Physical Modeling of the Densification of Snow/Firn and Ice in the Upper Part of Polar Ice Sheets

Total Page:16

File Type:pdf, Size:1020Kb

Physical Modeling of the Densification of Snow/Firn and Ice in the Upper Part of Polar Ice Sheets Title Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets Author(s) Arnaud, Laurent; Barnola, Jean M.; Duval, Paul Citation Physics of Ice Core Records, 285-305 Issue Date 2000 Doc URL http://hdl.handle.net/2115/32472 Type proceedings Note International Symposium on Physics of Ice Core Records. Shikotsukohan, Hokkaido, Japan, September 14-17, 1998. File Information P285-305.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Physical modeling of the densification of snow/firn and ice III the upper part of polar ice sheets Laurent Arnaud, Jean M. Barnola and Paul Duval Laboratoire de Glaciologie et de Geophysique de l'Environnement, CNRS, B.P. 96, 38402 St. Martin d'Heres Cedex, FRANCE x o 20 40 60 I .r:: CL -OJ so o 100 Age at .84 density SAE t5 data 2850 yrs Herron·Langway 2850 yrs '... ' ", Pimienta 2950 yrs , II 120 Alley-Arzt 2800 yrs , II , 1\ ----- Herron·Langway 7400 yrs ', \ ----- Pimienta 6750 yrs , 140 ----- Alley-Arzt 6450 yrs , 0.3 0.4 0.5 0.6 0.7 o.s 0_9 density Plalc 8. L. Arnaud el al. , Figure 3. X l Close-off Age 3000 4000 "'" .'!l'" 0; 0 5000 6000 a) Vc=I(T), OO=I(T) ---- b) Vc=I(Gas Cont.), OO=I(T) ---- c) Vc=I(Gas Cont.), OO=I(Gas Cont. ---- d Pimienta, VC=f(T) Close-Off depth 90 100 5 .<:: a.OJ 110 "C 120 130 o 500 1000 1500 2000 2500 Depth (m) Plate 9. L. A rn aud et al.. Figure 7. 285 Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets Laurent Arnaud, Jean M. Barnola and Paul Duval Laboratoire de Glaciologie et de Geophysique de l'Environnement, CNRS, B.P. 96, 38402 St. Martin d'Heres Cedex, FRANCE Abstract: We propose a model for the densification of snow, fim, and ice that includes the following: the densification of isothermal snow by grain boundary sliding [Alley, 1987], the microscopic approach of Arzt [1982] for the geometrical description of porous materials during densification, and plastic deformation with a power law creep for fim and ice densification. Current density profiles are well reproduced by this physical model assuming variations of the relative density at the snow-fim transition. This density, Do, corresponds to the change from densification by deformationless restacking to densification by power law creep. Do is always lower than the theoretical packing density for mono-sized spheres (Do = 0.64) and decreases with temperature; its low values are unlikely to be an effect of the particle size distribution, but instead arise from nonuniform densification. Variations of Do with temperature are correlated with variations of the load between sites for a given density. Do could also be modified by differences in porosity structure during snow metamorphism due to different surface conditions (for instance, wind, surface temperatures, and temperature gradients). Applied to past climatic conditions of Vostok, Antarctica, the densification model predicts close-off ages and depths during the last climatic cycles. Through variations of Do parameters, uncertainties in these predictions were estimated. 1. Introduction information in the air to that in the ice it is crucial to know precisely the conditions Environmental information preserved that snow transforms into ice. The in polar ice is associated either with the ice following are needed: (a) the close-off matrix, for instance the temperature which density, (b) the age of the gas at this density, depends on the isotopic content of the ice; (c) the age of the ice, and (d) the close-off or it is associated with the air trapped in the depth. ice, as is the atmospheric composition. (a) The close-off density can be estimated Because the air is trapped at the fim-ice from measurements of the evolution of transition (the close-off depth, approxi­ closed porosity on fim samples mately 80 m below the surface), to link the [Schwander et aI., 1984, 1993; Kameda Physics alIce Core Records Edited by T. Hondoh Hokkaido University Press, 2000, Sapporo 286 Physical modeling ofthe densification ofsnowlfirn and ice and Naruse, 1994]. However, these and their age range can smooth the measurements were from small samples concentration of the trapped gas over a that need corrections to get the effective few centuries when the accumulation close-off density. Another way is to rate is very low (as it is at Vostok). measure the total gas content of the ice; (c) The age of the ice at the close-off is the then, when the atmospheric pressure main parameter to link the ice and gas and the temperature are known, it records. When no density measure­ allows to estimate the density at which ments are available, densification the air is isolated from the atmosphere models have to be used as discussed (in terms of pressure) [Martinerie et aI., below. 1992]. This method has been applied to (d) The close-off depth can be estimated by a large number of different firns, and an measuring the gravitational enrichment empirical relationship between the firn of 15N of N2 trapped in air inclusions temperature (present-day climate) and [Sowers et aI., 1992], or it can be the pore volume Vi when the air is estimated usmg firn-densification isolated has been found: models. When no data are available, the precision of the last two parameters depends on quality of the firn-densification However, gas content profiles of the model. Furthermore, recent studies use Vostok core suggests that this empirical independent information to determine the relationship might not be valid for all air dating or trapping depths, and then use a the past climatic conditions, and also densification model to get climatic that wind could affect the pore volume information. For instance, Schwander et ai. at the isolation depth [Martinerie et aI., [1997], working on the GRIP core, used 1994]. CH4 to get a gas chronology for GRIP and (b) The age of the air in the firn, and thus at 15N to get close-off depths, and then ran a the close-off depth, has been studied by densification model with different climatic diffusion models validated by measure­ parameters to fit the data and thus calibrate ments of the composition of interstitial the glacial to interglacial temperature firn air. The gravitational separation of change m Greenland. Similarly, the different elements that causes an Greenland CH4 records of GISP or GRIP, enrichment of the heavier compounds which are of global significance, are now as a function of firn depth were widely used to synchronize Antarctic and included. This allows one to reproduce Greenland ice cores through densification the concentrations of atmospheric models [Blunier et aI., 1998; Steig et aI., compounds measured in the fim air 1998]. These examples show that firn­ [Schwander et aI., 1993; Trudinger et densification models should both reproduce aI., 1997], and also to reconstruct their the present- day situations and predict firn atmospheric history using an inverse profiles under climatic conditions having no method [Rommelaere et aI., 1997]. present-time analogues. The Vostok total These models showed that the air is few gas content profile [Martinerie et aI., 1994] tens of years old at the base of the firn, shows that an empirical relationship based L. Arnaud et al. 287 on present-day data might not be valid for and the depth at which this density is the past. This stresses the need for a reached increases as the temperature physical model instead of an empirical one. decreases [Anderson and Benson, 1963; We present a physical model based on Gow, 1975; Herron and Langway, 1980]: at pressure sintering and apply it to past -57°C it is approximately 30 m [Alley, Vostok climatic conditions. 1980] and at -23°C it is approximately 12 m [Herron and Langway, 1980]. In addition to the dependence on temperature, the 2. Densification model accumulation rate for a given temperature can also affect the depth of the critical The formation of ice in polar ice sheets density [Herron and Langway, 1980; results from the densification of dry snow Nishimura et aI., 1983] and firn. This densification is similar to the The second stage is firn (consolidated hot pressing procedure in ceramics and snow). Because seasonal variations of metals in which pressure is applied during surface temperature disappear, the trans­ sintering at high temperature, except that on formation of firn into ice can be considered ice sheets the pressure is due to the as isothermal. The end of this stage is accumulation of snow at the surface. characterized by the growth of the Three stages of densification are impermeable pore space fraction under the generally distinguished. During the first increasing overburden pressure. The stage, the densification of snow is mainly a average number of bonds per grain structural rearrangement of grains by grain­ (coordination number) increases with boundary sliding. Sintering is driven by the density from approximately 6 at the start of temperature gradient in the first few meters this stage to 16 for ice [Gow, 1969, this and by surface tension. Transport work]. Plastic deformation increases this mechanisms such as evaporation- coordination number and causes neck condensation and surface diffusion growth; particle motion is negligible. contribute to rounding of the grains and to During the final stage, atmospheric air intergranular bonding [Benson, 1962; Gow, is trapped in cylindrical or spherical pores; 1975]. The rearrangement of unbounded further densification of this bubbly ice is grains dominates the densification of highly driven by the pressure lag between the ice porous snow. Alley [1987] proposed a first matrix and the air in bubbles [Maeno and model for densification by grain boundary Ebinuma, 1983; Pimienta, 1987; Alley and sliding for snow below 2-m depth where Bentley, 1988; Salamatin et aI., 1997].
Recommended publications
  • Genesis and Geographical Aspects of Glaciers - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Genesis and Geographical Aspects of Glaciers - Vladimir M. Kotlyakov GENESIS AND GEOGRAPHICAL ASPECTS OF GLACIERS Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, equilibrium line, firn line, glacial climate, glacier, glacierization, glaciosphere, ice, seasonal snow line, snow line, snow-patch Contents 1. Introduction 2. Properties of natural ice 3. Cryosphere, glaciosphere, chionosphere 4. Snow-patches and glaciers 5. Basic boundary levels of snow and ice 6. Measures of glacierization 7. Occurrence of glaciers 8. Present-day glacierization of the Arctic Glossary Bibliography Biographical Sketch Summary There exist ten crystal variants of ice and one amorphous form in Nature, however only one form ice-1 is distributed on the Earth. Ten other ice variants steadily exist only under a certain combinations of pressure, specific volume and temperature of medium, and those are not typical for our planet. The ice density is less than that of water by 9%, and owing to this water reservoirs are never totally frozen., Thus life is sustained in them during the winter time. As a rule, ice is much cleaner than water, and specific gas-ice compounds called as crystalline hydrates are found in ice. Among the different spheres surrounding our globe there are cryosphere (sphere of the cold), glaciosphere (sphere of snow and ice) and chionosphere (that part of the troposphere where the annual amount of solid precipitation exceeds their losses). The chionosphere envelopes the Earth with a shell 3 to 5 km in thickness. In the present epoch, snow and ice cover 14.2% of the planet’s surface and more than half of the land surface.
    [Show full text]
  • Comprehensive High-Pressure Ices Eos for Icy World Interior
    EPSC Abstracts Vol. 12, EPSC2018-579, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Comprehensive high-pressure ices EoS for icy world interior Baptiste Journaux (1,2), J. Michael Brown (1), Anna Pakhomova (3), Ines Colligns, (4), Sylvain Petitgirard (5), Jason Ott (1) (1) University of Washington, Seattle, USA, (2) NASA Astrobiology Institute, (3) DESY, Hamburg, Germany, (4) ESRF, Grenoble, France, (5) Bayerisches Geoinstitut, Bayreuth, Germany. Abstract recovered quenched sample at ambient pressure [6]. Ice VI has been also poorly investigated, and even if New X-Ray diffraction (XRD) volume data on ice recent work has determined its compressibility above III, V and VI were collected in-situ in the 200-1800 300K [7], lower temperature data are still very MPa and 220-300 K range. The accuracy and density sparse. of the data allow to derive Mie-Gruneisen equations of state (EoS), providing other thermodynamic 2.Experimental approach parameter such as their thermal expansion coefficient, bulk modulus or heat capacity as a To complete the lack of volume data for high function of pressure and temperature. These new pressure ices, we performed in-situ single-crystal and comprehensive EoS enable accurate thermodynamic powder X-ray diffraction experiment on ices III and calculation of ice polymorphs in a framework V and VI grown in a cryostat cooled diamond anvil directly usable for planetary interior modelling. cell (DAC) at the ID15B beamline of the European Synchrotron Research Facility. We were able to 1.Introduction obtain many volume pressure-temperature data in the Water is distinguished for its rich pressure (P) – 200-1800 MPa and 220-300 K range for ice III, ice V temperature (T) phase diagram: currently, in which and ice VI.
    [Show full text]
  • Structural Challenges Faced by Arctic Ships
    NTIS # PB2011- SSC-461 STRUCTURAL CHALLENGES FACED BY ARCTIC SHIPS This document has been approved For public release and sale; its Distribution is unlimited SHIP STRUCTURE COMMITTEE 2011 Ship Structure Committee RADM P.F. Zukunft RDML Thomas Eccles U. S. Coast Guard Assistant Commandant, Chief Engineer and Deputy Commander Assistant Commandant for Marine Safety, Security For Naval Systems Engineering (SEA05) and Stewardship Co-Chair, Ship Structure Committee Co-Chair, Ship Structure Committee Mr. H. Paul Cojeen Dr. Roger Basu Society of Naval Architects and Marine Engineers Senior Vice President American Bureau of Shipping Mr. Christopher McMahon Mr. Victor Santos Pedro Director, Office of Ship Construction Director Design, Equipment and Boating Safety, Maritime Administration Marine Safety, Transport Canada Mr. Kevin Baetsen Dr. Neil Pegg Director of Engineering Group Leader - Structural Mechanics Military Sealift Command Defence Research & Development Canada - Atlantic Mr. Jeffrey Lantz, Mr. Edward Godfrey Commercial Regulations and Standards for the Director, Structural Integrity and Performance Division Assistant Commandant for Marine Safety, Security and Stewardship Dr. John Pazik Mr. Jeffery Orner Director, Ship Systems and Engineering Research Deputy Assistant Commandant for Engineering and Division Logistics SHIP STRUCTURE SUB-COMMITTEE AMERICAN BUREAU OF SHIPPING (ABS) DEFENCE RESEARCH & DEVELOPMENT CANADA ATLANTIC Mr. Craig Bone Dr. David Stredulinsky Mr. Phil Rynn Mr. John Porter Mr. Tom Ingram MARITIME ADMINISTRATION (MARAD) MILITARY SEALIFT COMMAND (MSC) Mr. Chao Lin Mr. Michael W. Touma Mr. Richard Sonnenschein Mr. Jitesh Kerai NAVY/ONR / NAVSEA/ NSWCCD TRANSPORT CANADA Mr. David Qualley / Dr. Paul Hess Natasa Kozarski Mr. Erik Rasmussen / Dr. Roshdy Barsoum Luc Tremblay Mr. Nat Nappi, Jr. Mr.
    [Show full text]
  • Blocking of Snow/Water Slurry Flow in Pipeline Caused by Compression-Strengthening of Snow Column
    Sustainability 2014, 6, 530-544; doi:10.3390/su6020530 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Blocking of Snow/Water Slurry Flow in Pipeline Caused by Compression-Strengthening of Snow Column Masataka Shirakashi 1,*, Shuichi Yamada 2, Yoshitaka Kawada 3 and Takero Hirochi 4 1 Malaysia-Japan International Institute of Technology, Univeristi Teknologi Malaysia, Kuala Lumpur 53300, Malaysia 2 Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, Japan; E-Mail: [email protected] 3 Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata, Japan; E-Mail: [email protected] 4 Toba National College of Maritime Technology, 1-1 Ikegami, Toba, Mie, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-(0)3-2203-1318; Fax: +60-(0)3-2203-1266. Received: 7 November 2013; in revised form: 8 January 2014 / Accepted: 13 January 2014 / Published: 27 January 2014 Abstract: In earlier works by the present authors, two systems for sustainable energy were proposed: (i) a system for urban snow removal in winter and storage for air conditioning in summer, applied to Nagaoka City, which suffers heavy snow fall every winter, and (ii) a district cooling system utilizing latent heat of ice to reduce the size of storage reservoir and transportation pipeline system. In these systems, the hydraulic conveying of snow or ice through pump-and-pipeline is the key technique to be developed, since characteristics of snow (ice)/ water slurry is largely different from those of conventional non-cohesive solid particle slurries.
    [Show full text]
  • Ice Molecular Model Kit © Copyright 2015 Ryler Enterprises, Inc
    Super Models Ice Molecular Model Kit © Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult ! Caution: Atom centers and vinyl tubing are a choking hazard. Do not eat or chew model parts. Kit Contents: 50 red 4-peg oxygen atom centers (2 spares) 100 white hydrogen 2-peg atom centers (2 spares) 74 clear, .87”hydrogen bonds (2 spares) 100 white, .87” covalent bonds (2 spares) Related Kits Available: Chemistry of Water Phone: 806-438-6865 E-mail: [email protected] Website: www.rylerenterprises.com Address: 5701 1st Street, Lubbock, TX 79416 The contents of this instruction manual may be reprinted for personal use only. Any and all of the material in this PDF is the sole property of Ryler Enterprises, Inc. Permission to reprint any or all of the contents of this manual for resale must be submitted to Ryler Enterprises, Inc. General Information Ice, of course, ordinarily refers to water in the solid phase. In the terminology of astronomy, an ice can be the solid form of any element or compound which is usually a liquid or gas. This kit is designed to investigate the structure of ice formed by water. Fig. 1 Two water molecules bonded by a hydrogen bond. Water ice is very common throughout the universe. According to NASA, within our solar system ice is The symbol δ means partial, so when a plus sign is found in comets, asteroids, and several moons of added, the combination means partial positive the outer planets, and it has been located in charge. The opposite obtains when a negative sign interstellar space as well.
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 978-0-521-80620-6 - Creep and Fracture of Ice Erland M. Schulson and Paul Duval Index More information Index 100-year wave force, 336 friction and fracture, 289, 376 60° dislocations, 17, 82, 88 indentation failure, 345 microstructure, 45, 70, 237, 255, 273 abrasion, 337 multiscale fracture and frictional accommodation processes of basal slip, 165 sliding, 386 acoustic emission, 78, 90, 108 nested envelopes, 377 across-column cleavage cracks, 278 pressure–area relationship, 349, 352 across-column confinement, 282 S2 growth texture, 246, 273 across-column cracks, 282, 306, SHEBA faults, 371 across-column loading, 275 SHEBA stress states, 377 across-column strength, 246, 249, 275 Arctic Ocean, 1, 45, 190, 361 activation energy, 71, 84, 95, 111, 118, 131 aspect ratio, 344 activation volume, 114, 182 atmospheric ice, 219, 221, 241, 243 activity of pyramidal slip systems, 158 atmospheric icing, 31 activity of slip systems, 168 atmospheric impurities, 113 adiabatic heating, 291, 348 atomic packing factor, 9 adiabatic softening, 291 audible report, 240 affine self-consistent model, 160 avalanches, 206 air bubbles, 38 air-hydrate crystals, 37 bands, 89 albedo, 363 basal activity, 162 aligned first-year sea ice, 246 basal dislocations, 77 along-column confinement, 282 basal planes, 214, along-column confining stress, 282, basal screw dislocations, 77, 87 along-column strength, 244, 275 basal shear bands, 163 ammonia dihydrate, 181 basal slip, 18, 77, 127, 228 ammonia–water system, 186 basal slip lines, 77 amorphous forms
    [Show full text]
  • Creep Displacements Induced from Waste Rock Loading
    Geotechnical Engineering Creep Displacements Induced from Waste Rock Loading J. Kurylo, M. Rykaart, & A. Lizcano SRK Consulting (Canada) Inc, Vancouver, BC, Canada ABSTRACT: Waste rock deformations were measured on a high altitude dump using survey prisms and inclinometers. Rates of downslope advancement of about 0.2 to 0.5 m/day (70 to 180 m/year) were measured. This waste dump is founded on very thick (greater than 40 m), warm (approximately -0.5oC) ice-rich permafrost moraine deposits. From satellite observations and site displacement measurements, it was concluded that the ob- served displacement was a result of both movement on the ground surface (sliding at the interface of the waste rock dump and foundation) and movement on a shear strain localization surface within the foundation (i.e. creep).This paper describes how the observational data were used to determine the deformation processes and offers potential mitigation solutions for stopping the continued movement of this waste rock dump. 1 INTRODUCTION Lisiy Glacier is a high altitude glacier (over 4,000 masl) located in a remote area of the Tian-Shan mountain range in Kyrgyzstan. This glacier is in the Kumtor mine project area, which is located about 350 km southeast of the capital of Bishkek and 80 km south of Lake Issyk-Kul, near the border with China (Fig. 1). Prior to mining, the Lisiy Glacier (which includes the Lisiy Cirque Glacier and the Lisiy Valley Glacier) was retreating. When mining started in the region, waste rock and ice was dumped onto the Lisiy Cirque Glacier; the glacier stopped retreating and then started advancing.
    [Show full text]
  • Gibbs Energy of Ices III, V and VI: Wholistic Thermodynamics and Elasticity of the Water Phase Diagram to 2300 Mpa. 1. Abstract
    Gibbs energy of ices III, V and VI: wholistic thermodynamics and elasticity of the water phase diagram to 2300 MPa. B. Journaux*1, J.M. Brown1, A. Pakhomova2, I. E. Collings3,4, S. Petitgirard5, P. Espinoza1, J. Ott1,6, F. Cova3,7, G. Garbarino3, M. Hanfland3 1. Abstract: Gibbs energy representations for ice III, V and VI are reported. These were constructed using new measurements of volumes at high pressure over a range of low temperatures combined with calculated vibrational energies grounded in statistical physics. The collection of representations including ice Ih and water (released as the open source “SeaFreeze” framework) allow accurate determinations of thermodynamics properties (phase boundaries, density, heat capacity, bulk modulus, thermal expansivity, chemical potentials) and seismic wave velocities over the entire range of conditions encountered in hydrospheres in our solar system (220-500K to 2300 MPa). These comprehensive representations allow exploration of the rich spectrum of thermodynamic behavior in the H2O system. Although the results are broadly applicable in science and engineering, their use in habitability analysis in water-rich planetary bodies of our solar system and beyond is particularly relevant. 2. Introduction Water is a fundamentally important molecule in scientific fields ranging from biology to engineering, earth and environmental sciences, chemistry or astrophysics. As a common molecular species in our cosmic neighborhood, water ice polymorphs at high pressures in planetary interiors could be the most abundant “mineral group” in the Universe (Hanslmeier 2011). A focus on potentially habitable icy moons and ocean exoplanets hydrospheres (Sotin and Tobie 2004; Vance and Brown 2013; Journaux et al.
    [Show full text]
  • Dielectric Anomalies in Crystalline Ice: Indirect Evidence of the Existence of a Liquid-Liquid Critical
    Dielectric Anomalies in Crystalline Ice: Indirect evidence of the Existence of a Liquid-liquid Critical Point in H 2O Fei Yen 1,2* , Zhenhua Chi 1,2 , Adam Berlie 1† , Xiaodi Liu 1, Alexander F. Goncharov 1,3 1Key Laboratory for Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China 2High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China 3Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington D.C., 20015, USA *Correspondence: [email protected] †Present address: ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX United Kingdom “This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in [The Journal of Physical Chemistry C], copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b07635 ” Abstract: The phase diagram of H 2O is extremely complex; in particular, it is believed that a second critical point exists deep below the supercooled water (SCW) region where two liquids of different densities coexist. The problem however, is that SCW freezes at temperatures just above this hypothesized liquid-liquid critical point (LLCP) so direct experimental verification of its existence has yet to be realized. Here, we report two anomalies in the complex dielectric constant during warming in the form of a peak anomaly near Tp=203 K and a sharp minimum near Tm=212 K from ice samples prepared from SCW under hydrostatic pressures up to 760 MPa.
    [Show full text]
  • Triple Point
    AccessScience from McGraw-Hill Education Page 1 of 2 www.accessscience.com Triple point Contributed by: Robert L. Scott Publication year: 2014 A particular temperature and pressure at which three different phases of one substance can coexist in equilibrium. In common usage these three phases are normally solid, liquid, and gas, although triple points can also occur with two solid phases and one liquid phase, with two solid phases and one gas phase, or with three solid phases. According to the Gibbs phase rule, a three-phase situation in a one-component system has no degrees of freedom (that is, it is invariant). Consequently, a triple point occurs at a unique temperature and pressure, because any change in either variable will result in the disappearance of at least one of the three phases. See also: PHASE EQUILIBRIUM . Triple points are shown in the illustration of part of the phase diagram for water. Point A is the well-known ◦ triple point for Ice I (the ordinary low-pressure solid form) + liquid + water + water vapor at 0.01 C (273.16 K) and a pressure of 0.00603 atm (4.58 mmHg or 611 pascals). In 1954 the thermodynamic temperature scale (the absolute or Kelvin scale) was redefined by setting this triple-point temperature for water equal to exactly 273.16 K. Thus, the kelvin (K), the unit of thermodynamic temperature, is defined to be 1 ∕ 273.16 of the thermodynamic temperature of this triple point. ◦ Point B , at 251.1 K ( − 7.6 F) and 2047 atm (207.4 megapascals) pressure, is the triple point for liquid water + Ice ◦ I + Ice III; and point C , at 238.4 K ( − 31 F) and 2100 atm (212.8 MPa) pressure, is the triple point for Ice I + Ice II + Ice III.
    [Show full text]
  • Revised Release on the Pressure Along the Melting and Sublimation Curves of Ordinary Water Substance
    IAPWS R14-08(2011) The International Association for the Properties of Water and Steam Plzeň, Czech Republic September 2011 Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance 2011 International Association for the Properties of Water and Steam Publication in whole or in part is allowed in all countries provided that attribution is given to the International Association for the Properties of Water and Steam President: Mr. Karol Daucik Larok s.r.o. SK 96263 Pliesovce, Slovakia Executive Secretary: Dr. R. B. Dooley Structural Integrity Associates, Inc. 2616 Chelsea Drive Charlotte, NC 28209, USA email: [email protected] This revised release replaces the corresponding revised release of 2008 and contains 7 pages. This release has been authorized by the International Association for the Properties of Water and Steam (IAPWS) at its meeting in Plzeň, Czech Republic, 4-9 September, 2011, for issue by its Secretariat. The members of IAPWS are: Britain and Ireland, Canada, the Czech Republic, Germany, Greece, Japan, Russia, Scandinavia (Denmark, Finland, Norway, Sweden), and the United States of America, and associate members Argentina and Brazil, France, Italy, and Switzerland. In 1993, IAPWS issued a “Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.” The empirical equations presented were fitted to relatively old experimental data for the several sections of the melting curve and the sublimation curve. Thus, these equations are not thermodynamically consistent with the subsequently developed IAPWS equations of state for fluid and solid H2O. These equations are “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use” [1, 2] and “The Equation of State of H2O Ice Ih” [3, 4].
    [Show full text]
  • Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object- Based Approach
    RESEARCH ARTICLE Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object- Based Approach Robert W. McNabb1¤a, Jamie N. Womble2*, Anupma Prakash1, Rudiger Gens1, Christian E. Haselwimmer1¤b 1 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America, 2 Glacier Bay Field Station, National Park Service, Juneau, Alaska, United States of America a11111 ¤a Current address: Department of Geosciences, University of Oslo, Oslo, Norway ¤b Current address: Chevron Energy Technology Company, San Ramon, California, United States of America * [email protected] Abstract OPEN ACCESS Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition Citation: McNabb RW, Womble JN, Prakash A, Gens R, Haselwimmer CE (2016) Quantification to the influence that tidewater glaciers have on physical and chemical oceanography, floating and Analysis of Icebergs in a Tidewater Glacier icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). Fjord Using an Object-Based Approach. PLoS ONE The availability and spatial distribution of glacier ice in the fjords is likely a key environmental 11(11): e0164444. doi:10.1371/journal. pone.0164444 variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically Editor: Roberto Ambrosini, Universita degli Studi di Milano-Bicocca, ITALY quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewa- Received: July 11, 2015 ter glacier fjords.
    [Show full text]