Northern Pike Abundance and Natal Fidelity in Lake Erie Marshes

Total Page:16

File Type:pdf, Size:1020Kb

Northern Pike Abundance and Natal Fidelity in Lake Erie Marshes NORTHERN PIKE ABUNDANCE AND NATAL FIDELITY IN LAKE ERIE MARSHES Nathan Stott A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2018 Committee: Jeffrey Miner John Farver Robert Huber Geoffrey Steinhart Dan Weigman ii ABSTRACT Jeffrey Miner, Advisor Over 90 percent of the historical wetlands in the Ohio portion of Lake Erie drainage have been lost, and of those that remain many are dike wetlands that have no surface water connection to Lake Erie. Recent restoration efforts have been made to reconnect these wetlands with the focus of allowing fish species to access these productive wetland habitats. In order to quantify, and model the timing of fish movement into one of these reconnected wetlands, a DIDSON sonar was used during spring of 2017. While all fish entering and leaving the wetland were ensonified, analysis was focused on the highly sought after native Northern Pike and invasive Common Carp to investigate if there are temporal differences in spring spawning migrations between the two species. To investigate how fish communities respond when given time after reconnection occurs, an additional study was conducted by sampling fish communities using seine hauls in a variety of coastal Lake Erie wetlands. Wetlands selection was based on encompassing a gradient of time since they were connected to Lake Erie. Wetlands that were only periodically connected to Lake Erie or were very recently reconnected were found to have low fish diversity. iii ACKNOWLEDGMENTS Funding for this project was provided by the Aquatic Ecology and Fisheries Laboratory at Bowling Green State University, The Ohio Department of Natural Resources Coastal Management Assistance Grant Program, the Garden Club of America coastal wetlands scholarship, and the Society of Wetlands Scientists and North Central Chapter of the Society of Wetland Scientists student research grants. Technical support as well as access to the wetlands were provided by Ottawa National Wildlife Refuge, East Harbor State Park through the Ohio Department of Natural Resources as well as The Nature Conservancy. I want to thank my family for all their support including; my father Dobber, my mother Sharon, and sister Nicole. I want to thank my dog Ruger, for reminding me to take breaks, my committee members for all their help and expertise, my lab mates; Chris Kemp, Jaimie Johnson, Rich Budnik, Nathan Johnston, as well as numerous technicians undergraduates and fellow graduate students that helped me in the field and lab. iv TABLE OF CONTENTS Page CHAPTER I. COMPARING SPAWNING MIGRATIONS OF NORTHERN PIKE AND COMMON CARP IN A RECONNECTED COASTAL LAKE ERIE WETLAND USING A DIDSON SONAR ………………………………………………………………………….. 1 Introduction…………………………………………………………………………. 1 Methods………………………………………………………………………........... 3 Study site………….……………………………………………………...…. 3 Equipment…...…………………………………………………………...…. 4 Data Analysis…………………………………………………………...…… 4 Results……………………………………………………………………………….. 6 Discussion………………………………………………………………………….... 7 Literature cited………………………………………………………………………. 10 CHAPTER II. A COMPARISON OF FISH DIVERSITY IN LAKE ERIE COASTAL WETLANDS ON A GRADIENT OF TIME SINCE RECONNECTION…………………. 24 Introduction………………………………………………………………………… 24 Methods…………………………………………………………………………….. 25 Study site selection…………………………………………………………. 25 Fish collection……………………………………………………………… 26 Data analysis……………………………………………………………….. 27 Results…………………………………………………………………………......... 28 Discussion…………………………………………………………………………… 29 Literature cited………………………………………………………………………. 31 v APPENDIX A. IACUC Protocol number………………………………………………….. 41 vi LIST OF FIGURES Figure Page 1 The control structure (red triangle) where the dual frequency identification sonar (DIDSON) was deployed to quantify movement of Common Carp and Northern Pike into Middle Harbor at Catawba Island, Ohio during spring spawning period, 2017. Middle Harbor is directly connected to West Harbor which connects to Lake Erie. The Middle Harbor control structure is located at 41˚33’39.78”N 82˚48’57.49”W ...................................…………… 14 2 Dual frequency identification sonar (DIDSON) deployment position in the control structure at Middle Harbor on Catawba Island, Ohio. The white and black box is the position of an open water stop gate that acts as the only opening connecting the two water bodies. The solid black box is another potential water stop gate that was not open during the study period to ensure all fish movement was through the field of view of the DIDSON. Dashed lines are locations of where Common Carp exclusion grates could be deployed. Common Carp exclusion grates were not in place during the duration of this study.…………………… 15 3 Daily abundance of Northern Pike and Common Carp observed during the study period of February 10 and April 21 (daylength 10:27-13:37 hours) at Middle Harbor, Catawba Island Ohio, 2017. Ice was still present on February 10. April 21 was the end date for the study because water control gates were closed, prohibiting fish movement between the two systems. Note date is being substituted in the graphic for the factor daylength for ease of readability. …………………………………………………………………………………… 21 4 The number of Northern Pike and Common Carp observed in one-hour segments compared to the observed average water temperature for that hour at Middle Harbor, Catawba Island Ohio, 2017. Average temperature was calculated using the average of two temperatures vii taken during the hour with an Onset HOBO Water Temp Pro v2 temperature logger. Temperatures were recorded to the nearest tenth of a degree. ............................................ 22 5 The number of Northern Pike (left) and Common Carp (right) moving into Middle Harbor Catawba Island Ohio, 2017 as a function of time. Note that time is in military time. A value of 1 denotes the hour interval between 01:00 and 01:59. Time was not a significant predictor in Northern Pike immigration. It was a significant predictor in Common Carp immigrations……………………………………………………………………………… 23 6 Three wetlands on Catawba Island, western Lake Erie. A control structure connects Middle Harbor to West Harbor (41˚33’39.78” N 82˚48’57.49” W) and ultimately to Lake Erie. Imagery was provided by ArcMap imagery base layer. ..................................................... 35 7 Three wetlands in Ottawa National Wildlife Refuge. The Pool 2B control structure that connects Pool 2B to Crane Creek and ultimately Lake Erie is located at 41˚37’21.86” N 83˚12’37.55” W (blue open circle). The Metzger Marsh control structure is located at the open diamond (blue shaded triangle). Imagery was provided by ArcMap imagery base layer… 36 8 The distribution of Shannon diversity indices for fish communities as a function of time since reconnection. The wetlands that have been continuously connected to Lake Erie were aggregated into the Historical category. Plots with different letters indicate systems with significantly different (p<0.05) community indices.……………………………………... 39 9 A hierarchal cluster analysis of the fish community from wetlands on the south west shore of Lake Erie in 2017. Shorter distances on the Y axis from the split separating two wetlands means the more similar the fish assemblage. Note: CC= Crane Creek, 2B= Pool2B, MH=Middle Harbor, EH=East Harbor, WH=West Harbor MM= Metzger Marsh………. 40 viii LIST OF TABLES Table Page 1 The five best selected generalized Poisson regression models for estimating Northern Pike immigration. Models are arranged in order of selection with the best selected model being the first. Model selection was based on AIC scores. For selection to occur, AIC score must be at least 2.0 smaller than a less complex model.…………………………………………… 16 2 The five best selected generalized Poisson regression models for estimating Common Carp immigration. Models are arranged in order of selection with the best selected model being the first. Model selection was based on AIC scores. For selection to occur, AIC score must be at least 2.0 smaller than a less complex model. .................................................................. 17 3 Coefficients, 95% confidence intervals and statistics of significance for the best fit generalized Poisson regression model for Northern Pike immigration. All factors included in the model were significant. Order of factors is in alphabetical order not order of importance...……………………………………………………………………………… 18 4 Coefficients, confidence intervals and statistics of significance for the best fit generalized Poisson regression model for Common Carp immigration. All factors included in the model were significant. Order of factors is in alphabetical order not order of importance. .......... 19 5 Confidence intervals (+/- 95%) for the factors in the generalized Poisson regression models used in comparing immigrations by Northern Pike and Common Carp. The best fit model was used in Northern Pike and the second-best model was used for Common Carp as they contained the same variables to allow comparison between the two species. Only Temperature, Daylength and the Intercept are significantly different. Because 28 Northern Pike iv and 808 Common Carp were used in the analyses, the effect size was very different causing the significance in the intercept coefficient. ............................................................................. 20 6 Abundance of species collected from each Lake Erie wetland with nearshore seining in spring and summer. Percentage of total catch
Recommended publications
  • Muskellunge: a Michigan Resource
    Muskellunge: A Michigan Resource The muskellunge, or musky, is a tremendous game fish native to the lakes and streams of Michigan. The musky also is a fish of many myths regarding its’ appetite, size and elusiveness. The stories about muskies portray a fish feeding on anything that moves and can fit down their tooth-filled jaws…yet believed to be so difficult to catch that the musky is called “the fish of 10,000 casts.” Here, we briefly explore the mythical, legendary and genuine muskellunge. IDENTIFICATION Muskellunge are members of the esocid family of fish, which also includes the northern pike. This particular family of fish, technically called Esocidae, share similar characteristics such as long thin bodies and soft-rayed fins. These fish have large mouths full of sharp teeth. Muskellunge and pike are identified as piscivores, which means their primary diet is fish. Though similar in appearance, muskellunge tend to achieve larger sizes than northern pike. The musky’s coloration is one of dark stripes, or dark spots, on a light background. Northern pike, in contrast, usually have light, bean-shaped spots on a dark background. The shape of the tail fin is a good method of identification as a musky’s is pointed and the tail fin of a pike is rounded. Another key characteristic for identification is the presence or absence of scales on the cheeks and gill covers. Muskies only have scales on the upper half of the cheek and gill cover. Like the muskellunge, the northern pike gill cover has scales on the upper half, but the cheek is fully scaled.
    [Show full text]
  • Changing Communities of Baltic Coastal Fish Executive Summary: Assessment of Coastal fi Sh in the Baltic Sea
    Baltic Sea Environment Proceedings No. 103 B Changing Communities of Baltic Coastal Fish Executive summary: Assessment of coastal fi sh in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 103 B Changing Communities of Baltic Coastal Fish Executive summary: Assessment of coastal fi sh in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Editor: Janet Pawlak Authors: Kaj Ådjers (Co-ordination Organ for Baltic Reference Areas) Jan Andersson (Swedish Board of Fisheries) Magnus Appelberg (Swedish Board of Fisheries) Redik Eschbaum (Estonian Marine Institute) Ronald Fricke (State Museum of Natural History, Stuttgart, Germany) Antti Lappalainen (Finnish Game and Fisheries Research Institute), Atis Minde (Latvian Fish Resources Agency) Henn Ojaveer (Estonian Marine Institute) Wojciech Pelczarski (Sea Fisheries Institute, Poland) Rimantas Repečka (Institute of Ecology, Lithuania). Photographers: Visa Hietalahti p. cover, 7 top, 8 bottom Johnny Jensen p. 3 top, 3 bottom, 4 middle, 4 bottom, 5 top, 8 top, 9 top, 9 bottom Lauri Urho p. 4 top, 5 bottom Juhani Vaittinen p. 7 bottom Markku Varjo / LKA p. 10 top For bibliographic purposes this document should be cited as: HELCOM, 2006 Changing Communities of Baltic Coastal Fish Executive summary: Assessment of coastal fi sh in the Baltic Sea Balt. Sea Environ. Proc. No. 103 B Information included in this publication or extracts thereof is free for citing on the condition that the complete reference of the publication is given as stated above Copyright 2006 by the Baltic Marine Environment Protection Commission - Helsinki Commission - Design and layout: Bitdesign, Vantaa, Finland Printed by: Erweko Painotuote Oy, Finland ISSN 0357-2994 Coastal fi sh – a combination of freshwater and marine species Coastal fish communities are important components of Baltic Sea ecosystems.
    [Show full text]
  • Northern Pike Esox Lucius ILLINOIS RANGE
    northern pike Esox lucius Kingdom: Animalia FEATURES Phylum: Chordata The northern pike's average life span is eight to 10 Class: Osteichthyes years. The average weight is two pounds. It may Order: Esociformes attain a maximum length of 53 inches. The fins are rounded, and all except the pectoral fins have dark Family: Esocidae spots. Scales are present on the cheek and half of ILLINOIS STATUS the gill cover. The eyes are yellow. The long, green body has yellow spots on the sides. The belly is common, native white to dark yellow. The duckbill-shaped snout is easily seen. BEHAVIORS The northern pike lives in lakes, rivers and marshes. It prefers water without strong currents and with many plants. This fish reaches maturity at age two to three years. Spawning occurs in March. The female deposits up to 150,000 eggs that are scattered in marshy areas or other shallow water areas. Eggs hatch in 12-14 days. This fish eats fishes, insects, crayfish, frogs and reptiles. ILLINOIS RANGE © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. close up of head close up of side © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © Engbretson Underwater Photography adult Aquatic Habitats lakes, ponds and reservoirs; rivers and streams; marshes Woodland Habitats none Prairie and Edge Habitats none © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources..
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Determinants of Angling Catch of Northern Pike (Esox Lucius) As
    Fisheries Research 186 (2017) 648–657 Contents lists available at ScienceDirect Fisheries Research j ournal homepage: www.elsevier.com/locate/fishres Full length article Determinants of angling catch of northern pike (Esox lucius) as revealed by a controlled whole-lake catch-and-release angling experiment—The role of abiotic and biotic factors, spatial encounters and lure type a,b,∗ a,c a a,d Robert Arlinghaus , Josep Alós , Tonio Pieterek , Thomas Klefoth a Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany b Division of Integrative Fisheries Management, Faculty of Life Sciences & Integrative Research Institute for the Transformation of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany c Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marqués 21, 07190, Esporles, Illes Balears, Spain d Angling Association of Lower Saxony (Anglerverband Niedersachsen e.V.), Bürgermeister-Stümpel-Weg 1, 30457 Hannover, Germany a r a t i b s c l e i n f o t r a c t Article history: Studies on catches of anglers usually rely on observational data and are thus uncontrolled with respect Received 10 November 2015 to angler skill, bait/lure choice and site choice. We performed a controlled fishing experiment targeting Received in revised form 8 August 2016 northern pike (Esox lucius) in a small (25 ha), weakly eutrophic natural lake situated about 80 km northeast Accepted 10 September 2016 of Berlin (Germany) to understand abiotic, biotic and gear-related factors that relate to catch rates and size Handled by George A.
    [Show full text]
  • Montana Fishing Regulations
    MONTANA FISHING REGULATIONS 20March 1, 2018 — F1ebruary 828, 2019 Fly fishing the Missouri River. Photo by Jason Savage For details on how to use these regulations, see page 2 fwp.mt.gov/fishing With your help, we can reduce poaching. MAKE THE CALL: 1-800-TIP-MONT FISH IDENTIFICATION KEY If you don’t know, let it go! CUTTHROAT TROUT are frequently mistaken for Rainbow Trout (see pictures below): 1. Turn the fish over and look under the jaw. Does it have a red or orange stripe? If yes—the fish is a Cutthroat Trout. Carefully release all Cutthroat Trout that cannot be legally harvested (see page 10, releasing fish). BULL TROUT are frequently mistaken for Brook Trout, Lake Trout or Brown Trout (see below): 1. Look for white edges on the front of the lower fins. If yes—it may be a Bull Trout. 2. Check the shape of the tail. Bull Trout have only a slightly forked tail compared to the lake trout’s deeply forked tail. 3. Is the dorsal (top) fin a clear olive color with no black spots or dark wavy lines? If yes—the fish is a Bull Trout. Carefully release Bull Trout (see page 10, releasing fish). MONTANA LAW REQUIRES: n All Bull Trout must be released immediately in Montana unless authorized. See Western District regulations. n Cutthroat Trout must be released immediately in many Montana waters. Check the district standard regulations and exceptions to know where you can harvest Cutthroat Trout. NATIVE FISH Westslope Cutthroat Trout Species of Concern small irregularly shaped black spots, sparse on belly Average Size: 6”–12” cutthroat slash— spots
    [Show full text]
  • Population Characteristics of Walleye, Northern Pike, Largemouth Bass, and Bluegill In
    Population characteristics of walleye, northern pike, largemouth bass, and bluegill in Long and Mud Lakes, Washburn County, Wisconsin, 2009. WBIC 2106800 (Long) and 2107700 (Mud) Kent Bass Fisheries Technician, Advanced Wisconsin Department of Natural Resources Northern Region - Spooner February, 2012 1 Executive Summary Long Lake was sampled in 2009 to determine population abundance, growth, and size distribution of walleye. Largemouth bass, smallmouth bass, northern pike, and panfish were also collected. Relative abundance, size distribution, and growth were assessed for selected species. Mud Lake was also sampled for northern pike. A total of 2,240 walleyes were collected by fyke nets and electrofishing during the spawning period in Long Lake. Adult population abundance was estimated to be 6,915 fish or 2.1 fish/ acre, a 40% increase in adult abundance since 2001. A large 2005 year class accounted for much of the increase. Abundance of walleyes < 20 in was greater in 2009 than it was in either of the two previous surveys, while abundance of larger walleyes was lower. Walleye growth rates continued to be good and remained better than state and regional averages. Fall electrofishing captured only 1.2 young-of-the-year (YOY) walleyes per mile of shoreline sampled. A total of 261 northern pike were captured by fyke nets in Long and Mud Lakes. Mean length of the sample was 19.7 in, and size structure was comparable to what was found in the 1994 and 2001 surveys. Growth rates of northern pike improved since 2001 and were better than state and regional averages. A total of 270 largemouth bass were collected during May electrofishing, averaging 12.1 in.
    [Show full text]
  • Iowa Fishing Regulations
    www.iowadnr.gov/fishing 1 Contents What’s New? Be a Responsible Angler .....................................3 • Mississippi River walleye length limit License & Permit Requirements ..........................3 changes - length limits in Mississippi Threatened & Endangered Species ....................4 River Pools 12-20 now include the entire Health Benefits of Eating Fish .............................4 Mississippi River in Iowa (p. 12). General Fishing Regulations ...............................5 • Missouri River paddlefish season start Fishing Seasons & Limits ....................................9 date changed to Feb. 1 (p. 11) Fish Identification...............................................14 • Virtual fishing tournaments added to License Agreements with Bordering States .......16 Iowa DNR special events applications Health Advisories for Eating Fish.......................17 - the definition of fishing tournaments now Aquatic Invasive Species...................................18 includes virtual fishing tournaments (p. 6) Fisheries Offices Phone Numbers .....................20 First Fish & Master Angler Awards ....................21 Conservation Officers Phone Numbers .............23 License and Permit Fees License/Permit Resident Nonresident On Sale Dec. 15, 2020 On Sale Jan. 1, 2021 Annual 16 years old and older $22.00 $48.00 3-Year $62.00 Not Available 7-Day $15.50 $37.50 3-Day Not Available $20.50 1-Day $10.50 $12.00 Annual Third Line Fishing Permit $14.00 $14.00 Trout Fee $14.50 $17.50 Lifetime (65 years old and older) $61.50 Not Available Boundary Water Sport Trotline $26.00 $49.50 Fishing Tournament Permit $25.00 $25.00 Fishing, Hunting, Habitat Fee Combo $55.00 Not Available Paddlefish Fishing License & Tag $25.50 $49.00 Give your kids a lifetime of BIG memories The COVID-19 pandemic ignited Iowans’ pent-up passion to get out and enjoy the outdoors.
    [Show full text]
  • Behavior of Fish Predators and Their Prey: Habitat Choice Between Open Water and Dense Vegetation
    Environmental Biology of Fishes, Vol. 24, No. 4, 1989, pp. 287-293. ISSN: 0378-1909 DOI: 10.1007/BF00001402 http://www.springerlink.com/ http://www.springerlink.com/content/v50w739260228h27/fulltext.pdf © Springer. The original publication is available at www.springerlink.com Behavior of fish predators and their prey: habitat choice between open water and dense vegetation Jacqueline F. Savino & Roy A. Stein Ohio Cooperative Fish and Wildlife Research Unit2, Department of Zoology, The Ohio State University. 2 The unit is sponsored jointly by the United States Fish and Wildlife Service, Ohio Department of Natural Resources, The Ohio State University, and the Wildlife Management Institute Synopsis Behavior of largemouth bass, Micropterus salmoides, and northern pike, Esox lucius, foraging on fathead minnows, Pimephales promelas, or bluegills, Lepomis macrochirus, was quantified in pools with 50% cover (half the pool had artificial stems at a density of 1000 stems n-2). Both predators spent most of their time in the vegetation. Largemouth bass searched for bluegills and ambushed minnows, whereas the relatively immobile northern pike ambushed all prey. Minnows were closer to predators and were captured more frequently than bluegills. Even when minnows dispersed, they moved continually and eventually wandered within striking distance of a predator. Bluegills dispersed in the cover with predators. Bass captured the few bluegills that strayed into the open and pike captured those that approached too closely in the cover. The ability of predators to capture prey while residing in habitats containing patches of dense cover may explain their residence in areas often considered to be poor ones for foraging.
    [Show full text]
  • Grobis, M.M., Pearish, S.P., Bell, A.M
    Animal Behaviour xxx (2012) 1e8 Contents lists available at SciVerse ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Avoidance or escape? Discriminating between two hypotheses for the function of schooling in threespine sticklebacks Matthew M. Grobis a,*, Simon P. Pearish b, Alison M. Bell a,b a School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A. b Program in Ecology, Evolution, and Conservation, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A. article info In many species, there are antipredator benefits of grouping with conspecifics. For example, animals Article history: often aggregate to better avoid potential predators (the ‘avoidance hypothesis’). Animals also often group Received 31 August 2012 together in direct response to predators to facilitate escape (the ‘escape hypothesis’). The avoidance Initial acceptance 5 October 2012 hypothesis predicts that animals with previous experience with predation risk will aggregate more than Final acceptance 15 October 2012 animals without experience with predation risk. In contrast, the escape hypothesis predicts that Available online xxx immediate exposure to predation risk causes animals to aggregate. We simultaneously tested these two MS. number: A12-00660 nonexclusive hypotheses in threespine sticklebacks, Gasterosteus aculeatus. Schooling behaviour (time spent schooling, latency to school and time schooling in the middle of the school) was quantified with Keywords: a mobile model school. Fish that had been chased by a model predator in the past schooled more, started antipredator behaviour schooling faster and spent a marginally greater proportion of time schooling in the middle of the school avoidance hypothesis than fish that had not been chased.
    [Show full text]
  • Northern Pike Fishing Waters
    North Dakota Public Fishing Waters Data as of: September 24, 2021 The following lists all public fishing waters alphabetically by lake name. Each listing includes travel directions , current status of the fishery for the upcoming season, and fishing piers (listed if present). Lakes without a boat ramp are listed as ‘no ramp’. Large systems have multiple access sites listed separately, with camping and other facilities noted along with the entity responsible for managing the facility. Click on the Lake Name to view a contour map or aerial photo showing the access point for the lake. The Current Lake Elevation is listed if known. All elevation data is in Datum NAVD88. Stocking will list fish stocking for the last 10 years. Survey Report provides a summary of the most recent data (within the last 10 years) collected by fisheries biologists during their standard sampling. Length Table provides a table of the sizes of fish measured by fisheries biologists during their most recent standard sampling. Length Chart provides a graph of the sizes of Statewide Pike Waters by Lake Name Alfred Lake (LaMoure) Stocking Survey Report Length Table Length Chart 7 miles east, 1.5 miles south of Gackle. Low density pike and perch populations. (No ramp). Alkali Lake (Sargent) Stocking Survey Report Length Table Length Chart 3 miles south of Cayuga. Low density walleye population. Some large fish present. (Fishing pier). Alkali Lake (Stutsman) 1,437.9 msl Not Stocked Survey Report Length Table Length Chart 11 miles north, 5 miles east, .5 miles south of Jamestown. Good numbers of pike, perch and walleye.
    [Show full text]
  • Management Plan for Invasive Northern Pike in Alaska
    Management Plan for Invasive Northern Pike in Alaska Photo by Jim Lavakras, Compliments of Anchorage Daily News Prepared by: Southcentral Alaska Northern Pike Control Committee Table of Contents Section Page List of Tables ........................................................................................................................... iv List of Figures.......................................................................................................................... iv List of Appendices ................................................................................................................... iv Executive Summary........................................................................................................................ 1 I. Introduction ................................................................................................................................. 2 1.1 Aquatic Nuisance Species................................................................................................... 2 1.2 Northern Pike Introductions................................................................................................ 3 Native Range................................................................................................................. 3 International ................................................................................................................. 3 United Statesl...............................................................................................................
    [Show full text]