Dielectric Dispersion Study of Glycol Ethers and Their Binary Mixtures with Water

Total Page:16

File Type:pdf, Size:1020Kb

Dielectric Dispersion Study of Glycol Ethers and Their Binary Mixtures with Water Indian Journal of Pure & Applied Physics Vol. 56, April 2018, pp. 301-306 Dielectric dispersion study of glycol ethers and their binary mixtures with water J B Shinde, D N Rander, S B Jadhav, S M Sabnis, Y S Joshi & K S Kanse* Department of Physics & Electronics, Lal Bahadur Shastri Mahavidyalaya, Dharmabad 431 809, India Received 13 March 2018 The complex dielectric properties of glycol ethers with water at various concentrations have been measured using Agilent make Precision LCR meter E4980A in the frequency range of 20 Hz to 2 MHz at 25 °C with dielectric liquid test fixture 16452A. The electrical and dielectric properties of the binary mixtures have been represented in terms of complex dielectric function ε*(ω), electrical modulus M*(ω), electrical conductivity σ*(ω). All these parameters have been used to explain the various processes associated with the electric and dielectric properties of the binary mixtures of glycol ethers in aqueous solutions. The values of static dielectric constant of various concentrations have been reported at 2 MHz frequency. Further the excess dielectric properties for the binary mixtures have been evaluated to investigate the heterogeneous interactions in glycol ether-water molecules. Keywords: Glycol ether, LCR meter, Static dielectric constant, Heterogeneous interactions 1 Introduction 2 Experimental Glycol ethers are a group of solvents based on the 2.1 Materials alkyl ethers of ethylene glycol. In this study, the Ethylene glycol dimethyl ether (EGDME) and dielectric measurement of two glycol ethers namely diethylene glycol dimethyl ether (DEGDME) were ethylene glycol dimethyl ether and diethylene glycol obtained commercially from Alfa Aesar with purity dimethyl ether pure as well as in binary mixtures of 99%. The de-ionized water with HPLC grade was water have been carried out in the frequency range of obtained from Fisher Scientific India Pvt Ltd. They 20 Hz to 2 MHz at 25 °C. Ethylene glycol dimethyl were used without further purification. The solutions were prepared at different mole fractions of water in ether (1,2 dimethoxyethane) is also known as EGDME and DEGDME. monoglyme or dimethyl cellosolve with chemical composition C4H10O2. It is an aprotic ether used 2.2 Measurements and data analysis as solvent, especially in batteries. Diethylene glycol The dielectric properties of glycol ether – water dimethyl ether known as diglyme is a solvent with a binary mixtures at frequency range from 20 Hz to 2 MHz using Agilent precision LCR meter E4980A and high boiling point with chemical formula C6H14O3. It is a clear, colorless liquid with a slight ether-like odor. Agilent 16452A liquid dielectric test fixture have In literature, there is plenty of work on dielectric been measured. The static dielectric constants for pure liquid samples and whole concentrations of binary studies of monoalkyl ethers of ethylene glycols1-13. mixtures were determined by using ‘capacitive But the dielectric study of dimethyl ether of ethylene 14 measurement method’ with a short compensation at 2 glycol and diethylene glycol is limited . In present MHz. The detailed measurement techniques have work, the dielectric dispersion of these glycol ethers been described elsewhere15. in pure form as well as in water over complete composition range is studied. The electric modulus, 3 Results and Discussion complex conductivity and excess permittivity for the 3.1 Representation of dielectric spectra binary mixtures of glycol ether- water are evaluated. In present study, the dielectric constant values are Further the study is extended to express the hetero recorded at 2 MHz frequency. At lower frequencies, molecular interactions among the binary mixture. contribution of ionic conduction process and electrode polarization dominates the real part of dielectric —————— spectra (ε'). Due to these processes, at lower *Corresponding author (E-mail: [email protected]) frequencies, ε' has higher values as compared to their 302 INDIAN J PURE & APPL PHYS, VOL. 56, APRIL 2018 static dielectric constant. In the real part of dielectric space charge effects which often mask the dielectric permittivity spectra (Fig. 1(a,b)), the dielectric features of the spectra. The charge carriers move over permittivity for EGDME and DEGDME becomes long distances in the frequency range below the constant around 1 kHz while that for the binary frequency corresponding to the electric modulus (M") mixtures with water, it become steady in the loss peak. For the higher frequencies, the charge frequency range of few kHz to 0.2 MHz. carriers can perform localized motion within the The dielectric data can be highlighted by the potential well. Thus the electric modulus loss spectra processes such as tan (δ)= ε"(ω) / ε'(ω), ac show the transition of charge carriers from long range * 16 conductivity, σac(ω)= iωε (ω) and the modulus , to short range mobility. The Fig. 3(a,b) exhibits M" * * M (ω)=1/ε (ω). The formulations are already peak values, the frequency fσ corresponding to these discussed in literature17. The electrode polarization peaks is related to the most probable ionic -1 (EP) relaxation can be explained by tan(δ) plot conductivity relaxation time τσ = (2πfσ) . From the (Fig. 2(a,b)). The loss peak of tan (δ) is corresponding graph of M"(ω), ionic conductivity relaxation time to the EP relaxation frequency fEP, which is used to (τσ) corresponding to the peak values of M"(ω) are -1 evaluate the EP relaxation time, τEP= (2πfEP) which is determined. associated with the overall dynamics of the absorbed ions on the electrode surfaces in the alternating 3.3 Complex conductivity electric field. On addition of water in glycol ethers The frequency dependent real part σ' and the (EGDME and DEGDME), the loss peak shifts imaginary part σ" of the alternating current (ac) towards the higher frequencies. complex conductivity σ*(ω) of the liquid samples were evaluated from the dielectric permittivity data. 3.2 Electric modulus M*(ω) In the σ'(ω) spectra for EGDME-water and The electric modulus obtained from the complex DEGDME-water binary mixtures (Fig. 4(a,b)), for relative permittivity spectra is useful to mask the pure water and water rich region (90% of water in Fig. 1 — Frequency dependent spectra of the real part of the relative dielectric function ε' for (a) EGDME-water and (b) DEGDME – water binary mixtures, respectively. SHINDE et al.: DIELECTRIC DISPERSION OF GLYCOL ETHERS AND THEIR BINARY MIXTURES WITH WATER 303 Fig. 2 — Frequency dependent spectra of dielectric loss, tanδ for (a) EGDME-water and (b) DEGDME –water binary mixtures, respectively. Fig. 3 ‒ Plots for imaginary part (M") of the complex electric modulus [M*(ω)] for (a) EGDME-water and (b) DEGDME –water binary mixtures, respectively. 304 INDIAN J PURE & APPL PHYS, VOL. 56, APRIL 2018 10-12 EGDME and DEGDME), the values of σac are very bond acceptor site. In the previous study it is low at 20 Hz and then increases rapidly up to few found that the ε0 value decreases with increase in hundred Hz. Thereafter, it becomes independent of chain length, the value of ε0 for frequency methoxyethanol>ethoxyethanol>butoxyethanol, where only addition of hydrophobic site (-CH2) get 3.4 Molecular interaction increased. Generally, only addition of hydrophobic The plot of the static dielectric constant (ε0) versus site reduces the ε0 value but for EGDME and mole fraction of water (Fig. 5) reveals a non linear DEGDME the ε0 values are almost same. As compared nature. The nonlinearity in the plot is greater for to EGDME, there is addition of hydrophobic as well as DEGDME-water than the EGDME-water mixtures. one extra hydrogen bond acceptor site in DEGDME. The dashed lines in the graph represent ideal nature of Therefore both these sites are offset to each other and dielectric constant according to the mixture makes the ε0 value almost same. compositions of EGDME-water and DEGDME-water. Further, the heterogeneous interactions among In practical, the plots are largely deviating from these molecules (EGDME-water and DEGDME- ideality. This deviation from ideality may be due to water) have been discussed using the excess dielectric E certain hetero molecular interaction among the glycol constant (ε0 ). The formulation to evaluate the excess E ether and water molecules. The chemical composition dielectric constant (ε0 ) is discussed in plenty of 10-12,18-19 E of EGDME and 2-ethoxyethanol (Monoethylether of papers . Using the same method the ε0 for ethylene glycol (EE)) is same but it is observed that these binary mixtures evaluated and plotted in Fig. 6. E the dielectric constant value of EGDME (ε0=7.25) is The values of ε0 are negative for all concentrations of 11 nearly half the value of EE (ε0=14.45). It suggests EGDME-water and DEGDME-water binary mixtures. the change in molecular dipole arrangement of these It shows an experimental confirmation of a certain two glycol ethers. It may be due to EE molecule has interaction among the unlike molecules through both the hydrogen bond donor and acceptor sites in hydrogen bonding which results such that the total same molecule whereas EGDME has only hydrogen number of effective dipoles get reduced. It also Fig. 5 — Static dielectric constant (ε0) versus mole fraction of water for binary mixtures of EGDME- and DEGDME with water. SHINDE et al.: DIELECTRIC DISPERSION OF GLYCOL ETHERS AND THEIR BINARY MIXTURES WITH WATER 305 E Fig. 6 — Excess dielectric constant (ε0 ) versus mole fraction of water for binary mixtures of EGDME- and DEGDME with water. suggests the formation of complex structure in glycol Acknowledgement ether–water through hydrogen bonding. The mole The financial support from the Science and fraction of water (XW) corresponding to the minimum Engineering Research Board (SERB), DST, New excess dielectric constant value provides the Delhi (Project No. SR/FTP/PS-203/2012) is gratefully stoichiometric ratio of stable complex structure.
Recommended publications
  • The Toxicology of Glycol Ethers and Its Relevance to Man (Fourth Edition) Volume I
    The Toxicology of Glycol Ethers and its Relevance to Man (Fourth Edition) Volume I Technical Report No. 95 ISSN-0773-8072-95 Brussels, February 2005 The Toxicology of Glycol Ethers and its Relevance to Man ECETOC TECHNICAL REPORT No. 95 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals 4 Avenue E. Van Nieuwenhuyse (Bte 6), B-1160 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 95 The Toxicology of Glycol Ethers and its Relevance to Man The Toxicology of Glycol Ethers and its Relevance to Man CONTENTS - VOLUMES I AND II EXECUTIVE SUMMARY 1 SUMMARY AND CONCLUSIONS 3 Recommendations for further work 13 1. INTRODUCTION 14 1.1 Conversion factors and physico-chemical properties 14 1.2 Production and use 14 1.2.1 Manufacture of ethylene-series glycol ethers 14 1.2.2 Manufacture of propylene-series glycol ethers 15 1.2.3 Uses 15 2.
    [Show full text]
  • Formulating Water-Based Systems Y,Ith Propylene-Oxide­ Based Glycol Ethers
    Formulating Water-Based Systems y,ith Propylene-Oxide­ Based Glycol Ethers Carmen l. Rodriguez and Julia Weathers-lyondell Chemical Company· Bernadette Corujo-Engineered Polymer Solutions Patricia Peterson-Avecia To camply with environmental regulations, formulators have reformulated to water-based systems using non-hazardous air pollutants (non-HAP) cosolvents and developed new resin technology. In fully formulated water-based systems, however, changing the solvent system to meet environmental regulations has wide ranging effects on viscosity, surface defects, film shrinkage, adhesion, and durability. Formulators often adjust paint viscosity by balancing the levels of cosolvents, surfactants, and rheology modifiers. Reformulating with non-HAPs solvents such as propylene oxide-based glycol ethers (PG-glycol ethers) helps reduce volah1e organic content WOC) to meet environmental compliance and eliminates HAPs reporting requirements. When replacing ethylene oxide-based glycol ethers (EG-glycol ethers) with their PG-glycol ethers, reformulation seems simple enough, particularly if evaporation rates and solubility parameters are matched. A drop-in replacement, however, requires optimization. This study compares the use ofPG-glycol ethers in four architectural latex paints and assesses their effects on rheology, drying, and some key performance attributes. INTRODUCTION ing a suitable coalescent solvent for a solvent in the filmis stronglydependent waterborne coating.1 However, chang­ on the end use. The principal positive The primary reason for reformulating a ing the solvent package in a coating for­ effect of solvent entrapment is the in­ solventsystemis to meet environmental mulation may also necessitate optimiza­ creased fleXIbility of the cured coating compliance in volatile organic content tion of the other paint components. and possibly superior cure.
    [Show full text]
  • 2-Ethoxyethanol
    2-Ethoxyethanol Product Number E 2632 Store at Room Temperature Product Description Precautions and Disclaimer Molecular Formula: C4H10O2 For Laboratory Use Only. Not for drug, household or Molecular Weight: 90.12 other uses. CAS Number: 110-80-5 Boiling point: 135 °C Preparation Instructions Melting point: -70 °C Ethylene glycol monoethyl ether is miscible with water Density: 0.931 g/ml and organic solvents. Synonyms: Ethyl glycol, Cellosolve, ethylcellosolve, ethylene glycol monoethyl ether, 2EE References 1. The Merck Index, 13th ed., Entry# 3786. 2-Ethoxyethanol is used as a component or solvent for 2. Aasmoe, L., and Aarbakke, J., Sex-dependent nitrocellulose, a wide variety of dyes, inks, cleaning induction of alcohol dehydrogenase activity in rats. agents, resins, paints, and varnishes. It is used for Biochem. Pharmacol., 57(9), 1067-1072 (1999). increasing the stability of emulsions.1 3. Hoflack, J. C., et al., Glycol ethers induce death and necrosis in human leukemia cells. Biochem. The teratogenic effects of 2EE are due to the Cell Biol., 75(4), 415-425 (1997). alkoxyacetic acid metabolites formed via the alcohol 4. Zhao, S. P., et al., Effect of simvastatin on the dehydrogenase pathway.2 The effect of 2EE on apparent size of LDL particles in patients with type human leukemic cells lines HL-60, MOLT3, and K562 IIB hyperlipoproteinemia. Clin. Chim. Acta, has been described.3 203(2-3), 109-117 (1991). 2-Ethoxyethanol has been used as a destaining Coomassie is a registered trademark of Imperial solution for lipoproteins on polyacrylamide gels stained Chemical Industries PLC. with Sudan Black B. Gels were destained with a GRS/ALF/RXR 10/03 solution of 50% ethylene glycol monoethyl ether in water for 2 hours.
    [Show full text]
  • Reticulocytosis in Screen-Printing Workers Exposed to 2
    Song et al. Annals of Occupational and Environmental Medicine (2017) 29:54 DOI 10.1186/s40557-017-0210-z RESEARCHARTICLE Open Access Reticulocytosis in screen-printing workers exposed to 2-butoxyethanol and 2- ethoxyethanol Seng-Ho Song, Seong-Kyu Kang*, Won-Jun Choi, Kyeong Min Kwak, Dong-Hoon Lee, Dyuk-Yoon Kang and Sang-Ha Lee Abstract Background: Studies on the hematologic toxicity of ethylene glycol ethers in humans are limited. Therefore, the aim of this study was to examine the association between exposure to solvents (containing 2-butoxyethanol and 2-ethoxyethanol) and hematological effects. Methods: Thirty-four screen-printing workers who were exposed to 2-butoxyethanol and 2-ethoxyethanol and 37 non- exposed clerical workers were selected using data from the health care facilities that provided regular health screening services. Student’s t-tests and Pearson’s chi-square tests were used to compare differences in hematological parameters between the exposed and the control groups. A multivariate analysis was performed using the multiple logistic regression models to adjust for other variables. Results: The chi-square test showed the reticulocyte percentages and corrected reticulocyte counts to be significantly higher in the exposed group. The t-tests showed a significant increase in white blood cell counts, reticulocyte percentages, and corrected reticulocyte count (i.e., reticulocyte index) in the exposed group, with p-values of 0.002, 0.004, and 0.002, respectively. Multivariate analysis showed the odds ratio for the corrected reticulocyte counts to be 16.30 for the exposed group, when compared with that of the control group. Conclusions: Exposure to 2-butoxyethanol and 2-ethoxyethanol was significantly associated with reticulocytosis, necessitating the implementation of preventive measures for workers prone to occupational exposure to ethylene glycol ethers.
    [Show full text]
  • Alcohols & Glycols Kleinschmidt
    8/13/14 Alcohols," Glycols, &" “Cat”cols Kurt Kleinschmidt, MD Section Chief and Program Director, Medical Toxicology UT Southwestern Medical Center Dallas, Texas Alcohols and Glycols • “Iso” means branching of carbon chain • “Glycol” means 2 hydroxyl groups • Ethylene glycol Antifreeze • Propylene glycol Refrigerant • Polyalkylene glycol Refrigerant oil • Physiochemical behavior • If small hydrocarbon group, acts like water • If large hydrocarbon group, acts like the HC-group Alcohols and Glycols: Glycol Ethers • Clear, Syrupy liquid; Inoffensive odors; Low Vapor pressure; Non-flammable • Water & Organic soluble … Very Nice!...”Couplers”! • Do not bioaccumulate b/c undergo rapid hydrolysis • Rapid Dermal, inhalation, and oral absorption • Molecular Weight êèé Dermal absorption • Uses: Solvents Household cleaning products (windows) Humectant and plasticizer Semiconductor industry Brake fluid Diluent Deicers Paints and Coatings 1 8/13/14 Alcohols and Glycols: Glycol Ethers • Two groups: EG Monoalkyl Ethers base: • Ethylene glycol ethers R1OCH2CH2OR2 • Propylene glycol ethers R1=Alkyl gp; R2=H or Acetate • Ethylene Glycol Ethers • Many exist Ethylene Glycol • 2 examples……………. Methyl Ether (EGME) Ethers: R1-O-R2 Ethylene Glycol • Propylene Glycol Ethers Butyl Ether (EGBE) • Many • Example Is a 2o alcohol Propylene Glycol (On the 2nd Carbon) Monomethyl Ether Alcohols and Glycols: " Glycol Ethers Metabolism • ADH is key one: è Alkoxyacetic acids • Toxic Metabolite è Reproductive Problems Ethylene • Gap Acidosis Glycol • Minor route & Debatableè ethylene glycol Ether • Oxaluria seen after some methoxyethanol & butoxyethanol ingestions • But… Ether linkage is fairly stable Is No direct evidence to support Propylene • Its 2o –OH è ADH does NOT metabolize Glycol • CYP Metabolism è CO2 (Non-Toxic) Ethers • Replacing the ethylene glycol ethers Alcohols and Glycols " Clinical Glycol Ethers • Reproductive Not/Less • Animal studies è Reproduction Injury (Spont.
    [Show full text]
  • Substance Name(S): 2-Ethoxyethanol EC Number: 203-804-1 CAS Number: 110-80-5
    2-ETHOXYETHANOL SVHC SUPPORT DOCUMENT Substance Name(s): 2-Ethoxyethanol EC number: 203-804-1 CAS Number: 110-80-5 MEMBER STATE COMMITTEE SUPPORT DOCUMENT FOR IDENTIFICATION OF 2-ETHOXYETHANOL AS A SUBSTANCE OF VERY HIGH CONCERN BECAUSE OF ITS CMR PROPERTIES Adopted on 25 November 2010 2-ETHOXYETHANOL SVHC SUPPORT DOCUMENT CONTENTS 1 IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES ................ 4 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE ............................................................................. 4 1.2 COMPOSITION OF THE SUBSTANCE ........................................................................................................ 4 1.3 PHYSICO -CHEMICAL PROPERTIES .......................................................................................................... 5 2 HARMONISED CLASSIFICATION AND LABELLING...................................................................... 6 3 ENVIRONMENTAL FATE PROPERTIES............................................................................................. 8 4 HUMAN HEALTH HAZARD ASSESSMENT ........................................................................................ 8 4.1 TOXICITY FOR REPRODUCTION .............................................................................................................. 8 5 ENVIRONMENTAL HAZARD ASSESSMENT ..................................................................................... 8 6 CONCLUSIONS ON THE SVHC PROPERTIES ..................................................................................
    [Show full text]
  • Glycol Ethers Method 2554
    GLYCOL ETHERS 2554 (1) CH3OCH2CHOHCH3 MW: 90.1 CAS: 107-98-2 RTECS: UB7700000 (2) CH3OC3H6OC3H6OH 148.2 34590-94-8 JM1575000 (3) CH3OCH2CH(CH3)COOCH3 132.16 108-65-6 AI8925000 METHOD: 2554 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA : See Table I PROPERTIES: See Table I NIOSH: See Table I ACGIH: See Table I SYNONYMS: (1) propylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-methoxy-1-methylethanol, propylene glycol methyl ether (2) dipropylene glycol monomethyl ether (3) propylene glycol monomethyl ether acetate, propylene glycol methyl ether acetate, 1-methoxy-2-propyl acetate SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (Anasorb® 747, 140 mg/70 mg) ANALYTE: See Table I FLOW RATE: 0.1 to 0.2 L/min DESORPTION: 1 mL of methylene chloride/methanol VOL-MIN: 3 L (85:15) for 30 minutes in ultrasonic bath -MAX: 25 L (at lower flow rates) INJECTION VOLUME: 1 :L SHIPMENT: Keep cold, pack securely for shipping TEMPERATURE SAMPLE -INJECTION: 195°C STABILITY: 14 days @ 5°C for analytes 1 and 3; -DETECTOR: 240°C 7 days @ 5°C for analyte 2 -COLUMN: 90°C (1 min) to 200°C (10°C/min) BLANKS: 2 to 10 field blanks per set CARRIER GAS: Helium, 2.8 mL/min COLUMN: Capillary, fused silica, 30 m x 0.32-mm ACCURACY ID; 100% PEG-DA, Stabilwax or equivalent RANGE STUDIED: Not determined. CALIBRATION: Solutions of analytes in desorption BIAS: Not determined. solvent Ö RANGE: (1) 1.5 to 369 :g[3] OVERALL PRECISION ( rT): Not determined. (2) 3.0 to 375 :g[3] ACCURACY: Not determined (3) 1.5 to 369 :g[3] ESTIMATED LOD: (1) 0.5 :g[3] (2) 1.0 :g[3] (3) 0.5 :g[3] þ PRECISION ( r): (1) 0.013[3] (2) 0.031[3] (3) 0.016[3] APPLICABILITY: The working range for propylene glycol monomethyl ether was 0.041 to 10.0 ppm (0.154 to 36.9 mg/m3), for dipropylene glycol monomethyl ether was 0.050 to 6.19 ppm (0.305 to 37.5 mg/m3), and propylene glycol monomethyl ether acetate was 0.030 to 6.83 ppm (0.151 to 36.9 mg/m3) for a 10 L sample .
    [Show full text]
  • Reassessment of 3 Tolerance Exemptions for Ethylene Glycol
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - +,TE* sr4, WASHINGTON, D.C. 20460 Q c, OFFICE OF PREVENTION, PESTICIDES, AND TOXIC SUBSTANCES DATE: June 29,2006 ACTION MEMORANDUM SUBJECT: Reassessment of 3 Tolerance Exemptions for Ethylene Glycol, Diethylene Glycol, and the Combination of Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monoethyl Ether, and Diethylene Glycol Monobutyl Ether FROM: Pauline Wagner, Chief F b.~!!<Lo 'v \ 3~~10 b Inert Ingredient Assessment Branch Registration Division (7505P) TO: Lois A. Rossi, Director Registration Division (7505P) 1. FQPA REASSESSMENT ACTION Action: Reassessment of three inert exemptions from the requirement of a tolerance. The reassessment decision is to maintain the inert tolerance exemptions "as-is." Table 1. Tolerance Exemptions Being Reassessed in this Document CM~fl,~aa,it Appeara in the CFR CAS iT01muw Registry Number @.I@,- Bxemption $in$@ Uses Name %SOa ,. Exprmsion. Antifreeze, deactivator for all pesticides 107-21-1 920 Ethylene glycol - - - used before crop emerges from soil and in 1,2-Ethanediol herbicides before or after crop emerges Deactivator, adjuvant for formulations used before crop emerges from soil and 11 1-46-6 920 Diethylene glycol --- deactivator for formulations used before Ethanol, 2,2'-oxybis- (9CI) crop emerges from soil, stabilizer Diethylene glycol 1 11-77-3 monomethyl ether Ethanol, 2-(2-methoxyethoxy)- 920 Diethylene glycol monoethyl - - - Deactivator for formulations used before 1 1 1-90-0 ether crop emerges from soil, stabilizer Ethanol, 2-(2-ethoxyethoxy)- Diethylene glycol monobutyl 112-34-5 ether Ethanol, 2-(2-butoxyethoxy)- a. Residues listed in 40 CFR 180.920 are exempted from the requirement of a tolerance when used in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only.
    [Show full text]
  • Glycol Ether Guidance
    Glycol Ethers Guidance (7/26/2005) “Glycol Ethers” is a hazardous air pollutant defined in Iowa Administrative Code (567) rule 22.100 as follows: 567 IAC 22.100, definition of “hazardous air pollutant”: Glycol Ethers2, except CAS #111-76-2, ethylene glycol mono-butyl ether, also known as EGBE or 2- Butoxyethanol 2 Includes mono- and di-ethers of ethylene glycol, diethylene glycol, and triethylene glycol R(OCH2CH2)n- OR’ where n=1, 2, or 3; R=alkyl or aryl groups; R’=R,H, or groups which, when removed, yield glycol ethers with the structure R(OCH2CH)n-OH. Polymers are excluded from the glycol category. There are literally thousands of compounds included in the glycol ethers category. The definition of glycol ethers in the Iowa Administrative Code is taken directly from 40 CFR 63.21, and is consistent with the definition for certain glycol ethers used in Toxics Release Inventory program. For this reason, the Iowa DNR suggests using the EPA document entitled “Toxics Release Inventory: List of Toxic Chemicals Within the Glycol Ethers Category (December 2000)” for a listing of glycol ethers. This document is available at http://www.epa.gov/ttn/atw/glycol2000.pdf. Common Glycol Ethers* Delisted Glycol Ethers Chemical Name CAS Number Chemical Name CAS Number Diethylene glycol dimethyl ether 111-96-6 111-76-2 Ethylene glycol mono-butyl Diethylene glycol monobutyl ether acetate 124-17-4 Delisted ether, also known as EGBE or 2- Diethylene glycol monobutyl ether 112-34-5 11/29/2004 Butoxyethanol Diethylene glycol monoethyl ether acetate 112-15-2
    [Show full text]
  • GLYCOL ETHERS 273-328.Qxp 13/12/2006 12:02 Page 328 329-414.Qxp 13/12/2006 12:21 Page 329
    273-328.qxp 13/12/2006 12:02 Page 327 GLYCOL ETHERS 273-328.qxp 13/12/2006 12:02 Page 328 329-414.qxp 13/12/2006 12:21 Page 329 2-BUTOXYETHANOL 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 111-76-2 Chem. Abstr. Name: 2-Butoxyethanol IUPAC Systematic Name: 2-Butoxyethanol Synonyms: Butoxyethanol; β-butoxyethanol; n-butoxyethanol; 2-n-butoxyethanol; 2- butoxy-1-ethanol; 2-n-butoxy-1-ethanol; O-butyl ethylene glycol; butylglycol; butyl monoether glycol; EGBE; ethylene glycol butyl ether; ethylene glycol n-butyl ether; ethylene glycol monobutyl ether; ethylene glycol mono-n-butyl ether; glycol butyl ether; glycol monobutyl ether; monobutyl ether of ethylene glycol; monobutyl glycol ether; 3-oxa-1-heptanol 1.1.2 Structural and molecular formulae and relative molecular mass H3CCH2 CH2 CH2 OCH2 CH2 OH C6H14O2 Relative molecular mass: 118.17 1.1.3 Chemical and physical properties of the pure substance From Lide (2004) unless otherwise specified (a) Description: Liquid (b) Boiling-point: 168.4 °C (c) Melting-point: –74.8 °C (d ) Density: 0.9015 g/mL at 20 °C (e) Spectroscopy data: Infrared and nuclear magnetic resonance (proton) spectral data have been reported (National Toxicology Program, 2000) –329– 329-414.qxp 13/12/2006 12:21 Page 330 330 IARC MONOGRAPHS VOLUME 88 ( f ) Solubility: Miscible with water, ethanol and diethyl ether; slightly soluble in carbon tetrachloride; soluble in mineral oil and most organic solvents (National Toxicology Program, 2000) (g) Volatility: Vapour pressure, 100
    [Show full text]
  • Ethylene Glycol Ethers
    Federal Register / Vol. 79, No. 241 / Tuesday, December 16, 2014 / Rules and Regulations 74639 (b) In addition to the filing (1) File the following communications processing. The required notifications requirements under paragraph (a) of this through TEAS: would provide EPA with the section, the applicant must: (i) Responses to Office actions (except opportunity to evaluate the intended (1) File the following communications notices of appeal under section 20 of the use and, if necessary based on the through TEAS: Trademark Act); information available at that time, an (i) Responses to Office actions (except (ii) Requests to change the opportunity to protect against potential notices of appeal under section 20 of the correspondence address and owner’s unreasonable risks, if any, from that Trademark Act); address; activity before it occurs. EPA is also (ii) Requests to change the (iii) Appointments and/or revocations making a technical amendment to the correspondence address and owner’s of power of attorney; codified list of control numbers for address; (iv) Appointments and/or revocations approved information collection (iii) Appointments and/or revocations of domestic representative; activities so that it includes the control of power of attorney; (v) Voluntary amendments; number assigned by the Office of (iv) Appointments and/or revocations (vi) Amendments to allege use under Management and Budget (OMB) to the of domestic representative; section 1(c) of the Act or statements of information collection activities (v) Voluntary amendments; use under section 1(d) of the Act; contained in this rule. (vi) Amendments to allege use under (vii) Requests for extensions of time to DATES: section 1(c) of the Act or statements of file a statement of use under section 1(d) This final rule is effective use under section 1(d) of the Act; of the Act; and February 17, 2015.
    [Show full text]
  • Opinion on Diethylene Glycol Monobutyl Ether (Degbe)
    OPINION ON DIETHYLENE GLYCOL MONOBUTYL ETHER (DEGBE) Opinion adopted by the SCCP during the 10th plenary of 19 December 2006 SCCP/1043/06 OPINION ON DIETHYLENE GLYCOL MONOBUTYL ETHER (DEGBE) ACKNOWLEDGEMENTS Members of the working group are acknowledged for their valuable contribution to this opinion. The members of the working group are: Dr. C. Chambers Prof. G. Degen Dr. B. Jazwiec-Kanyion Prof. V. Kapoulas Prof. C. Lidén Prof. J.-P. Marty Prof. T. Platzek Dr. S.C. Rastogi Prof. J. Revuz Prof. T. Sanner (chairman and rapporteur) Dr. J. van Engelen Dr. I.R. White Keywords: SCCP, scientific opinion, diethylene glycol monobutyl ether, DEGBE, Directive 768/76/EEC, CAS 112-34-5 2 SCCP/1043/06 OPINION ON DIETHYLENE GLYCOL MONOBUTYL ETHER (DEGBE) TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................... 2 1. BACKGROUND........................................................................................................ 4 2. TERMS OF REFERENCE....................................................................................... 4 3. OPINION................................................................................................................... 4 4. CONCLUSION ....................................................................................................... 19 5. MINORITY OPINION........................................................................................... 19 6. REFERENCES .......................................................................................................
    [Show full text]