Category Assessment Document For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Degradation of Phenol and P-Cresol in Reactors Water Science and Technology
m33 18/9/00 6:35 pm Page 237 Degradation of phenol and p-cresol in reactors Water Science and Technology Herbert H. P. Fang* and Gong-Ming Zhou** * Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China ** National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, China Abstract The effects of hydraulic retention time (HRT) and phenol concentration on the degradation of phenol and p-cresol in wastewater were investigated in two respective UASB (upflow anaerobic sludge blanket) reactors with effluent recirculation at 37 oC for over 440 days. After acclimation, nearly all the Vol 42 Nos 5–6pp 237–244 phenol and p-cresol at moderate concentrations could be degraded without carbohydrate as a co-substrate. Treating a wastewater containing 800 mg/l of phenol and 300 mg/l of p-cresol at HRT ranging 2-12 hours, the first reactor consistently removed 95% of phenol, 65% of p-cresol and 85% of COD at 8-12 hours of HRT; the efficiency, however, decreased at lower HRT. Treating wastewater containing a constant p-cresol concentration of 400 mg/l at 24 hours of HRT, the second reactor was able to remove 75-80% of COD when the phenol was 1200 and 1500 mg/l; the removal efficiency decreased as phenol concentration further increased. High levels of residual phenol and p-cresol in the effluent suppressed the activity of biogranules. The suppression of bioactivity was not permanent. Biomass was able to regain its activity fully after lowering the phenolic concentrations in the wastewater. -
Anaerobic Degradation of Methanethiol in a Process for Liquefied Petroleum Gas (LPG) Biodesulfurization
Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization Promotoren Prof. dr. ir. A.J.H. Janssen Hoogleraar in de Biologische Gas- en waterreiniging Prof. dr. ir. A.J.M. Stams Persoonlijk hoogleraar bij het laboratorium voor Microbiologie Copromotor Prof. dr. ir. P.N.L. Lens Hoogleraar in de Milieubiotechnologie UNESCO-IHE, Delft Samenstelling promotiecommissie Prof. dr. ir. R.H. Wijffels Wageningen Universiteit, Nederland Dr. ir. G. Muyzer TU Delft, Nederland Dr. H.J.M. op den Camp Radboud Universiteit, Nijmegen, Nederland Prof. dr. ir. H. van Langenhove Universiteit Gent, België Dit onderzoek is uitgevoerd binnen de onderzoeksschool SENSE (Socio-Economic and Natural Sciences of the Environment) Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization R.C. van Leerdam Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 19 november 2007 des namiddags te vier uur in de Aula Van Leerdam, R.C., 2007. Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization. PhD-thesis Wageningen University, Wageningen, The Netherlands – with references – with summaries in English and Dutch ISBN: 978-90-8504-787-2 Abstract Due to increasingly stringent environmental legislation car fuels have to be desulfurized to levels below 10 ppm in order to minimize negative effects on the environment as sulfur-containing emissions contribute to acid deposition (‘acid rain’) and to reduce the amount of particulates formed during the burning of the fuel. Moreover, low sulfur specifications are also needed to lengthen the lifetime of car exhaust catalysts. -
Base-Free Catalytic Aerobic Oxidation of Mercaptans for Gasoline Sweetening Over Htlcs-Derived Cuznal Catalyst
中国科技论文在线 http://www.paper.edu.cn Base-Free Catalytic Aerobic Oxidation of Mercaptans for Gasoline Sweetening over HTLcs-Derived CuZnAl Catalyst Lida Gao, Qingsong Xue, Ye Liu, and Yong Lu Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Dept. of Chemistry, East China Normal University, Shanghai 200062, China DOI 10.1002/aic.11928 Published online August 13, 2009 in Wiley InterScience (www.interscience.wiley.com). An aerobic oxidative removal of mercaptans from gasoline in the absence of liquid base has been demonstrated for gasoline sweetening over CuZnAl catalyst. This pro- À cess could proceed at large WHSV of gasoline (50–70 h 1) with [95% mercaptan conversion at 150 C (or 300 C) using an O2/S molar ratio of 20–40. At 150 C, dimeri- zation of mercaptans occurred dominantly to form their disulfides. At 300C, deep oxi- dation of the mercaptans to SO2 was the dominant process in the first tens of hours, but it decreased then with prolonged time on stream and meanwhile the dimerization increased. The spent catalyst could be restored to its fresh activity level only through a calcination treatment in air. This process was also demonstrated to be effective and efficient for sweetening of a real cracking gasoline. VC 2009 American Institute of Chemical Engineers AIChE J, 55: 3214–3220, 2009 Keywords: catalysis, gasoline sweetening, aerobic oxidation, mercaptan, hydrotalcite, copper, zinc Introduction captan.2 The reaction mechanism can be summarized as overall reaction: 2RSH þ 1/2O ! RSSR þ H O. Mercaptans are widely distributed in petroleum products, 2 2 In the Merox process, an aqueous base, such as sodium especially in light oil like gasoline. -
Oxidation of Phenol and Cresol by Electrochemical Advanced Oxidation Method in Homogeneous Medium: Application to Treatment of A
Oxidation of phenol and cresol by electrochemical advanced oxidation method in homogeneous medium : application to treatment of a real effluent of aeronautical industry Marcio Pimentel To cite this version: Marcio Pimentel. Oxidation of phenol and cresol by electrochemical advanced oxidation method in homogeneous medium : application to treatment of a real effluent of aeronautical industry. Other. Université Paris-Est, 2008. English. NNT : 2008PEST0271. tel-00742470v2 HAL Id: tel-00742470 https://tel.archives-ouvertes.fr/tel-00742470v2 Submitted on 7 May 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris-Est Marne-La-Vallée Institut Francilien des Sciences Appliquées (IFSA) Laboratoire Géomatériaux et Géologie de l'Ingénieur THÈSE pour obtenir le grade de Docteur de l’Université Paris-Est Marne-la-Vallée Spécialité : Sciences et Techniques de l'Environnement présentée et soutenue publiquement par Marcio PIMENTEL le 24 septembre 2008 Etudes de l'oxydation de phénol et crésols par l'oxydation électrochimique avancée en milieu homogène. Application au traitement d'effluent de l'industrie aéronautique Phenol and cresols treatment in aqueous solution by electro-Fenton process: Application to the mineralization of aeronautic wastewater industry. Directeur de thèse : Prof. -
New Strategies for Separations Through Reactions
Sddhand, Vol. 10, Parts 1 & 2, April 1987, pp. 163-183. © Printed in India. New strategies for separations through reactions V G GAIKAR and M M SHARMA* Department of'Chemical Techno[ogy, University of Bombay, Matunga, Bombay 400 019, India Abstract. Separations through reactions can provide reliable and economically viable alternatives to established methods of separation, particularly for close boiling substances. New strategies in 'Dissociation Extraction' and "Dissociation Extractive Crystallization' for separation of close boiling acidic/basic mixtures have been highlighted. Separations with aqueous solutions of hydrotrope and aqueous micellar solutions have been brought out. Separations by membranes with facilitated transport is potentially attractive. Keywords. Separations through reactions; dissociation extraction; reactive crystallization; dissociation extractive crystallization; reactive distillation; separations with hydrotropes; micelles in separations: membrane separations; hydrometallurgical separations; separations with supercritical fluids. I. Introduction In chemical process industries separations of a variety of mixtures are frequently encountered and the cost of separation may dominate the capital investment and operational expenses. Quite often physical methods of separation, such as distillation, crystallization, solvent extraction followed by distillation and adsorp- tion, are used, which exploit the differences in physical properties like boiling points, solubility, melting points etc. However, for systems having close boiling points or which are thermally unstable, these methods are either not applicable or not economically viable. In such cases the strategy of selective reactions may prove to be attractive. There is, therefore, a clear incentive to probe newer methods of separations through reactions to achieve better selectivity and higher throughput. An ideal situation would be where separation and the desired reaction are conducted simultaneously. -
Treatment of Ethylene Spent Caustic Pollutant Using Sulfuric Acid
382 International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October‐2015 ISSN 2229‐5518 Treatment of ethylene spent caustic pollutant using sulfuric acid ALI FARZI*, SAEID MOSLEMI BAYRAMI Abstract— Caustic soda is used in naphtha cracking units and petroleum refineries for sweetening of hydrocarbon streams. The generated caustic waste is an environmental pollutant and must be removed. Several methods are proposed for treatment of spent caustic such as wet air oxidation, biological treatment, etc. Spent caustic used in this work is prepared from Tabriz Petrochemical Company. In this work sulfuric acid was used for treatment of spent caustic which not only removes the waste, but also generates valuable product of sodium sulfate. In each experiment, 1L of spent caustic was taken and its color and phenol were removed by oxidization with H2O2. Then, 50 mL sulfuric acid was added and treatment process was performed. Different samples were taken at specified time periods to calculate percent waste conversion. The results showed that after 2.5 minutes it was about 79%, 84% and 92% at 25, 35 and 45°C, respectively. Index Terms— Spent caustic treatment, Sulfuric acid, Sodium sulfate, Response surface methodology, Analysis of variance —————————— —————————— 1 INTRODUCTION AUSTIC soda is used in petroleum refining and chemical Ellis [4] used wet air oxidation (WAO) method for Cindustries to remove sulfur compounds from treatment of refinery spent caustic. It has the advantage of not hydrocarbon streams. The resulting solution is usually producing odorous offgas. In a case study, COD of the effluent referred to as spent caustic and is deposited into the was decreased about 80% with pH of near 7 using this method environment. -
PETROLEUM: CHEMISTRY, REFINING, FUELS and PETROCHEMICALS - Petroleum: Chemistry, Refining, Fuels and Petrochemicals - Product Treating - James G
PETROLEUM: CHEMISTRY, REFINING, FUELS AND PETROCHEMICALS - Petroleum: Chemistry, Refining, Fuels and Petrochemicals - Product Treating - James G. Speight PETROLEUM: CHEMISTRY, REFINING, FUELS AND PETROCHEMICALS - PRODUCT TREATING James G. Speight 2476 Overland Road,Laramie, WY 82070-4808, USA Keywords: Caustic treating, Dualayer distillate process, Dualayer gasoline process, electrolytic mercaptan process, Ferrocyanide process, lye treatment, Mercapsol process, polysulfide treatment, Sodasol process, Solutizer process, steam regenerative caustic treatment, Unisol process, acid treating, Nalfining process, sulfuric acid treatment, clay and related processes, alkylation effluent treatment, Arosorb process, bauxite treatment, continuous contact filtration process, cyclic adsorption process, gray clay treatment, percolation filtration process, thermofor continuous percolation process, oxidative treating processes, bender process, copper sweetening process, doctor process, hypochlorite sweetening process, Merox process, solvent treating, deasphalting, solvent refining, dewaxing, gas treating, acid gas removal, gas sweetening Contents 1. Introduction 2. Caustic Processes 2.1. Dualayer Distillate Process 2.2. Dualayer Gasoline Process 2.3. Electrolytic Mercaptan Process 2.4. Ferrocyanide Process 2.5. Lye Treatment 2.6. Mercapsol Process 2.7. Polysulfide Treatment 2.8. Sodasol Process 2.9. Solutizer Process 2.10. Steam Regenerative Caustic Treatment 2.11. Unisol Process 3. Acid Processes 3.1. Nalfining Process 3.2. Sulfuric Acid Treatment 4. Clay -
Butylated Hydroxytoluene (BHT) Crops
Butylated Hydroxytoluene (BHT) Crops 1 2 Executive Summary 3 A petition was filed with the NOSB to use butylated hydroxytoluene (BHT) as an antioxidant in a number of pheromone 4 formulations. Pheromones and BHT would be enclosed in a plastic matrix, allowing slow release of the materials into the 5 air. Due to low volatility of BHT, most of it would remain in the dispenser and direct contact with the crop would be 6 negligible. BHT is an alkylated cresol that can be synthesized several ways. The p-cresol starting material is isolated from 7 coal tar or petroleum. It is also obtained synthetically from toluene. The p-cresol is alkylated with isobutylene gas in the 8 presence of an acidic catalyst to produce BHT. It is used as an antioxidant in food, and is also used as a stabilizer in 9 pesticides, gasoline, lubricants, soaps and cosmetics, and as an antiskinning agent in paints and inks. 10 11 The material has not been reviewed by NOSB before, and because it is synthetic and on List 3, is currently prohibited for 12 use in organic production under the National Organic Program Standards. However, pheromone formulations that use 13 BHT have been widely used by organic farmers. Impacts on the environment and human health from this application 14 should be negligible. The TAP reviewers unanimously concluded that BHT should be added to the National List as an 15 allowed synthetic with the annotation: for use in organic crop production systems as an antioxidant for pheromones 16 enclosed in plastic dispensers. The reviewers were all concerned with the precedent that this set, and made it clear that 17 addition to the National List should be made only if application and use is limited. -
Crude Expansion GHG PSD Revised Permit Application June 12, 2013
Diamond Shamrock Refining Company, L.P., a Valero Company Greenhouse Gas Prevention of Significant Deterioration Permit Application for Crude Expansion Project Valero McKee Refinery Sunray, Texas Updated December 2012 (Since the update in December 2012, this application was updated to account for responses to the EPA’s Additional Information Requests and to be consistent with those changes discussed in the cover letter of this consolidated application submittal. Refer to the “Addendum” Section at the end of this application.) 720 West Arapaho • Richardson, Texas • 75080 • 972/480-9800 • Fax 972/480-9865 TABLE OF CONTENTS SECTION 1 Introduction .................................................................................................... 1-1 1.1 Purpose of Request .................................................................................................. 1-1 1.2 Facility Information ................................................................................................. 1-2 1.3 Federal GHG Permitting Applicability ................................................................... 1-2 1.4 Application Contents ............................................................................................... 1-3 SECTION 2 Project Description......................................................................................... 2-1 2.1 Overview of Existing Refining Operations ............................................................. 2-1 2.2 Crude Expansion Project ........................................................................................ -
Safe Handling of Cresols, Xylenols & Cresylic Acids
Safe Handling of Cresols, Xylenols & Cresylic Acids I. Introduction Cresols, xylenols and cresylic acids are hazardous substances and dangerous both to people and the environment if handled improperly. Cresols, xylenols and cresylic acid products produced by Sasol Chemicals (USA) LLC are highly versatile materials and are used as intermediates in the manufacture of a wide variety of industrial products such as resins, flame retardants, antioxidants, and coatings. In these and other applications, cresylic acids can be stored, transferred, processed and disposed of safely when proper procedures and safeguards are used. “Cresol” refers to any of the three isomers of methylphenol (C7H8O) or combinations thereof. “Cresols” commonly refer to a mixture which is predominantly methylphenol but may also contain lesser amounts of other alkylphenols. “Xylenol” is a common name for any of the six isomers of dimethylphenol (C8H10O) or their various combinations. Material which is predominantly dimethylphenol but which also contains ethylphenols and other alkylphenols may be referred to as “Xylenols”. “Cresylic acid” is a generic term referring to various combinations of cresols, xylenols, phenol or other alkylphenols (ethylphenols, propylphenols, trimethylphenols, etc.). See Table A for specific information on individual isomers. Purpose & Scope The purpose of this document is to provide information gathered through Sasol’s long experience in the safe handling of cresylic acids. It focuses on basic and practical information about working safely with these substances. Additional references are provided and it is strongly recommended that these and others be consulted prior to working with cresylic acids. Please do not hesitate to contact your regional Sasol office if we can be of assistance in the safe storage, handling, processing and disposal of our products. -
Rhodotomla Cresolica Sp. Nov., a Cresol-Assimilating Yeast Species Isolated from Soil
INTERNATIONAL JOURNALOF SYSTEMATIC BACTERIOLOGY, Apr. 1997, p. 324-327 Vol. 47, No. 2 0020-7713/97/$04,00+0 Copyright 0 1997, International Union of Microbiological Societies Rhodotomla cresolica sp. nov., a Cresol-Assimilating Yeast Species Isolated from Soil WOUTER J. MIDDELHOVEN1* AND FRANS SPAAIJ' La boratorium voor Microbiologie, Wageningen Agricultural University, 6700 EJ Wageningen, The Netherlands, and Labor fur Schimmelpilze und Hefen, 72076 Tubingen, Germany2 A cresol-assimilating yeast strain of a previously undescribed species belonging to the genus Rhodotorula was isolated from soil. The new strain differs from the previously described species of the genus in its pattern of assimilation of carbon and nitrogen compounds, G+C content, and low levels of DNA-DNA-homology. The new species Rhodotorula cresolica is described. The type strain is CBS 7998. Several yeast species are able to assimilate a great variety of Gilford Response UV-VIS spectrophotometer and thermal programming soft- benzene compounds as sole sources of carbon and energy. ware heating at a rate of O.l"C/min. The G+C content was calculated by the following formula: G+C content = (2.08 X T,) - 106.4, where T,,, is the thermal Strains displaying this property have been found in culture denaturation temperature. A standard preparation of Candida parapsilosis CBS collections (5) and in several natural habitats (7, 12 . In a 604 DNA (T,, 70.6"C) was included as a control in every determination. The previous publication, the isolation of yeast strain G36.2 (T = value reported below is the mean 2 standard deviation from three determina- type strain) from soil polluted with ortho-cresol was reported tions. -
M-Cresol Crl
M-CRESOL CRL CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 202°F C.C. 7.1 Grades of Purity: 60 to 98% containing other Common Synonyms Liquid Colorless Sweet tarry odor 4.2 Flammable Limits in Air: 1.06%-1.35% cresols and xylenols. 3-Cresol 302°F. 7.2 Storage Temperature: Ambient m-Cresylic acid 4.3 Fire Extinguishing Agents: CO2, dry 3-Hydroxytoluene Sinks and mixes slowly with water. 7.3 Inert Atmosphere: No requirement chemical, foam, water spray. m-Methylphenol 7.4 Venting: Open 4.4 Fire Extinguishing Agents Not to Be Used: Not pertinent 7.5 IMO Pollution Category: A Keep people away. Avoid contact with liquid. 7.6 Ship Type: 2 Avoid inhalation. 4.5 Special Hazards of Combustion Wear goggles, self-contained breathing apparatus, and rubber overclothing (including gloves). Products: Emits highly toxic fumes. 7.7 Barge Hull Type: 3 Shut off ignition sources and call fire department. 4.6 Behavior in Fire: Vapor may form Notify local health and pollution control agencies. explosive mixture with air. 8. HAZARD CLASSIFICATIONS Protect water intakes. 4.7 Auto Ignition Temperature: 1038°F. 8.1 49 CFR Category: Poison 4.8 Electrical Hazards: Not pertinent COMBUSTIBLE. 8.2 49 CFR Class: 6.1 Fire 4.9 Burning Rate: Currently not available POISONOUS FLAMMABLE GASES MAY BE PRODUCED IN FIRE. 8.3 49 CFR Package Group: II Wear goggles and self-contained breathing apparatus. 4.10 Adiabatic Flame Temperature: Currently Extinguish with water, dry chemical, foam or carbon dioxide. not available 8.4 Marine Pollutant: Yes Cool exposed containers with water.