Plasmodium Falciparum Clinical Isolates: in Vitro Genotypic and Phenotypic Characterization Nonlawat Boonyalai1* , Brian A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eurartesim, INN-Piperaquine & INN-Artenimol
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Eurartesim 160 mg/20 mg film-coated tablets. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains 160 mg piperaquine tetraphosphate (as the tetrahydrate; PQP) and 20 mg artenimol. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet (tablet). White oblong biconvex film-coated tablet (dimension 11.5x5.5mm / thickness 4.4mm) with a break-line and marked on one side with the letters “S” and “T”. The tablet can be divided into equal doses. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Eurartesim is indicated for the treatment of uncomplicated Plasmodium falciparum malaria in adults, adolescents, children and infants 6 months and over and weighing 5 kg or more. Consideration should be given to official guidance on the appropriate use of antimalarial medicinal products, including information on the prevalence of resistance to artenimol/piperaquine in the geographical region where the infection was acquired (see section 4.4). 4.2 Posology and method of administration Posology Eurartesim should be administered over three consecutive days for a total of three doses taken at the same time each day. 2 Dosing should be based on body weight as shown in the table below. Body weight Daily dose (mg) Tablet strength and number of tablets per dose (kg) PQP Artenimol 5 to <7 80 10 ½ x 160 mg / 20 mg tablet 7 to <13 160 20 1 x 160 mg / 20 mg tablet 13 to <24 320 40 1 x 320 mg / 40 mg tablet 24 to <36 640 80 2 x 320 mg / 40 mg tablets 36 to <75 960 120 3 x 320 mg / 40 mg tablets > 75* 1,280 160 4 x 320 mg / 40 mg tablets * see section 5.1 If a patient vomits within 30 minutes of taking Eurartesim, the whole dose should be re-administered; if a patient vomits within 30-60 minutes, half the dose should be re-administered. -
Pharmacological and Cardiovascular Perspectives on the Treatment of COVID-19 with Chloroquine Derivatives
www.nature.com/aps REVIEW ARTICLE Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives Xiao-lei Zhang1, Zhuo-ming Li1, Jian-tao Ye1, Jing Lu1, Lingyu Linda Ye2, Chun-xiang Zhang3, Pei-qing Liu1 and Dayue D Duan2 The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients. Therefore, chloroquine phosphate was first used in the treatment of COVID-19 in China. Later, under a limited emergency- use authorization from the FDA, hydroxychloroquine in combination with azithromycin was used to treat COVID-19 patients in the USA, although the mechanisms of the anti-COVID-19 effects remain unclear. Preliminary outcomes from clinical trials in several countries have generated controversial results. The desperation to control the pandemic overrode the concerns regarding the serious adverse effects of chloroquine derivatives and combination drugs, including lethal arrhythmias and cardiomyopathy. The risks of these treatments have become more complex as a result of findings that COVID-19 is actually a multisystem disease. While respiratory symptoms are the major clinical manifestations, cardiovascular abnormalities, including arrhythmias, myocarditis, heart failure, and ischemic stroke, have been reported in a significant number of COVID-19 patients. Patients with preexisting cardiovascular conditions (hypertension, arrhythmias, etc.) are at increased risk of severe COVID-19 and death. -
Downloaded and Saved in PDB Format
bioRxiv preprint doi: https://doi.org/10.1101/833145; this version posted November 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: Efficacy of Lumefantrine against piperaquine resistant Plasmodium berghei parasites is 2 selectively restored by probenecid, verapamil, and cyproheptadine through ferredoxin NADP+- 3 reductase and cysteine desulfurase 4 5 Short title: Mechanisms of Lumefantrine resistance and reversal in Plasmodium berghei ANKA 6 7 Authors: Fagdéba David Bara1,2,3, Loise Ndung’u1, Noah Machuki Onchieku1, Beatrice Irungu2, 8 Simplice Damintoti Karou3, Francis Kimani4, Damaris Matoke-Muhia4, Peter Mwitari2, Gabriel 9 Magoma1,5, Alexis Nzila6, Daniel Kiboi5* 10 11 Affiliations: 1Department of Molecular Biology and Biotechnology, Pan African University 12 Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, Kenya. 2Centre for 13 Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya. 14 3School of Food and Biology Technology, Universite du Lome, Lome, Togo. 4Centre for 15 Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya. 16 5Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology 17 (JKUAT), Nairobi, Kenya. 6Department of Life Sciences, King Fahd University of Petroleum and 18 Minerals, Dharam, Saudi Arabia. 19 20 Corresponding author: [email protected] ; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/833145; this version posted November 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Treatment Failure Due to the Potential Under-Dosing of Dihydroartemisinin-Piperaquine in a Patient with Plasmodium Falciparum Uncomplicated Malaria
INFECT DIS TROP MED 2019; 5: E525 Treatment failure due to the potential under-dosing of dihydroartemisinin-piperaquine in a patient with Plasmodium falciparum uncomplicated malaria I. De Benedetto1, F. Gobbi2, S. Audagnotto1, C. Piubelli2, E. Razzaboni3, R. Bertucci1, G. Di Perri1, A. Calcagno1 1Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, Torino, Italy 2Department of Infectious–Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy 3Unit of Infectious Diseases, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy ABSTRACT: — Background: Dihydroartemisinin/piperaquine (DHA-PPQ) 40/320 mg is approved for the treatment of Plasmodium falciparum uncomplicated malaria. Different recommendations are provided by WHO guidelines and drug data sheet about dosing in overweight patients. We report here a treatment failure likely caused by sub-optimal dosing of dihydroartemisinin-piperaquine in a case of uncomplicated P. fal- ciparum malaria in a returning traveler from Burkina Faso. INTRODUCTION kg). They, therefore, provided an updated dosing body weight dosing schedule in their 2015 guidelines for Dihydroartemisinin/piperaquine (DHA-PPQ) 40/320 malaria treatment that provides for a dose of 200/1600 mg tablet formulation is approved for the treatment mg (5 tablets) in individuals > 80 kg1. of Plasmodium falciparum uncomplicated malaria in adults and children > 6 months and > 5 kg of body weight. Following WHO guidelines, the daily -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
The Use of Long Acting Sulfonamides. Alone Or with Pyrimethamine, in Malaria (With Special Reference to Sulformetoxine)
THE USE OF LONG ACTING SULFONAMIDES. ALONE OR WITH PYRIMETHAMINE, IN MALARIA (WITH SPECIAL REFERENCE TO SULFORMETOXINE) J. Herrero ** The antimalarial activity of the sul- It is somewhat astonishing that no fonamides was described very soon major work was carried out during after the discovery of these drugs. the years from 1955 to 1963, i.e. du As early as 1940, a number of pa- ring the períod in which, thanks to pers, such as those by Diaz de León the discovery of the so-called long- (31-33), Hill and Goodwin (56), Van acting sulfonamides , a better know- der Wielen (129), Coggeshall (18- ledge of the pharmacokinetics of the 20, 23), Niven (83), Chopra et al. se drugs was obtained. It is now evi- (10-13), Menk and Mohr (81), Fa- dent that many of the early contra- rinaud et al. (37-38), Sorley and dictory reports regarding the antima Currie (118), Sinton et al. (117), larial effect of sulfonamides, made etc., had reported on a somewhat va- during the initial years of the sul- riable success obtained with sulfona- fonamide era, were due to the scanty mides in experimental and human Information on the pharmacokinetics malaria. For a further 10 years, i.e. of these substances in man and in until 1950, there still existed some in- laboratory animais, a gap which led terest in this chemical group, as re- or misled, among other things, to- flected in some im portant clinicai wards empirical and therefore not trials, for instance those by Fairley et quite reliable dosage. al. -
Malarial Dihydrofolate Reductase As a Paradigm for Drug Development Against a Resistance-Compromised Target
Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target Yongyuth Yuthavonga,1, Bongkoch Tarnchompooa, Tirayut Vilaivanb, Penchit Chitnumsuba, Sumalee Kamchonwongpaisana, Susan A. Charmanc, Danielle N. McLennanc, Karen L. Whitec, Livia Vivasd, Emily Bongardd, Chawanee Thongphanchanga, Supannee Taweechaia, Jarunee Vanichtanankula, Roonglawan Rattanajaka, Uthai Arwona, Pascal Fantauzzie, Jirundon Yuvaniyamaf, William N. Charmanc, and David Matthewse aBIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand; bDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; cMonash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia; dLondon School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, England; eMedicines for Malaria Venture, 1215 Geneva, Switzerland; and fDepartment of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Edited by Wim Hol, University of Washington, Seattle, WA, and accepted by the Editorial Board September 8, 2012 (received for review March 16, 2012) Malarial dihydrofolate reductase (DHFR) is the target of antifolate target is P. falciparum dihydrofolate reductase (DHFR), which is antimalarial drugs such as pyrimethamine and cycloguanil, the inhibited by the antimalarials PYR and cycloguanil (CG) (Fig. 1). clinical efficacy of which have been -
Evidence of Pyrimethamine and Cycloguanil Analogues As Dual Inhibitors of Trypanosoma Brucei Pteridine Reductase and Dihydrofolate Reductase
pharmaceuticals Article Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase Giusy Tassone 1,† , Giacomo Landi 1,†, Pasquale Linciano 2,† , Valeria Francesconi 3 , Michele Tonelli 3 , Lorenzo Tagliazucchi 2 , Maria Paola Costi 2 , Stefano Mangani 1 and Cecilia Pozzi 1,* 1 Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; [email protected] (G.T.); [email protected] (G.L.); [email protected] (S.M.) 2 Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; [email protected] (P.L.); [email protected] (L.T.); [email protected] (M.P.C.) 3 Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; [email protected] (V.F.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +39-0577-232132 † These authors contributed equally to this work. Abstract: Trypanosoma and Leishmania parasites are the etiological agents of various threatening Citation: Tassone, G.; Landi, G.; neglected tropical diseases (NTDs), including human African trypanosomiasis (HAT), Chagas disease, Linciano, P.; Francesconi, V.; Tonelli, and various types of leishmaniasis. Recently, meaningful progresses in the treatment of HAT, due to M.; Tagliazucchi, L.; Costi, M.P.; Trypanosoma brucei (Tb), have been achieved by the introduction of fexinidazole and the combination Mangani, S.; Pozzi, C. Evidence of therapy eflornithine–nifurtimox. Nevertheless, due to drug resistance issues and the exitance of Pyrimethamine and Cycloguanil animal reservoirs, the development of new NTD treatments is still required. -
Pyrimethamine and Proguanil Are the Two Most Widely Used DHFR Inhibitor Antimalarial Drugs. Cycloguanil Is the Active Metabolite of the Proguanil (1,2)
Jpn. J. Med. Sci. Biol., 49, 1-14, 1996. IN VITRO SELECTION OF PLASMODIUM FALCIPARUM LINES RESISTANT TO DIHYDROFOLATE-REDUCTASE INHIBITORS AND CROSS RESISTANCE STUDIES Virendra K. BHASIN* and Lathika NAIR Department of Zoology, University of Delhi, Delhi 110007, India (Received July 27, 1995. Accepted November 6, 1995) SUMMARY: A cloned Plasmodium falciparum line was subjected to in vitro drug pressure, by employing a relapse protocol, to select progressively resistant falciparum lines to pyrimethamine and cycloguanil, the two dihydrofolate- reductase (DHFR) inhibitor antimalarial drugs. The falciparum lines resistant to pyrimethamine were selected much faster than those resistant to cycloguanil. In 348 days of selection/cultivation, there was 2,400-fold increase in IC50 value to pyrimethamine, whereas only about 75-fold decrease in sensitivity to cycloguanil was registered in 351 days. Pyrimethamine-resistant parasites acquired a degree of cross resistance to cycloguanil and methotrexate, another DHFR inhibitor, but did not show any cross resistance to some other groups of antimalarial drugs. The highly pyrimethamine-resistant line was not predisposed for faster selection to cycloguanil resistance. Resistance acquired to pyrimethamine was stable. The series of resistant lines obtained form a good material to study the •eevolution•f of resistance more meaningfully at molecular level. INTRODUCTION Pyrimethamine and proguanil are the two most widely used DHFR inhibitor antimalarial drugs. Cycloguanil is the active metabolite of the proguanil (1,2). There is abundant evidence to indicate that the pyrimethamine resistance is now widely distributed throughout malaria-endemic areas of the world (3-5). The incidence of the proguanil resistance appears to be in doubt and *To whom correspondence should be addressed . -
Medical Review(S) Review of Request for Priority Review
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-268 MEDICAL REVIEW(S) REVIEW OF REQUEST FOR PRIORITY REVIEW To: Edward Cox, MD, MPH Director, Office of Antimicrobial Products Through: Renata Albrecht, M.D Director, DSPTP, OAP From: Joette M. Meyer, Pharm.D. Acting Medical Team Leader, DSPTP, OAP NDA: 22-268 Submission Date: 6/27/08 Date Review Completed 7/25/08 Product: Coartem (artemether/lumefantrine) Sponsor: Novartis Pharmaceuticals Corporation East Hanover, NJ Proposed Indication: Treatment of malaria in patients of 5kg body weight and above with acute, uncomplicated infections due to Plasmodium falciparum or mixed infections including P. falciparum Proposed Dosing Regimen: A standard 3-day treatment schedule with a total of 6 doses is recommended and dosed based on bodyweight: 5 kg to < 15 kg: One tablet as an initial dose, 1 tablet again after 8 hours and then 1 tablet twice daily (morning and evening) for the following two days 15 kg to < 25 kg bodyweight: Two tablets as an initial dose, 2 tablets again after 8 hours and then 2 tablets twice daily (morning and evening) for the following two days 25 kg to < 35 kg bodyweight: Three tablets as an initial dose, 3 tablets again after 8 hours and then 3 tablets twice daily (morning and evening) for the following two days 35 kg bodyweight and above: Four tablets as a single initial dose, 4 tablets again after 8 hours and then 4 tablets twice daily (morning and evening) for the following two days Abbreviations A artemether ACT artemisinin-based combination therapy AL artemether-lumefantrine -
Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives
Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 2): 1251-1271 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170830 www.scielo.br/aabc | www.fb.com/aabcjournal Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives LUIZ C.S. PINHEIRO1, LÍVIA M. FEITOSA1,2, FLÁVIA F. DA SILVEIRA1,2 and NUBIA BOECHAT1 1Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos Farmanguinhos, Fiocruz, Departamento de Síntese de Fármacos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil 2Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Química, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, Brazil Manuscript received on October 17, 2017; accepted for publication on December 18, 2017 ABSTRACT According to the World Health Organization, malaria remains one of the biggest public health problems in the world. The development of resistance is a current concern, mainly because the number of safe drugs for this disease is limited. Artemisinin-based combination therapy is recommended by the World Health Organization to prevent or delay the onset of resistance. Thus, the need to obtain new drugs makes artemisinin the most widely used scaffold to obtain synthetic compounds. This review describes the drugs based on artemisinin and its derivatives, including hybrid derivatives and dimers, trimers and tetramers that contain an endoperoxide bridge. This class of compounds is of extreme importance for the discovery of new drugs to treat malaria. Key words: malaria, Plasmodium falciparum, artemisinin, hybrid. -
Pyronaridine-Artesunate for Treating Uncomplicated Plasmodium Falciparum Malaria (Review)
CORE Metadata, citation and similar papers at core.ac.uk Provided by LSTM Online Archive Cochrane Database of Systematic Reviews Pyronaridine-artesunate for treating uncomplicated Plasmodium falciparum malaria (Review) Pryce J, Hine P Pryce J, Hine P. Pyronaridine-artesunate for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database of Systematic Reviews 2019, Issue 1. Art. No.: CD006404. DOI: 10.1002/14651858.CD006404.pub3. www.cochranelibrary.com Pyronaridine-artesunate for treating uncomplicated Plasmodium falciparum malaria (Review) Copyright © 2019 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 4 BACKGROUND .................................... 7 OBJECTIVES ..................................... 8 METHODS ...................................... 8 RESULTS....................................... 11 Figure1. ..................................... 12 Figure2. ..................................... 15 Figure3. ..................................... 18 Figure4. ..................................... 20 Figure5. ..................................... 22 ADDITIONALSUMMARYOFFINDINGS . 23 DISCUSSION ..................................... 32 AUTHORS’CONCLUSIONS . 34 ACKNOWLEDGEMENTS . 34 REFERENCES ..................................... 35 CHARACTERISTICSOFSTUDIES