Seu Valor Científico- MONTEIRO Histórico E Didáctico

Total Page:16

File Type:pdf, Size:1020Kb

Seu Valor Científico- MONTEIRO Histórico E Didáctico Universidade de Aveiro Departamento de Didáctica e Tecnologia Educativa 2007 GRAÇA MARIA VIANA Controvérsias Geológicas: seu valor científico- MONTEIRO histórico e didáctico Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Didáctica, realizada sob a orientação científica do Dr. João José Félix Marnoto Praia, Professor associado com agregação (aposentado pela Faculdade de Ciências da Universidade do Porto) do Departamento de Didáctica e Tecnologia Educativa e Dr. António Soares de Andrade, Professor associado aposentado pela Universidade de Aveiro do Departamento de Geociências da Universidade de Aveiro. o júri presidente Prof. Doutor Henrique Manuel Morais Diz Professor Catedrático da Universidade de Aveiro Prof. Doutor Vítor Manuel de Sousa Trindade Professor Catedrático da Universidade de Évora Prof. Doutor João José Félix Marnoto Praia Professor Associado com Agregação Aposentado pela Faculdade de Ciências da Universidade do Porto (Orientador) Prof. Doutor Luís Manuel Ferreira Marques Professor Associado com Agregação da Universidade de Aveiro Prof. Doutor Luís Carlos Gama Pereira Professor Associado da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Prof. Doutor Alfredo de Oliveira Dinis Professor Associado da Faculdade de Filosofia de Braga da Universidade Católica Portuguesa Prof. Doutor António Augusto Soares de Andrade Professor Associado Aposentado da Universidade de Aveiro (Co-Orientador) agradecimentos Este trabalho teve início em Setembro de 2003 e, ao longo de quatro anos, houve um caminho percorrido que permitiu a sua concretização. Torna-se grato recuar no tempo e verificar que as primeiras palavras de gratidão vão para os Sr. Professor Doutor João Félix Marnoto Praia e Sr. Professor Doutor António Soares de Andrade cuja orientação, persistência e disponibilidade tornaram possível o alcance dos objectivos que eu pretendia atingir. Ao longo destes anos de trabalho não posso esquecer os meses de estadia em Cambridge sob orientação de Elaine Wilson PhD, docente e investigadora da Faculty of Education, cuja disponibilidade e oportunidades me foram fundamentais. Quero ainda agradecer aos alunos Sara, Davide, Diana Marlene, Diana, Raquel e Sofia que, com amizade concretizaram a tarefa de alunos colaboradores no que respeita ao desenvolvimento dos materiais didácticos. Finalmente, não quero deixar de mostrar a minha gratidão a todos os colegas, amigos e familiares que, embora não mencionados especificamente, hajam contribuído para que eu pudesse levar a bom termo a tarefa que me propus encetar. palavras-chave Controvérsias Geológicas, Educação em Ciência, História e Filosofia da Ciência. resumo Uma das vertentes da função docente é, seguramente, a da constante investigação, não (apenas) por uma questão de enriquecimento pessoal e profissional, mas pelo que aos estudantes diz respeito, sempre ávidos de respostas (não definitivas) sobre a vida e obra dos investigadores que descobriram determinado conceito/teoria. A necessidade de conhecer os meandros do meio científico e as controvérsias geradas ao longo da emergência de um novo paradigma científico na Geologia do séc.XX, levou- nos a uma criteriosa selecção das mesmas. Com efeito, temas como i) o Tempo Geológico; ii) a Deriva Continental e a Tectónica de Placas e; iii) as Extinções em Massa, constituem o nosso objectivo de estudo. Definamo-los: a) Analisar as controvérsias na sua vertente histórico-epistemológica, numa perspectiva da construção do conhecimento científico; b) Articular a História da Geologia, nomeadamente as controvérsias geológicas, com a Educação em Geologia; c) Avaliar a importância das controvérsias na construção do conhecimento científico, através de materiais didácticos cuidadosamente elaborados para este fim e desenvolvidos em práticas lectivas. Assumimos o contributo da controvérsia científica como um importante marco na História da Ciência que intentamos perseguir e compreender. O nascer da Geologia enquanto ciência autónoma, reveste-se de duras polémicas, conducentes a conquistas científicas, algumas das quais ainda se prolongam até aos dias de hoje. As controvérsias científicas foram encaradas, no nosso estudo, como processos cujos caminhos são alimentados por conteúdos científicos que se repensam. E se as controvérsias são fulcrais na Ciência, não há razão para separarmos a perspectiva científica da perspectiva histórico-epistemológica rica em dificuldades, confrontos e obstáculos. Pensamos ainda que a inclusão de aspectos relativos à natureza humana, rica em conflitos e situações dilemáticas, de valores e de âmbito ético, torna as controvérsias científicas enquadradas e justificadas num contexto Educação em Geologia. Aponta-se, então, a intenção de esclarecer a problemática central deste estudo: Qual a importância das controvérsias geológicas para a Educação em Geologia? Em Didáctica da Geologia, numa perspectiva não instrumental, uma revalorização do papel das controvérsias científicas passa não só pela sua utilização de forma criativa, mas também por lhes atribuirmos uma maior diversidade de funções. Não se pode pois, afirmar que as controvérsias em Geologia sejam algo “naife” e neutras, uma vez que são portadoras de sentido dentro de um contexto social, político e mesmo religioso. Ao utilizarmos a controvérsia, note-se, não apenas como recurso didáctico, permitir-nos-á o desenvolvimento de capacidades, entre outras, de comunicação intra e interpares, desenvolver a criatividade e o poder argumentativo dos alunos, bem como revelar valores inerentes à ciência contemporânea. O analisar das controvérsias científico-históricas a partir de uma vertente qualitativa foi, como que o abrir de um processo de compreensão da realidade que queremos menos subjectiva, exigindo da Didáctica das Ciências um rigor disciplinar- metodológico que sempre procurámos ter em atenção. Neste sentido, referimos a pertinência da vertente de estudo historiográfica que se enquadrou e entrelaçou com a Investigação-Acção, no sentido de uma pesquisa activa e com maior significado para a educação científica. Este pressuposto requer inteligibilidade como um ponto de partida para uma nova abordagem no Ensino da Geologia. Assim, uma das suas possíveis linhas estruturantes passa pela História da Ciência e mais concretamente pela controvérsia científica, dotada de uma epistemologia própria. Acreditamos que ao utilizar a controvérsia científica enquanto exercício de aprendizagem, os alunos são convidados e ajudados a compreender melhor como se constrói a Ciência, acentuando o facto de a actividade científica ser eminentemente cultural e humana. Acrescentaremos que no presente estudo foram emergentes as conclusões de que a controvérsia científico-histórica tem um papel decisivo para uma mais adequada compreensão das dificuldades na construção do conhecimento científico, visto perseguir o objectivo da melhoria das percepções dos alunos do Ensino Secundário sobre a natureza da Ciência, bem como sobre a aprendizagem das controvérsias geológicas e alguns dos seus aspectos mais centrais. keywords Geological controversy, Science Education, History and Philosophy of Science. abstract A teaching goal is, surely, permanent research, not only for personal and professional enrichment, but also for students, always looking for answers (not definite) about the life and the work of those scientists that discovered some concept/theory. The need to be familiar with the scientific community and the controversy generated by the emergence of a new scientific paradigm in the XXIst century Geology led us to a careful selection. In fact: i) Geological Time; ii) Continental Drift and Tectonic Plates and; iii) Mass Extinction, build up our study goal. We will define them: a) To analyse the scientific controversy in its scientific-epistemological sides, in a scientific knowledge acquisition perspective; b) To articulate Geological History, namely the geological controversy, with Geology Education; c) To evaluate the importance of controversy in scientific knowledge acquisition through didactic material, carefully planned and applied in teaching practice. We assume that the scientific controversy has contributed as an important landmark in the History of Science, which we intend to follow and understand. The Geology birth as an autonomous science is covered with hard controversy, leading to important scientific achievements, which still exist today. Scientific controversy has been faced, in our study, as different paths in a process, which are feed by the rethinking of scientific contends. And if controversy is essential, there is no reason to separate the scientific perspective from the historical- epistemological perspective, which is full of difficulties, confrontations and obstacles. We think that the inclusion of human nature aspects, rich in conflicts, dilemma values and ethic, makes scientific controversy fit and justified in a Geology Education context. We intent to clarify the main problem of this study: What is the importance of the geological controversy in Geology Education? Geology in Didactic in a non-instrumental perspective, revaluing scientific controversies means not only using it in a creative way, but also giving it wider and diverse functions. We cannot state that controversy in Geology is “naive” and neutral, as it is meaningful in a social, political and religious context. Using controversy, not only as a didactic resource, will allow us to develop several skills as pair communication, creativity
Recommended publications
  • It Has Often Been Said That Studying the Depths of the Sea Is Like Hovering In
    It has often been said that studying the depths of the sea is like hovering in a balloon high above an unknown land which is hidden by clouds, for it is a peculiarity of oceanic research that direct observations of the abyss are impracticable. Instead of the complete picture which vision gives, we have to rely upon a patiently put together mosaic representation of the discoveries made from time to time by sinking instruments and appliances into the deep. (Murray & Hjort, 1912: 22) Figure 1: Portrait of the H.M.S. Challenger. Prologue: Simple Beginnings In 1872, the H.M.S Challenger began its five- year journey that would stretch across every ocean on the planet but the Arctic. Challenger was funded for a single reason; to examine the mysterious workings of the ocean below its surface, previously unexplored. Under steam power, it travelled over 100,000 km and compiled 50 volumes of data and observations on water depth, temperature and conditions, as well as collecting samples of the seafloor, water, and organisms. The devices used to collect this data, while primitive by today’s standards and somewhat imprecise, were effective at giving humanity its first in-depth look into the inner workings of the ocean. By lowering a measured rope attached to a 200 kg weight off the edge of the ship, scientists estimated the depth of the ocean. A single reading could take up to 80 minutes for the weight to reach bottom. Taking a depth measurement also necessitated that the Challenger stop moving, and accurate mapping required a precise knowledge of where the ship was in the world, using navigational tools such as sextants.
    [Show full text]
  • Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
    Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD.
    [Show full text]
  • Deep Carbon Science
    From Crust to Core Carbon plays a fundamental role on Earth. It forms the chemical backbone for all essential organic molecules produced by living organ- isms. Carbon-based fuels supply most of society’s energy, and atmos- pheric carbon dioxide has a huge impact on Earth’s climate. This book provides a complete history of the emergence and development of the new interdisciplinary field of deep carbon science. It traces four cen- turies of history during which the inner workings of the dynamic Earth were discovered, and it documents the extraordinary scientific revolutions that changed our understanding of carbon on Earth for- ever: carbon’s origin in exploding stars; the discovery of the internal heat source driving the Earth’s carbon cycle; and the tectonic revolu- tion. Written with an engaging narrative style and covering the scien- tific endeavors of about 150 pioneers of deep geoscience, this is a fascinating book for students and researchers working in Earth system science and deep carbon research. is a life fellow at St. Edmund’s College, University of Cambridge. For more than 50 years he has passionately engaged in bringing discoveries in astronomy and cosmology to the general public. He is a fellow of the Royal Historical Society, a former vice- president of the Royal Astronomical Society and a fellow of the Geological Society. The International Astronomical Union designated asteroid 4027 as Minor Planet Mitton in recognition of his extensive outreach activity and that of Dr. Jacqueline Mitton. From Crust to Core A Chronicle of Deep Carbon Science University of Cambridge University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge.
    [Show full text]
  • When the Earth Moves Seafloor Spreading and Plate Tectonics
    This article was published in 1999 and has not been updated or revised. BEYONDBEYOND DISCOVERYDISCOVERYTM THE PATH FROM RESEARCH TO HUMAN BENEFIT WHEN THE EARTH MOVES SEAFLOOR SPREADING AND PLATE TECTONICS arly on the morning of Wednesday, April 18, the fault had moved, spanning nearly 300 miles, from 1906, people in a 700-mile stretch of the West San Juan Bautista in San Benito County to the south E Coast of the United States—from Coos Bay, of San Francisco to the Upper Mattole River in Oregon, to Los Angeles, California—were wakened by Humboldt County to the north, as well as westward the ground shaking. But in San Francisco the ground some distance out to sea. The scale of this movement did more than shake. A police officer on patrol in the was unheard of. The explanation would take some six city’s produce district heard a low rumble and saw the decades to emerge, coming only with the advent of the street undulate in front of him, “as if the waves of the theory of plate tectonics. ocean were coming toward me, billowing as they came.” One of the great achievements of modern science, Although the Richter Scale of magnitude was not plate tectonics describes the surface of Earth as being devised until 1935, scientists have since estimated that divided into huge plates whose slow movements carry the the 1906 San Francisco earthquake would have had a continents on a slow drift around the globe. Where the 7.8 Richter reading. Later that morning the disaster plates come in contact with one another, they may cause of crushed and crumbled buildings was compounded by catastrophic events, such as volcanic eruptions and earth- fires that broke out all over the shattered city.
    [Show full text]
  • Proceedings of the Fifth International Congress on the History of Oceanography
    EVOLUTION OF THE TECTOGENE CONCEPT, 1930-1965 ALlIN O. ALLWARDT SANTA CRUZ, CALIFORNIA Prepared for the Proceedings of the Fifth International congress on the History of oceanography (SCripps Institution of OCeanography, July 7-14, 1993) EVOLUTION OF THE TECTOGENR CONCEPT, 1930-1965 ABSTRACT The tectogene, or crustal downbuckle, was proposed in the early 19305 by F. A. Vening Meinesz to explain the unexpected belts of negative gravity anomalies in island arcs. He attributed the isostatic imbalance to a deep sialic root resulting from the action of subcrustal convection currents. Vening Heinesz's model was initially corroborated experimentally by P. H. Kuenen, but additional experiments by D. T. Griggs and geological analysis by H. H. Hess in the late 19305 led to substantial revision in detail. As modified, the tectogene provided a plausible model for the evolution of island arcs into alpine mountain belts for another two decades. Additional revisions became necessary in the early 19505 to accommodate the unexpected absence of sialic crust in the Caribbean and the marginal seas of the western Pacific. By 1960 the cherished analogy between island arcs and alpine mountain belts had collapsed under the weight of the detailed field investigations by Hess and his students in the Caribbean region. Hess then incorporated a highly modified form of the tectogene into his sea-floor spreading hypothesis. Ironically, this final incarnation of the concept preserved some of the weaker aspects of the 19305 original, such as the ad hoc explanation for the regular geometry of island arcs. EVOLUTION OF THE TECTOGENE CONCEPT, 1930-1965 ALAN O.
    [Show full text]
  • Plate Tectonics
    Plate tectonics tive motion determines the type of boundary; convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The lateral relative move- ment of the plates typically varies from zero to 100 mm annually.[2] Tectonic plates are composed of oceanic lithosphere and thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, subduction carries plates into the mantle; the material lost is roughly balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total surface of the globe remains the same. This predic- The tectonic plates of the world were mapped in the second half of the 20th century. tion of plate tectonics is also referred to as the conveyor belt principle. Earlier theories (that still have some sup- porters) propose gradual shrinking (contraction) or grad- ual expansion of the globe.[3] Tectonic plates are able to move because the Earth’s lithosphere has greater strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection. Plate movement is thought to be driven by a combination of the motion of the seafloor away from the spreading ridge (due to variations in topog- raphy and density of the crust, which result in differences in gravitational forces) and drag, with downward suction, at the subduction zones. Another explanation lies in the different forces generated by the rotation of the globe and the tidal forces of the Sun and Moon. The relative im- portance of each of these factors and their relationship to each other is unclear, and still the subject of much debate.
    [Show full text]
  • Major Concepts That Underpin Our Current Understanding of the Earth
    Chapter 3 Understanding the `big ideas': major concepts that underpin our current understanding of the Earth 3.1 The rock cycle (Hutton, 18th Century) James Hutton had the `big idea' that great cycles of rock formation and deformation had affected the Earth in the past. So in 1788, to show why he believed this, he took his friend John Playfair to Siccar Point on the sea shore near Edinburgh. Play- fair saw, exposed on the shore, sedimentary rocks that must have first been laid flat on the bottom of the sea, that were now tilted upwards. Beneath these dipping sediments were even more ancient sediments, dipping more steeply in what we now call an an- gular unconformity. When James Hutton explained how much time this must have taken, for sediment to be deposited, formed into rock, tilted, eroded and then for more sediment to be deposited on top and the Figure 3.1: The unconformity at Siccar Point same things to happen, Playfair wrote, near Edinburgh. Ancient tilted sediments on `What clearer evidence could we have had top of even more ancient tilted sediments, of the different formation of these rocks, while modern sediments are being deposited and of the long interval which separated in the sea behind. their formation ...?'. `The mind seemed to grow giddy by looking so far into the abyss [great depths] of time.' At that time, people had no idea of the age of the Earth. Although some scientists had 71 found evidence that the Earth was ancient, the general public thought that the Earth had formed only around 6000 years ago.
    [Show full text]
  • Explanatory Notes for the Plate-Tectonic Map of the Circum-Pacific Region
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP SHEETS OF THE U.S. GEOLOGICAL SURVEY CIRCUM-PACIFIC PLATE-TECTONIC MAP SERIES Explanatory Notes for the Plate-Tectonic Map of the Circum-Pacific Region By GEORGE W. MOORE CIRCUM-PACIFIC COUNCIL_a t ENERGY AND MINERAL \il/ RESOURCES THE ARCTIC SHEET OF THIS SERIES IS AVAILABLE FROM U.S. GEOLOGICAL SURVEY MAP DISTRIBUTION BOX 25286, FEDERAL CENTER, DENVER, COLORADO 80225, USA OTHER SHEETS IN THIS SERIES AVAILABLE FROM THE AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS BOX 979 TULSA, OKLAHOMA 74101, USA 1992 CIRCUM-PACIFIC COUNCIL FOR ENERGY AND MINERAL RESOURCES Michel T. Halbouty, Chair CIRCUM-PACIFIC MAP PROJECT John A. Reinemund, Director George Gryc, General Chair Explanatory Notes to Supplement the PLATE-TECTONIC MAP OF THE CIRCUM-PACIFIC REGION Jose Corvalan Dv Chair, Southeast Quadrant Panel lan W.D. Dalziel, Chair, Antarctic Panel Kenneth J. Drummond, Chair, Northeast Quadrant Panel R. Wallace Johnson, Chair, Southwest Quadrant Panel George W. Moore, Chair, Arctic Panel Tomoyuki Moritani, Chair, Northwest Quadrant Panel TECTONIC ELEMENTS George W. Moore, Department of Geosciences, Oregon State University, Corvallis, Oregon, USA Nikita A. Bogdanov, Institute of the Lithosphere, Academy of Sciences, Moscow, Russia Jose Corvalan, Servicio Nacional de Geologia y Mineria, Santiago, Chile Campbell Craddock, Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin H. Frederick Doutch, Bureau of Mineral Resources, Canberra, Australia Kenneth J. Drummond, Mobil Oil Canada, Ltd., Calgary, Alberta, Canada Chikao Nishiwaki, Institute for International Mineral Resources Development, Fujinomiya, Japan Tomotsu Nozawa, Geological Survey of Japan, Tsukuba, Japan Gordon H. Packham, Department of Geophysics, University of Sydney, Australia Solomon M.
    [Show full text]
  • How Plate Tectonics Clicked
    COMMENT use for understanding cells that do not NOAA communicate using electrical impulses. It is this view that has perpetuated our comparative ignorance about glia. Moreover, the exclusion of glia from the BRAIN Initiative underscores a more general problem with the project: the assumption that enough measuring of enough neurons will in itself uncover ‘emergent’ properties and, ultimately, cures for diseases1,4. Rather than simply materializing from measurements of “every spike from every neuron”1,4, better understanding and new treatments will require hypothesis-directed research. The 302 neurons and 7,000 connections that make up the nervous system of the roundworm Caenorhabditis elegans were mapped in the 1970s and 80s. More than two decades later, little is understood about how the worm’s nervous system produces complex behaviours. In any major mapping expedition, the first priority should be to survey the uncharted regions. Our understanding of one half of the brain (the part comprised of astrocytes, oligodendrocytes and microglia) lags a century behind our knowledge of neurons. I believe that answers to questions about the brain and public support for a large-scale study are more likely to come from expanding the search into this unknown territory. As a first step, tools such as optogenetic meth- ods and mathematical models are needed to assess the number, distribution and properties of different kinds of glial cell The US research vessel Explorer towed a magnetometer to map fields over the sea floor in 1960. in different brain regions, and to identify how glia communicate with each other and with neurons, and what developmen- tal and physiological factors affect this.
    [Show full text]
  • Memorial of Harry Hammond Hess May 24, 1906-August 25, 1969
    MEMORIALS 415 he snapped,"I'll give you five hundred dollars for Upon his return to civilian life Martin moved to it," and the sale was made. It was momentslike Los Angelesand went into the wholesalediamond this that Martin relishedand made life for him an business.However, this highly competitive business excitingadventure. was not to his liking and he returned once more to Martin becameinterested in artificial coloration of dealing in minerals. He travelled the wodd over diamondsin 1940.During that period he and Harry countless times in the ensuing years, seeking out Berman conducted experiments with the Harvard important specimens,buying or exchangingfor in- cyclotron.After the war he continuedhis experi- dividual pieces or entire collections. The best of ments at the University of California (Berkeley) these he offered to the museumshe was dedicated with JosephE. Hamilton and Thomas M. Putnam to serve.The balancehe would disposeof as quickly of the Crocker Laboratory. The results of their as possibleto other dealers,meanwhile planning his work, "Effect of heavy charged particle and fast next trip. neutron irradiation on diamonds," was published Martin also had an uncannyability to judge the in The American Mineralogistin 1952. value of gemstones,both finishedgems and rough. In early 1942 Maftin volunteeredfor service in This made it possiblefor him to find financial back- the United StatesArmy. He receivedta direct com- ers for his travels and purchases.Some of his trips mission as Cap'tain and rose to the rank of Lt. were primarily to buy gems and gem rough. But al- Colonel. He was assigrredto the Bomb Disposal ways, even on these trips, he managedto ferret out Schoolat Aberdeen,Maryland, and eventuallybe- many choicemineral specimens,and in this he found came commandingofficer of the school.
    [Show full text]
  • Histoire De La Théorie De La Tectonique Des Plaques
    1/12 Histoire de la théorie de la tectonique des plaques 06/06/2011 Auteur(s) : Vincent Deparis Lycée Jean Monnet - Annemasse vincent.deparis(à)neuf.fr Publié par : Olivier Dequincey Résumé Histoire et évolution de la théorie de la tectonique des plaques à partir de celle de la dérive des continents. Table des matières L'hypothèse de l'expansion des fonds océaniques La formulation de la théorie de la tectonique des plaques La tectonique des plaques et la géologie La tectonique des plaques et la Terre Les articles fondateurs de la théorie de la tectonique des plaques et leurs résumés Bibliographie Cet article fait partie de la série de 4 articles écrits par Vincent Deparis et/ou Pierre Thomas et consacrés à l'histoire de la tectonique des plaques : La dérive des continents de Wegener, La découverte de la convection mantellique, Histoire de la théorie de la tectonique des plaquesetLa tectonique des plaques de 1970 à 2011. Avertissement : les images disponibles dans ce dossier ne sont pas libres de droits. Elles proviennent du site de l'USGS, et de la bibliographie. La théorie de la tectonique des plaques a vu le jour à la fin des années 1960. Reprenant les conceptions mobilistes de Wegener, elle les développe et leur fournit une assise théorique solide en s'appuyant sur l'hypothèse alors toute récente de l'expansion des fonds océaniques. Universellement adoptée aujourd'hui, elle constitue le nouveau paradigme des sciences de la Terre. Elle offre un modèle cinématique remarquable des mouvements horizontaux à grande échelle à la surface du globe.
    [Show full text]
  • Magnetic Anomalies Over Oceanic Ridges in the Footsteps of Frederick Vine
    Magnetic Anomalies Over Oceanic Ridges In the footsteps of Frederick Vine Carlo Laj École Normale Supérieure Paris, France & EGU Committee on Education GIFT Workshop, April 7 2019, Vienna Courtesy: Fred and Sue Vine State of Art in the ‘50 early ‘60.. Alfred Wegener 1912 Proponent of the continental drift theory/hypothesis German meteorologist Arthur Holmes, British Geologist, 1890- 1995, father of the geological time scale (The age of the Earth, 1927) A. Holmes H. Hess was a professor at Princeton, but he had been captain of U.S.S. Cape Johnson during the second world war and had done extensive bathymetric exploration of the ocean floors, keeping his sonar always working. He discovered sea floor ridges In the 1960’s, Harry Hess suggested the theory of seafloor spreading to explain the ridges The term « sea floor spreading » is due to Robert Dietz, 1961 According to Harry Hess of Princeton University, “conveyor belts” of crust and upper mantle move symmetrically away from mid-ocean ridges and passively drift continents apart. « I shall consider this paper an essay in geopoetry. » Harry H. Hess, History of Ocean Basins, 1962 in Petrologic Studies, a volume to honor A.F. Buddington Magnetic Anomalies Over Oceanic Ridges Frederick Vine and Drummond Matthews Nature, 7 September 1963 In this landmark paper Vine and Matthews proposed: « …that the conveyor belts might also act as tape recorders that record reversals in the polarity of the earth’s magnetic field in the ‘fossil’ (i.e., remanent) magnetism of the oceanic crust. ».. 4 3 2 1 Present 1 2 3 4 Age million years B.P Normal Magnetic Magnetic profile Polarity l observed during an oceanographic Reverse Magnetic cruiseo Polarity mid-oceanic ridge Lithosphere Zone of magma injection and « locking-in » of the magnetic polarity Laurence Morley submitted his original paper to Nature and, after rejection, to the Journal of Geophysical research with the same fate.
    [Show full text]