Main Story by Photography By

Total Page:16

File Type:pdf, Size:1020Kb

Main Story by Photography By DTherifters... Main Story by CABELL DAVIES PHD Photography by RUSS HOpcrOFT PHD There are more animals in the sea than on land…many times more. The dominant forces behind all life on earth are the tiny, minute beings that drift across the vast expanse of the ocean. EUCHAETA MARINA is a common shallow-water predatory copepod in he term “Plankton”, for VALDVIELLIA INSIGNIS is a deep-sea tropical waters. This female carries a microscopic, infinitesimal predatory copepod. It attacks prey with clutch of several dozen bright blue eggs. animals, first coined in 1887 by Victor Henson at the “Edward scissor-hands” like mouthparts Size 3-4 mm. University of Kiel, Germany, which are visible in this image. Her is derived from the Greek two large purple eggs are also visible. word “planktos,” meaning “drifter”. Most offspring of Size 11mm. marine animals in larvae form do not resemble their parents such as tarpon, bonefish, and eels. However there are some that are simply miniatures Most offspring of marine animals in larvae form do not resemble their parents such as tarpon, bonefish, and eels. However there are some that are simply miniatures of their parents like the octopus, squids and anemone. of their parents like the octopus, squids and anemone. Plankton has evolved an (Front page) ATLANTA PERONI is a extremely diverse range of body shapes and sizes in their attempt to adapt to heteropod, one of the pelagic snails. It the pelagic marine environment. Often swims by rowing the 2 lobes of its foot, wildly elaborated body forms of plankton while using its well-developed eyes to are reminiscent of creatures from George Lucas‘s Star Wars series. George must have search for other pelagic snails on which been deeply inspired by the ocean. it feeds. Size 1cm. 24 The DRIFteRS... OCEAN GEOGRAPHIC 5:3/2008 25 While the many familiar marine animals Copepods have evolved to be the fastest have larval stages, these species are not the animals on earth relative to body size. dominant members of the zooplankton. Using a high-speed video microscope, In fact, the vast majority of zooplankton copepods have been clocked at 500 body spend their entire lives as holoplankton lengths per second. By comparison, an and they are unfamiliar to the average folk. F-16 fighter jet flies at best 50 body lengths Important groups of holoplankton, are per second. In that perspective, the cheetah the copepods that are the most numerous cannot be the fastest animal on earth! If a animals on earth1, yet most of us have no copepod is transformed in ratio to the size The AMphipod PHRONEMA has clue of their existence. Copepods are small of a cheetah, in comparison, the cheetah Copepods thrive in crustaceans ranging in size as adults from would run at 70 miles per hour (112 hollowed out a zooplankter called a salp the world’s ocean about ½ mm up to 10 mm ( see picture km/h) at its top speed, and the copepod into which she will lay her eggs. She will and freshwater of Valdvielia and Euchaeta). Copepods would zoom past at 2,000 miles per hour then swim this living nursery around thrive in the world’s ocean and freshwater (3219 km/h) through water which is 800 environments, with environments, with an estimated global times denser than air. This mesmerizing until her babies are large enough to leave an estimated global population of one quintillion (1018). That’s feat is achieved by the copepods when home. Size up to 3 cm population of one a half-billion copepods for every person they transform their bodies from a typical 18 on earth! “T” feeding posture, with their antennules quintillion (10 ). spread wide (as illustrated in picture of That’s a half-billion Copepods are a primary sustenance for Valdvielia and Euchaeta), into a torpedo many larger plankton, adult fish, and shape with the antennules laying alongside copepods for every whales. As they are near the bottom of the the body while the swimming legs propel person on earth! food chain, evading predators is a necessity. the animal forward with blinding speed. 1 with the possible exception of roundworms The AMphipod MIMONECTES SPHAERICUS (formerly necto amphipod) is a commensal on deep-sea jellyfish and their kin. The large knife-like antennae indicate this is a male. Size 3 mm. Basin ciRCULation: It reflects the connection between the surface and deep water flow, in the global Ocean-conveyer belt that takes between 600 and 1600 years to complete. 26 The DRIFteRS... OCEAN GEOGRAPHIC 5:3/2008 27 PeLAGOBIA LONGICIRRATA is a pelagic Polychaete worm, from the deep Arctic Ocean; the orange color comes from oil drops stored in the body. Size 5 mm. This GReen poLYchaete WORM has left the seafloor to lay her clutch of pink eggs in the plankton. Size 4-5 mm. ALACIA VALDIVIAE is a deep- water Ostracod or clam- shrimp, a small crustacean protected by two clam-like shells. They are important scavengers in the deep-sea. Size 4-5 mm. 28 The DRIFteRS... OCEAN GEOGRAPHIC 5:3/2008 29 The sea-angeL CLIONE LIMACINA is a predatory pteropod, another shell-less pelagic snail that flies through the water with it’s tow wings, hunting for other snails to eat. Size up to 3 cm. There are many other groups of holoplankton with equally fascinating life histories and behaviors. An example includes the amphipods (Phronema and Necto amphipod), which are voracious predators of copepods. The amphipod Phronema with large compound eyes and scythe-like appendages is actually a crustacean that breeds it young inside a salp, CARINARIA LEMARCKI is another The amphipod Phronema with large species of heteropod (pelagic compound eyes and scythe-like snail), but unlike Atlanta it is no appendages is actually a crustacean longer able to fit inside its shell. that breeds it young inside a salp, The end of the snout is equipped a jelly like animal. with strong hook-like teeth used or extracts other snails from a jelly like animal. It t has to kill the salp their shells. Size 3-4 cm. first, and then move in and use its jellish body as nest to breed. Another interesting crustacean group is the Ostracods (Alacia valdiviae) which are active swimmers and have a clam-like shell for protection. Many of the deep-dwelling zooplankton, like that of Ostracods are red, which make them nearly invisible at depth as the red is readily absorbed by seawater. By contrast, species that live near the surface in tropical regions are often blue, matching the colour of the ocean’s surface. Marine worms called Polychaetes, (Green Ploy, Pelagobia longicirrata), equipped with rows of swimming appendages for rapid movement are also the copepods’ predators. 30 The DRIFteRS... OCEAN GEOGRAPHIC 5:3/2008 31 The sheLLed pteRopod DIACRIA TRISPINOSA feeds by secreting a bubble of mucus from its large fleshy wings. As it sinks from the weight of the shell, food gets stuck to the bubble, then both the bubble and the attached food are eaten. It then uses the wings to swim back to shallower water and start the process over again. Size up to 2 cm. The Pteropods are marine snails that have adapted to life in the ocean by using a “foot” to swim swiftly through the water column. Some pteropods have little or no shell and they are slug-like predators (Carinaria and Clione) of the shelled Pteropods (Limacina, Janthina, Diacria, and Atlanta). The pelagic nudibranch, Phylliroe atlantica, has a larval stage that burrows into a jellyfish, eats it from the inside out, and becomes a free-living adult. Larger plankton includes various kinds of shrimp, which feed on Phytoplankton (plants plankton) as well as on smaller zoo- plankton such as the Eusirus. Jellyfish, which can grow up be up to a meter in The pelagic nudibranch, Phylliroe JANTHINA UMBILICATA is a snail that atlantica, has a larval stage that lives in a unique habit within the ocean burrows into a jellyfish, eats it from called the neuston. It secretes a mat of the inside out, and becomes a free- sticky bubbles that keep it attached to living adult. the ocean’s surface, where it hunts for jellyfish that live in the same special diameter are considered planktonic since habitat. Size 6-7 mm. LIMACINA HELICINA is a shelled pelagic snail they drift with ocean currents, and there is a wide variety of these important predatory common in temperate through polar waters. species. Siphonophores (see picture of They are sometimes observed to gather Abyla duck siph and Hippodius) are colonial together into swarms. Size up to 1 cm. animals, related to jellyfish that include the deadly Portuguese Man of War (Physalia utriculus) commonly known as the blue bottles in Australia. 32 The DRIFteRS... OCEAN GEOGRAPHIC 5:3/2008 33 The diversity of zooplankton is enormous, comprising of species from all animal phylum. Zooplankton includes most of the nearly half-million non-insect animal The peLagic snaiL PHYLLIROE species on earth. In addition to its diversity, ATLANTICA begins life as a parasite the shear mass of zooplankton in the within jellyfish, but as it grows, it ocean is of colossal proportions; if all the zooplanktons were sieved from the sea becomes a predator on them. It and spread across the USA, Australia and swims using its flattened tail. Size up China, the resulting layer would be meters to 4 cm. deep and the vast majority will be copepods. These ocean drifters impact not only upon the yield of global fisheries but more importantly the global carbon and nitrogen cycles.
Recommended publications
  • [Oceanography and Marine Biology - an Annual Review] R. N
    OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use.
    [Show full text]
  • I.D. Antarctica
    I.D. Antarctica Week 4 Dichotomous Identification Key Common zooplankton of the Western Antarctic Peninsula Always start with the first question, Q1. In this case, the questions are worded as statements. Choose the statement that best describes the organism in the photo, and then follow the instructions which will tell you which Question to go to next. Don’t worry if that means you skip over a question – just follow the directions and you will get to an identification when you are done. Good luck! Question 1 (Q1) 1a – The zooplankton is long, skinny and shaped like a pencil. It may have many legs or no legs…..……………………….....…………………………………………………………Go to Q2 1b – The zooplankton is not shaped like a pencil. It may have many legs or no legs…….………………………………………………………………….…………………………………Go to Q3 1 Q2 2a – It has a long body with many legs, over 15 pairs. It has two red bands of color going across its body……………………………………………Tomopteris spp. (bristle worm) 2b – It has an arrow shaped head and wing-like structures near the tail. No legs present…………………..……………………………….………………Chaetognatha (arrow worm) Q3 3a – The organism is gelatinous, transparent, or totally soft tissued. May have tentacles, but no legs are present…………………………………………………………….Go to Q4 3b – The organism is not transparent or gelatinous; it appears to have hard external body parts such as an exoskeleton or shell. May have legs, no tentacles are present.....…………………………………………………………………………………..……..Go to Q9 Q4 4a – Tentacles are present……………………………………………….………………………Go to Q5 4b – Tentacles are not present…………………………………………………………………Go to Q6 Q5 5a – There are obvious eyes and eight or fewer tentacles……………………………….
    [Show full text]
  • Canada's Arctic Marine Atlas
    CANADA’S ARCTIC MARINE ATLAS This Atlas is funded in part by the Gordon and Betty Moore Foundation. I | Suggested Citation: Oceans North Conservation Society, World Wildlife Fund Canada, and Ducks Unlimited Canada. (2018). Canada’s Arctic Marine Atlas. Ottawa, Ontario: Oceans North Conservation Society. Cover image: Shaded Relief Map of Canada’s Arctic by Jeremy Davies Inside cover: Topographic relief of the Canadian Arctic This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0 or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. All photographs © by the photographers ISBN: 978-1-7752749-0-2 (print version) ISBN: 978-1-7752749-1-9 (digital version) Library and Archives Canada Printed in Canada, February 2018 100% Carbon Neutral Print by Hemlock Printers © 1986 Panda symbol WWF-World Wide Fund For Nature (also known as World Wildlife Fund). ® “WWF” is a WWF Registered Trademark. Background Image: Phytoplankton— The foundation of the oceanic food chain. (photo: NOAA MESA Project) BOTTOM OF THE FOOD WEB The diatom, Nitzschia frigida, is a common type of phytoplankton that lives in Arctic sea ice. PHYTOPLANKTON Natural history BOTTOM OF THE Introduction Cultural significance Marine phytoplankton are single-celled organisms that grow and develop in the upper water column of oceans and in polar FOOD WEB The species that make up the base of the marine food Seasonal blooms of phytoplankton serve to con- sea ice. Phytoplankton are responsible for primary productivity—using the energy of the sun and transforming it via pho- web and those that create important seafloor habitat centrate birds, fishes, and marine mammals in key areas, tosynthesis.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Articles and Plankton
    Ocean Sci., 15, 1327–1340, 2019 https://doi.org/10.5194/os-15-1327-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The Pelagic In situ Observation System (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna Henk-Jan Hoving1, Svenja Christiansen2, Eduard Fabrizius1, Helena Hauss1, Rainer Kiko1, Peter Linke1, Philipp Neitzel1, Uwe Piatkowski1, and Arne Körtzinger1,3 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 2University of Oslo, Blindernveien 31, 0371 Oslo, Norway 3Christian Albrecht University Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany Correspondence: Henk-Jan Hoving ([email protected]) Received: 16 November 2018 – Discussion started: 10 December 2018 Revised: 11 June 2019 – Accepted: 17 June 2019 – Published: 7 October 2019 Abstract. There is a need for cost-efficient tools to explore 1 Introduction deep-ocean ecosystems to collect baseline biological obser- vations on pelagic fauna (zooplankton and nekton) and es- The open-ocean pelagic zones include the largest, yet least tablish the vertical ecological zonation in the deep sea. The explored habitats on the planet (Robison, 2004; Webb et Pelagic In situ Observation System (PELAGIOS) is a 3000 m al., 2010; Ramirez-Llodra et al., 2010). Since the first rated slowly (0.5 m s−1) towed camera system with LED il- oceanographic expeditions, oceanic communities of macro- lumination, an integrated oceanographic sensor set (CTD- zooplankton and micronekton have been sampled using nets O2) and telemetry allowing for online data acquisition and (Wiebe and Benfield, 2003). Such sampling has revealed a video inspection (low definition).
    [Show full text]
  • Canada's Arctic Marine Atlas
    Lincoln Sea Hall Basin MARINE ATLAS ARCTIC CANADA’S GREENLAND Ellesmere Island Kane Basin Nares Strait N nd ansen Sou s d Axel n Sve Heiberg rdr a up Island l Ch ann North CANADA’S s el I Pea Water ry Ch a h nnel Massey t Sou Baffin e Amund nd ISR Boundary b Ringnes Bay Ellef Norwegian Coburg Island Grise Fiord a Ringnes Bay Island ARCTIC MARINE z Island EEZ Boundary Prince i Borden ARCTIC l Island Gustaf E Adolf Sea Maclea Jones n Str OCEAN n ait Sound ATLANTIC e Mackenzie Pe Ball nn antyn King Island y S e trait e S u trait it Devon Wel ATLAS Stra OCEAN Q Prince l Island Clyde River Queens in Bylot Patrick Hazen Byam gt Channel o Island Martin n Island Ch tr. Channel an Pond Inlet S Bathurst nel Qikiqtarjuaq liam A Island Eclipse ust Lancaster Sound in Cornwallis Sound Hecla Ch Fitzwil Island and an Griper nel ait Bay r Resolute t Melville Barrow Strait Arctic Bay S et P l Island r i Kel l n e c n e n Somerset Pangnirtung EEZ Boundary a R M'Clure Strait h Island e C g Baffin Island Brodeur y e r r n Peninsula t a P I Cumberland n Peel Sound l e Sound Viscount Stefansson t Melville Island Sound Prince Labrador of Wales Igloolik Prince Sea it Island Charles ra Hadley Bay Banks St s Island le a Island W Hall Beach f Beaufort o M'Clintock Gulf of Iqaluit e c n Frobisher Bay i Channel Resolution r Boothia Boothia Sea P Island Sachs Franklin Peninsula Committee Foxe Harbour Strait Bay Melville Peninsula Basin Kimmirut Taloyoak N UNAT Minto Inlet Victoria SIA VUT Makkovik Ulukhaktok Kugaaruk Foxe Island Hopedale Liverpool Amundsen Victoria King
    [Show full text]
  • Phylogenomic Analysis and Morphological Data Suggest Left-Right Swimming Behavior Evolved Prior to the Origin of the Pelagic Phylliroidae (Gastropoda: Nudibranchia)
    Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart & Heike Wägele Organisms Diversity & Evolution ISSN 1439-6092 Org Divers Evol DOI 10.1007/s13127-020-00458-9 1 23 Your article is protected by copyright and all rights are held exclusively by Gesellschaft für Biologische Systematik. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Organisms Diversity & Evolution https://doi.org/10.1007/s13127-020-00458-9 ORIGINAL ARTICLE Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart1 & Heike Wägele2 Received: 13 March 2020 /Accepted: 1 September 2020 # Gesellschaft für Biologische Systematik 2020 Abstract Evolutionary transitions from benthic to pelagic habitats are major adaptive shifts. Investigations into such shifts are critical for understanding the complex interaction between co-opting existing traits for new functions and novel traits that originate during or post-transition.
    [Show full text]
  • A Polyvalent and Universal Tool for Genomic Studies In
    A polyvalent and universal tool for genomic studies in gastropod molluscs (Heterobranchia: Tectipleura) Juan Moles1 and Gonzalo Giribet1 1Harvard University Faculty of Arts and Sciences April 28, 2020 Abstract Molluscs are the second most diverse animal phylum and heterobranch gastropods present ~44,000 species. These comprise fascinating creatures with a huge morphological and ecological disparity. Such great diversity comes with even larger phyloge- netic uncertainty and many taxa have been largely neglected in molecular assessments. Genomic tools have provided resolution to deep cladogenic events but generating large numbers of transcriptomes/genomes is expensive and usually requires fresh material. Here we leverage a target enrichment approach to design and synthesize a probe set based on available genomes and transcriptomes across Heterobranchia. Our probe set contains 57,606 70mer baits and targets a total of 2,259 ultra-conserved elements (UCEs). Post-sequencing capture efficiency was tested against 31 marine heterobranchs from major groups, includ- ing Acochlidia, Acteonoidea, Aplysiida, Cephalaspidea, Pleurobranchida, Pteropoda, Runcinida, Sacoglossa, and Umbraculida. The combined Trinity and Velvet assemblies recovered up to 2,211 UCEs in Tectipleura and up to 1,978 in Nudipleura, the most distantly related taxon to our core study group. Total alignment length was 525,599 bp and contained 52% informative sites and 21% missing data. Maximum-likelihood and Bayesian inference approaches recovered the monophyly of all orders tested as well as the larger clades Nudipleura, Panpulmonata, and Euopisthobranchia. The successful enrichment of diversely preserved material and DNA concentrations demonstrate the polyvalent nature of UCEs, and the universality of the probe set designed. We believe this probe set will enable multiple, interesting lines of research, that will benefit from an inexpensive and largely informative tool that will, additionally, benefit from the access to museum collections to gather genomic data.
    [Show full text]
  • Carotenoids of Sea Angels Clione Limacina and Paedoclione Doliiformis from the Perspective of the Food Chain
    Mar. Drugs 2014, 12, 1460-1470; doi:10.3390/md12031460 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain Takashi Maoka 1,*, Takashi Kuwahara 2 and Masanao Narita 3 1 Research Institute for Production Development, Shimogamo-Morimoto-cho 15, Sakyo-ku, Kyoto 606-0805, Japan 2 Okhotsk Sea Ice Museum of Hokkaido, Motomombetsu, Monbetsu, Hokkaido 094-0023, Japan; E-Mail: [email protected] 3 Hokkaido Research Organization, Abashiri Fisheries Research Institute, Minatomachi, Monbetsu, Hokkaido 094-0011, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-75-781-1107; Fax: +81-75-791-7659. Received: 16 January 2014; in revised form: 19 February 2014 / Accepted: 3 March 2014 / Published: 13 March 2014 Abstract: Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads.
    [Show full text]
  • Boletin 20 NUEVO 4/9/06 12:34 Página 1
    Boletin 20 NUEVO 4/9/06 12:34 Página 1 BOLETÍN INSTITUTO ESPAÑOL DE OCEANOGRAFÍA An annotated and updated checklist of the opisthobranchs (Mollusca: Gastropoda) from Spain and Portugal (including islands and archipelagos) J. L. Cervera1, G. Calado2,3, C. Gavaia2,4*, M. A. E. Malaquias2,5, J. Templado6, M. Ballesteros7, J. C. García-Gómez8 and C. Megina1 1Departamento de Biología 5Mollusca Research Group Facultad de Ciencias del Mar y Ambientales Department of Zoology Universidad de Cádiz The Natural History Museum Polígono Río San Pedro, s/n Cromwell Road Apdo. 40, E-11510 Puerto Real, Cádiz, Spain. London SW7 5BD, United Kingdom E-mail: [email protected] 6Museo Nacional de Ciencias Naturales (CSIC) 2Instituto Português de Malacologia José Gutiérrez Abascal 2 Zoomarine E-28006 Madrid, Spain E. N. 125 km 65 Guia, P-8200-864 Albufeira, Portugal 7Departamento de Biología Animal Facultad de Biología 3Centro de Modelação Ecológica Imar Universidad de Barcelona FCT/UNL Avda. Diagonal 645 Quinta da Torre E-08028 Barcelona, Spain P-2825-114 Monte da Caparica, Portugal 8Laboratorio de Biología Marina 4Centro de Ciências do Mar Departamento de Fisiología y Zoología Faculdade de Ciências do Mar e do Ambiente Facultad de Biología Universidade do Algarve Universidad de Sevilla Campus de Gambelas Avda. Reina Mercedes 6 P-8000-010 Faro, Portugal Apdo. 1095, E-41012 Sevilla, Spain *César Gavaia died on 3rd July 2003, in a car accident Received January 2004. Accepted December 2004 ISSN: 0074-0195 MINISTERIO INSTITUTO ESPAÑOL DE EDUCACIÓN DE OCEANOGRAFÍA Y CIENCIA Vol. 20 · Núms. 1-4 Págs. 1-122 Edita (Published by): INSTITUTO ESPAÑOL DE OCEANOGRAFÍA Avda.
    [Show full text]
  • The Pelagic in Situ Observation System (PELAGIOS) to Reveal
    Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-131 Manuscript under review for journal Ocean Sci. Discussion started: 10 December 2018 c Author(s) 2018. CC BY 4.0 License. 1 The Pelagic In situ Observation System (PELAGIOS) to reveal 2 biodiversity, behavior and ecology of elusive oceanic fauna 3 Hoving, Henk-Jan1, Christiansen, Svenja2, Fabrizius, Eduard1, Hauss, Helena1, Kiko, Rainer1, 4 Linke, Peter1, Neitzel, Philipp1, Piatkowski, Uwe1, Körtzinger, Arne1,3 5 6 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. 7 2University of Oslo, Blindernveien 31, 0371 Oslo, Norway 8 3Christian Albrecht University Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany 9 10 Corresponding author: [email protected] 11 1 Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-131 Manuscript under review for journal Ocean Sci. Discussion started: 10 December 2018 c Author(s) 2018. CC BY 4.0 License. 12 1. Abstract 13 There is a need for cost-efficient tools to explore deep ocean ecosystems to collect baseline 14 biological observations on pelagic fauna (zooplankton and nekton) and establish the vertical 15 ecological zonation in the deep sea. The Pelagic In situ Observation System (PELAGIOS) is a 16 3000 m-rated slowly (0.5 m/s) towed camera system with LED illumination, an integrated 17 oceanographic sensor set (CTD-O2) and telemetry allowing for online data acquisition and video 18 inspection (Low Definition). The High Definition video is stored on the camera and later annotated 19 using the VARS annotation software and related to concomitantly recorded environmental data.
    [Show full text]
  • Dive Log Search
    Ocean Wise Arctic Database Species and their Locations Cambridge Bay Churchill reef Iqaluit Cornwallis Island Little Pond Inlet Resolute Bay WoRMS Common name Scientific name AphiaID Green algae Chlorophyta green algae Ulva spp. 1 0 0 0 0 1 144296 filamentous green algae undetermined green algae 1 0 0 0 0 0 none Brown algae Ochrophyta sugar kelp Saccharina latissima 1 0 0 0 1 1 234483 sea collander Agarum clathratum 0 0 1 0 0 1 157207 winged kelp Alaria esculenta 1 0 0 0 0 1 145717 rockweed Fucus sp. 1 0 0 0 0 1 144129 thread brown algae possibly Chordaria sp. 1 0 0 0 1 0 143954 branching brown algae undetermined brown algae 1 0 0 0 1 0 none clump brown algae undetermined brown algae 1 0 0 0 0 0 none encrusting brown algae undetermined encrusting brown algae 1 0 0 0 0 0 none diatoms undetermined brown algae 1 0 0 0 0 0 none filamentous diatom undetermined brown algae 1 0 0 0 0 0 none flat bladed brown algae undetermined brown algae 1 0 0 0 0 0 none brown algaes undetermined brown algaes 1 0 0 0 0 1 none walking kelp possibly Pterygophora sp. 1 0 0 0 0 0 240743 Red algae Rhodophyta Arctic sea oak Phycodrys rubens 1 0 0 0 0 0 144773 rose seaweed possibly Palmaria palmata 1 0 0 0 0 1 145771 false dulce possibly Dilsea carnosa 1 0 0 0 0 0 145222 bladed red algaes undetermined bladed red algaes 1 1 0 0 0 0 none branching red algae undetermined branching red algae 1 0 0 0 0 0 none filamentous red algaes undetermined filamentous red algaes 1 0 0 0 0 1 none encrusting coralline algaes Corallina spp.
    [Show full text]