1 Ferruginous oceans during OAE1a and the collapse of the seawater 2 sulphate reservoir 3 4 5 Kohen W. Bauer1,2,‡, Cinzia Bottini3, Sergei Katsev4, Mark Jellinek1, Roger 6 Francois1, Elisabetta Erba3, Sean A. Crowe1,2, ‡* 7 8 1Department of Earth, Ocean and Atmospheric Sciences, 9 The University of British Columbia, 2020 - 2207 Main Mall, 10 Vancouver, British Columbia V6T 1Z4, Canada 11 12 2Department of Microbiology and Immunology, Life Sciences Centre, 13 The University of British Columbia, 2350 Health Sciences Mall, 14 Vancouver, British Columbia, V6T 1Z3, Canada 15 16 3Department of Earth Sciences, 17 University of Milan, Via Mangiagalli 34, 18 20133 Milan, Italy 19 20 4Large Lakes Observatory and Department of Physics 21 University of Duluth, 2205 E 5th St, 22 Duluth, Minnesota, 55812, USA 23 24 25 *Corresponding author;
[email protected] 26 27 ‡Current address; Department of Earth Sciences 28 University of Hong Kong 29 Pokfulam Road, Hong Kong SAR 30 31 At 28 mM seawater sulphate is one of the largest oxidant pools at Earth’s 32 surface and its concentration in the oceans is generally assumed to have 33 remained above 5 mM since the early Phanerozoic (400 Ma). Intermittent 34 and potentially global oceanic anoxic events (OAEs) are accompanied by 35 changes in seawater sulphate concentrations and signal perturbations in 36 the Earth system associated with major climatic anomalies and biological 37 crises. Ferruginous (Fe-rich) ocean conditions developed transiently 38 during multiple OAEs, implying strong variability in seawater chemistry 39 and global biogeochemical cycles. The precise evolution of seawater 40 sulphate concentrations during OAEs remains uncertain and thus models 41 that aim to mechanistically link ocean anoxia to broad-scale disruptions in 42 the Earth system remain largely equivocal.