent American bota- nist of the nineteenth century, to focus atten- tion on the disjunction, bringing it to the notice NIVERSITY , U of the wider scientific community in a series of articles beginning in 1840 and spanning ARNES B nearly 40 years. OM T OF Charles Darwin, who began an extensive cor- respondence with Gray in 1855, encouraged him to study the global distributions of the North American flora. In his second letter to Courtesy Gray he wrote, “The ranges of plants, to the east and west, viz. whether most are found in Greenland and Western Europe, or in E. Asia appears to me a very interesting point as tend- ing to show whether the migration has been eastward or westward” (Darwin 1855). In 1859, after studying new collections from Japan, Gray published his classic “Diagnostic Characters” paper that included a list of 134 species shared by eastern North America and Japan. On the list were such northeastern plants as blue cohosh (Caulophyllum thalictroides), fox grape (Vitis labrusca), ditch stonecrop (Penthorum sedoides), honewort (Cryptotaenia canadensis), hobblebush (Viburnum lantanoides), wild gin- ger (Asarum canadense), red trillium (Trillium
Recommended publications
  • American Fern Journal
    AMERICAN FERN JOURNAL QUARTERLY JOURNAL OF THE AMERICAN FERN SOCIETY Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] American Fern Journal 101(4):213–230 (2011) Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] ABSTRACT.—Matteuccia struthiopteris (Onocleaceae) has a present-day distribution across much of the north-temperate and boreal regions of the world. Much of its current North American and European distribution was covered in ice or uninhabitable tundra during the Pleistocene. Here we use DNA sequences and AFLP data to investigate the genetic variation of the fiddlehead fern at two geographic scales to infer the historical biogeography of the species. Matteuccia struthiopteris segregates globally into minimally divergent (0.3%) Eurasian and American lineages.
    [Show full text]
  • Palaeogeograph Y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in the Netherlands
    Palaeogeograph y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands CLIMATIC CHANGES IN EASTERN ASIA AS INDICATED BY FOSSIL FLORAS. II. LATE CRETACEOUS AND DANIAN V. A. KRASSILOV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 17, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A., 1975. Climatic changes in Eastern Asia as indicated by fossil floras. II. Late Cretaceous and Danian. Palaeogeogr., Palaeoclimatol., Palaeoecol., 17:157--172. Four Late Cretaceous phytoclimatic zones -- subtropical, warm--temperate, temperate and boreal -- are recognized in the Northern Hemisphere. Warm--temperate vegetation terminates at North Sakhalin and Vancouver Island. Floras of various phytoclimatic zones display parallel evolution in response to climatic changes, i.e., a temperature rise up to the Campanian interrupted by minor Coniacian cooling, and subsequent deterioration of cli- mate culminating in the Late Danian. Cooling episodes were accompanied by expansions of dicotyledons with platanoid leaves, whereas the entire-margined leaf proportion increased during climatic optima. The floristic succession was also influenced by tectonic events, such as orogenic and volcanic activity which commenced in Late Cenomanian--Turonian times. Major replacements of ecological dominants occurred at the Maastrichtian/Danian and Early/Late Danian boundaries. INTRODUCTION The principal approaches to the climatic interpretation of fossil floras have been outlined in my preceding paper (Krassilov, 1973a). So far as Late Creta- ceous floras are concerned, extrapolation (i.e. inferences from tolerance ranges of allied modern taxa) is gaining in importance and the entire/non-entire leaf type ratio is no less expressive than it is in Tertiary floras.
    [Show full text]
  • (Polypodiales) Plastomes Reveals Two Hypervariable Regions Maria D
    Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Maria D. Logacheva1, Anastasiya A. Krinitsina1, Maxim S. Belenikin1,2, Kamil Khafizov2,3, Evgenii A. Konorov1,4, Sergey V. Kuptsov1 and Anna S. Speranskaya1,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. Results: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns.
    [Show full text]
  • Flora of New Zealand Ferns and Lycophytes Onocleaceae Pj Brownsey
    FLORA OF NEW ZEALAND FERNS AND LYCOPHYTES ONOCLEACEAE P.J. BROWNSEY & L.R. PERRIE Fascicle 28 – DECEMBER 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Brownsey, P. J. (Patrick John), 1948– Flora of New Zealand : ferns and lycophytes. Fascicle 28, Onocleaceae / P.J. Brownsey and L.R. Perrie. -- Lincoln, N.Z.: Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-68-2 (pdf) ISBN 978-0-478-34761-6 (set) 1.Ferns -- New Zealand – Identification. I. Perrie, L. R. (Leon Richard). II. Title. III. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.394.742(931) DC 587.30993 DOI: 10.7931/rjn3-hp32 This work should be cited as: Brownsey, P.J. & Perrie, L.R. 2020: Onocleaceae. In: Breitwieser, I. (ed.) Flora of New Zealand — Ferns and Lycophytes. Fascicle 28. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/rjn3-hp32 Date submitted: 18 Jun 2020; Date accepted: 21 Jul 2020; Date published: 2 January 2021 Cover image: Onoclea sensibilis. Herbarium specimen of cultivated plant from near Swanson, Auckland. CHR 229544. Contents Introduction..............................................................................................................................................1
    [Show full text]
  • A Molecular Phylogeny with Morphological Implications and Infrageneric Taxonomy
    TAXON 62 (3) • June 2013: 441–457 Wei & al. • Phylogeny and classification of Diplazium SYSTEMATICS AND PHYLOGENY Toward a new circumscription of the twinsorus-fern genus Diplazium (Athyriaceae): A molecular phylogeny with morphological implications and infrageneric taxonomy Ran Wei,1,2 Harald Schneider1,3 & Xian-Chun Zhang1 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P.R. China 2 University of the Chinese Academy of Sciences, Beijing 100049, P.R. China 3 Department of Botany, The Natural History Museum, London SW7 5BD, U.K. Author for correspondence: Xian-Chun Zhang, [email protected] Abstract Diplazium and allied segregates (Allantodia, Callipteris, Monomelangium) represent highly diverse genera belong- ing to the lady-fern family Athyriaceae. Because of the morphological diversity and lack of molecular phylogenetic analyses of this group of ferns, generic circumscription and infrageneric relationships within it are poorly understood. In the present study, the phylogenetic relationships of these genera were investigated using a comprehensive taxonomic sampling including 89 species representing all formerly accepted segregates. For each species, we sampled over 6000 DNA nucleotides of up to seven plastid genomic regions: atpA, atpB, matK, rbcL, rps4, rps4-trnS IGS, and trnL intron plus trnL-trnF IGS. Phylogenetic analyses including maximum parsimony, maximum likelihood and Bayesian methods congruently resolved Allantodia, Cal- lipteris and Monomelangium nested within Diplazium; therefore a large genus concept of Diplazium is accepted to keep this group of ferns monophyletic and to avoid paraphyletic or polyphyletic taxa. Four well-supported clades and eight robust sub- clades were found in the phylogenetic topology.
    [Show full text]
  • The Ferns and Their Relatives (Lycophytes)
    N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants.
    [Show full text]
  • A Revised Family-Level Classification for Eupolypod II Ferns (Polypodiidae: Polypodiales)
    TAXON 61 (3) • June 2012: 515–533 Rothfels & al. • Eupolypod II classification A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales) Carl J. Rothfels,1 Michael A. Sundue,2 Li-Yaung Kuo,3 Anders Larsson,4 Masahiro Kato,5 Eric Schuettpelz6 & Kathleen M. Pryer1 1 Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, U.S.A. 2 The Pringle Herbarium, Department of Plant Biology, University of Vermont, 27 Colchester Ave., Burlington, Vermont 05405, U.S.A. 3 Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan 4 Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, 752 36, Uppsala, Sweden 5 Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Japan 6 Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, North Carolina 28403, U.S.A. Carl J. Rothfels and Michael A. Sundue contributed equally to this work. Author for correspondence: Carl J. Rothfels, [email protected] Abstract We present a family-level classification for the eupolypod II clade of leptosporangiate ferns, one of the two major lineages within the Eupolypods, and one of the few parts of the fern tree of life where family-level relationships were not well understood at the time of publication of the 2006 fern classification by Smith & al. Comprising over 2500 species, the composition and particularly the relationships among the major clades of this group have historically been contentious and defied phylogenetic resolution until very recently. Our classification reflects the most current available data, largely derived from published molecular phylogenetic studies.
    [Show full text]
  • Fern Gazette
    FERN GAZ. 17(5): 279-286. 2006 279 FILICALEAN FERNS FROM THE TERTIARY OF WESTERN NORTH AMERICA: OSMUNDA L. (OSMUNDACEAE : PTERIDOPHYTA), WOODWARDIA SM. (BLECHNACEAE : PTERIDOPHYTA) AND ONOCLEOID FORMS (FILICALES : PTERIDOPHYTA) K.B. PIGG1, M.L. DEVORE2 & W.C. WEHR3† 1School of Life Sciences, PO Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA; 2Department of Biological & Environmental Sciences, 135 Herty Hall, Georgia College & State University, Milledgeville, GA 31061, USA; 3Burke Museum of Natural History and Culture, University of Washington, PO Box 353010, Seattle, WA 98195-3010, USA †deceased, 12 April, 2004 Key words: Blechnaceae, fossil fern, Osmunda, Osmundaceae, Tertiary, wessiea, woodwardia ABSTRACT Recently discovered frond remains assignable to Osmunda wehrii Miller (Osmundaceae), as well as several new records of woodwardia (Blechnaceae), and a new onocleoid fern are reported from the Tertiary of western North America. Pinnule morphology of O. wehrii supports the inclusion of this species in Osmunda subgenus Osmunda, as originally proposed by Miller and suggests a close affinity to O. regalis L. and O. japonica Thunb. New occurrences of the woodwardia aerolata clade are noted for the Late Paleocene of western North Dakota and of a highly reticulate-veined form from the Miocene of western Washington. Re-evaluation of specimens of w. deflexipinna H. Smith (Succor Creek, Miocene) confirms its close affinity to w. virginica J. Smith. A fern with onocleoid anatomy is recognized from the middle Eocene Clarno Nut Beds of Oregon. Together, these examples demonstrate that the presence of critical taxonomic features, even in fragmentary remains, can increase our knowledge of filicalean fern evolution, biogeography and ecology in the Tertiary.
    [Show full text]
  • The Marattiales and Vegetative Features of the Polypodiids We Now
    VI. Ferns I: The Marattiales and Vegetative Features of the Polypodiids We now take up the ferns, order Marattiales - a group of large tropical ferns with primitive features - and subclass Polypodiidae, the leptosporangiate ferns. (See the PPG phylogeny on page 48a: Susan, Dave, and Michael, are authors.) Members of these two groups are spore-dispersed vascular plants with siphonosteles and megaphylls. A. Marattiales, an Order of Eusporangiate Ferns The Marattiales have a well-documented history. They first appear as tree ferns in the coal swamps right in there with Lepidodendron and Calamites. (They will feature in your second critical reading and writing assignment in this capacity!) The living species are prominent in some hot forests, both in tropical America and tropical Asia. They are very like the leptosporangiate ferns (Polypodiids), but they differ in having the common, primitive, thick-walled sporangium, the eusporangium, and in having a distinctive stele and root structure. 1. Living Plants Go with your TA to the greenhouse to view the potted Angiopteris. The largest of the Marattiales, mature Angiopteris plants bear fronds up to 30 feet in length! a.These plants, like all ferns, have megaphylls. These megaphylls are divided into leaflets called pinnae, which are often divided even further. The feather-like design of these leaves is common among the ferns, suggesting that ferns have some sort of narrow definition to the kinds of leaf design they can evolve. b. The leaflets are borne on stem-like axes called rachises, which, as you can see, have swollen bases on some of the plants in the lab.
    [Show full text]
  • VI. Ferns I: the Marattiales and the Polypodiales, Vegetative Features We Now Take up the Ferns, Two Orders That Together Inclu
    VI. Ferns I: The Marattiales and the Polypodiales, Vegetative Features We now take up the ferns, two orders that together include about 12,000 species. Members of these two orders have megaphylls that bear sporangia either abaxially or (rarely) on the margin of the leaf. In addition, they are all spore-dispersed. In this lab, we'll consider the Marattiales, a group of large tropical ferns with primitive features, and the vegetative features of the Polypodiales, the true ferns. A. Marattiales, an Order of Eusporangiate Ferns The Marattiales have a well-documented history. They first appear as tree ferns in the coal swamps right in there with Lepidodendron and Calamites. The living species are prominent in some hot forests, both in tropical America and tropical Asia. They are very like the true ferns (Polypodiales), but they differ in having the common, primitive, thick-walled sporangium, the eusporangium, and in having a distinctive stele and root structure. 1. Living Plants The large ferns on the tables in the lab this week are members of two genera of the Marattiales, Marattia and Angiopteris. a.These plants, like all ferns, have megaphylls. These megaphylls are divided into leaflets called pinnae, which are often divided even further. The feather-like design of these leaves is common among the ferns, suggesting that ferns have some sort of narrow definition to the kinds of leaf design they can evolve. b. The leaflets are borne on stem-like axes called rachises, which, as you can see, have swollen bases on some of the plants in the lab.
    [Show full text]
  • Tracheophyte of Xiao Hinggan Ling in China: an Updated Checklist
    Biodiversity Data Journal 7: e32306 doi: 10.3897/BDJ.7.e32306 Taxonomic Paper Tracheophyte of Xiao Hinggan Ling in China: an updated checklist Hongfeng Wang‡§, Xueyun Dong , Yi Liu|,¶, Keping Ma | ‡ School of Forestry, Northeast Forestry University, Harbin, China § School of Food Engineering Harbin University, Harbin, China | State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China ¶ University of Chinese Academy of Sciences, Beijing, China Corresponding author: Hongfeng Wang ([email protected]) Academic editor: Daniele Cicuzza Received: 10 Dec 2018 | Accepted: 03 Mar 2019 | Published: 27 Mar 2019 Citation: Wang H, Dong X, Liu Y, Ma K (2019) Tracheophyte of Xiao Hinggan Ling in China: an updated checklist. Biodiversity Data Journal 7: e32306. https://doi.org/10.3897/BDJ.7.e32306 Abstract Background This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years. This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years.
    [Show full text]
  • Cutting Back Ferns – the Art of Fern Maintenance Richie Steffen
    Cutting Back Ferns – The Art of Fern Maintenance Richie Steffen When I am speaking about ferns, I am often asked about cutting back ferns. All too frequently, and with little thought, I give the quick and easy answer to cut them back in late winter or early spring, except for the ones that don’t like that. This generally leads to the much more difficult question, “Which ones are those?” This exposes the difficulties of trying to apply one cultural practice to a complicated group of plants that link together a possible 12,000 species. There is no one size fits all rule of thumb. First of all, cutting back your ferns is purely for aesthetics. Ferns have managed for millions of years without being cut back by someone. This means that for ferns you may not be familiar with, it is fine to not cut them back and wait to see how they react to your growing conditions and climate. There are three factors to consider when cutting back ferns: 1. Is your fern evergreen, semi-evergreen, winter-green or deciduous? Deciduous ferns are relatively easy to decide whether to cut back – when they start to yellow and brown in the autumn, cut them to the ground. Some deciduous ferns have very thin fronds and finely divided foliage that may not even need to be cut back in the winter. A light layer of mulch may be enough to cover the old, withered fronds, and they can decay in place. Semi-evergreen types are also relatively easy to manage.
    [Show full text]