Abstract Supplement

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Supplement 2018 ABSTRACT SUPPLEMENT SAN FRANCISCO June 20-23 • Marriott Marquis Federation of Clinical Immunology Societies June 20-23, 2018 San Francisco, California FOCIS 2018 Abstract Supplement TABLE OF CONTENTS Abstracts by Subject Area …………………………………………………………...……………………………….2 Allergy/asthma ……………………………………………………………………………………………………...2 Autoimmune neurologic diseases .............................................................................................................. 7 Autoimmune rheumatologic diseases ...................................................................................................... 19 Bone marrow or stem cell transplantation ............................................................................................... 37 Cytokines/chemokines ............................................................................................................................ 42 Diabetes and other autoimmune endocrine diseases .............................................................................. 47 General Autoimmunity…………………………………………………………………………………………….58 Genetics .................................................................................................................................................. 70 Immune monitoring .................................................................................................................................. 74 Immunity & infection ................................................................................................................................ 82 Immunodeficiency: primary or acquired ................................................................................................. 103 Immuno-dermatology ............................................................................................................................ 111 Immunology of the eye .......................................................................................................................... 115 Immuno-oncology .................................................................................................................................. 118 Inflammatory bowel diseases ................................................................................................................ 134 Innate immunity ..................................................................................................................................... 139 Organ transplantation ............................................................................................................................ 150 Other ..................................................................................................................................................... 154 Reproductive immunology ..................................................................................................................... 155 Therapeutics/pharmacology .................................................................................................................. 159 Transplantation...................................................................................................................................... 168 Abstract Index by Subject Area ................................................................................................................. 176 Abstract Index by FOCIS Pillar .................................................................................................................. 177 Abstract Index by Author …………………………………………………………………………………………..178 1 Allergy/asthma F.35. Physicochemical Characterization of Philippine Grass Flora for Diagnosis of Respiratory Allergies Leonora Autus-Geniston1, Mary Anne Castor2, Ronald Matias3 and Alexander Tuazon3 1St Paul University-Quezon City/United Bayanihan Foundation/United Lab. Inc., Quezon City, National Capital Region, Philippines, 2Philippine General Hospital, Manila, National Capital Region, Philippines, 3United Laboratories, Inc, Mandaluyong, National Capital Region, Philippines As a tropical country, grass pollen grains are the important causes of respiratory allergies in the Philippines. There are different flora in the Philippines compared to that of the western countries where the pollen standards in clinical practice are imported for diagnosis of respiratory allergies. The use of local pollen extracts are important for personalized treatment. Since these pollen extracts have not yet characteirzed, they have to be processed to improve the extracts'; quality. The grass pollen extracts from Cyanodon dactylon (bermuda), Axonopus compressus (carabao), Imperata cylindrica (cogon), and Saccharum spontaneum (talahib) were separated by gradient SDS-PAGE and immunoblotted against IgE. Bands were visualized with Fluorchem C2 aided with Alpha View software. The total protein extracts ranged from 281.3-986.6 ug/ml. The protein sizes ranged from 14.4-66.3 kDa: carabao grass, 3.5-66.3 kDa; cogon, 3.5-200 kDa; and talahib, 21.6-66.3 kDa. A single IgE-binding protein band at 55.4 kDa corresponding to known groups of grass pollen allergens was identified in the serum sample in the patient with respiratory allergies. The study showed the varying concentrations of grass pollen extracts as well as the pollen profile of their sizes and these correspond to known groups of grass pollen allergens, and found that the clinical diagnosis is consistent with the identification of the known allergen of the patient with the aid of the local protein extracts. Keywords: Philippines, Cyanodon dactylon (bermuda), Axonopus compressus (carabao), Imperata cylindrica (cogon), and Saccharum spontaneum (talahib), diagnostic protein extract, clinical practice F.53. IL-10 Producing Lung Resident Memory TR1-like Cells do not Protect Against Allergic Airway Inflammation Carlos Medina1, Koshika Yadava2, Irina Gurevich1, Heather Ishak2, Hedwich Kuipers2 and Paul Bollyky2 1Stanford University School of Medicine, Stanford, CA, 2Stanford University, Stanford, CA Recent studies have identified allergen-specific tissue resident memory T cells that mediate allergic airway inflammation. However it remains unknown whether an analogous regulatory population exists. Given that previous studies have demonstrated a clear association between IL-10 induction and the long-term efficacy of immunotherapy, we hypothesized that an analogous population of IL-10 producing tissue resident memory T cells could also be present in the lungs of previously sensitized mice. Using a house dust mite induced model of allergic airway inflammation we characterized the cellular sources and the temporal and spatial aspects of endogenous IL-10 production. We find that in the setting of allergic inflammation TR1-like CD4+ Foxp3- T cells are the main producers of IL-10. Notably, these cells accumulate in the lungs and persist long after the resolution of inflammation as part of the CD44hi CD62low resident memory T cell pool. However, these tissue-resident memory TR1 cells are not sufficient to prevent inflammation in response to allergen re-challenge. Local depletion in the lung had no effect on airway inflammation and adoptive transfer of these cells into naïve mice was insufficient to protect against allergen re-challenge. Together these data demonstrate that although endogenous TR1-like resident memory cells are induced upon allergen sensitization, they are insufficient to regulate inflammation upon subsequent allergen re-challenge. Future studies focused on increasing the local pool of TR1-like resident memory cells may provide a means of raising the threshold of allergic activation to protect against further allergic challenges. 2 F.99. Duration of attenuation of allergic responses after modulation of idiotypic regulatory network Reginald Gorczynski1, Cesar Francisco Lara Alvarez2, Edwin Gershon3, George Hoffmann3, Ernesto Morales4 and Geoffrey Hoffmann3 1Sunnybrook Health Science Centre, Toronto, ON, Canada, 2Biodextra, Mexico City, Distrito Federal, Mexico, 3Network Immunology, Vancouver, BC, Canada, 4BioDextra, Mexico City, Distrito Federal, Mexico We showed that co-injection of antigen-specific plus anti-idiotypic antibodies could suppress OVA-induced IgE production (JIMR: 2017). Antigen-specific antibodies were produced by conventional immunization of mice (using tetanus toxoid or skin allografting). Anti-idiotypic antibodies were derived by absorption of antigen-specific antibody. Both antibodies with complementary specificity are hypothesized to stimulate two populations of T lymphocytes. Prior to using this treatment approach in larger animals and humans, we have first assessed the longevity of the attenuation afforded by this approach. Mice received 5 weekly im injections of a mixture of the antibodies described above, and at the same time began immunization with OVA in alum (two injections 14d apart). Control animals received normal mouse Ig only along with OVA imunization. Following the second OVA injection all mice were maintained on exposure to allergen by drinking egg white solution with 1% glucose. 14 and 80 days after the final injections of the antibody mixture groups of mice received a final OVA immunization in alum and were sacrificed 10d later. Serum was collected for asays of OVA-specific IgG and IgE responses, and splenocytes stimulated in vitro with ConA or OVA to assess mitogen and OVA-induced L4 and Il-2 production. Attenuation of OVA-IgE serum levels, and of OVA-induced IL-4 production in vitro, was seen even in mice receiving a boost in OVA-immunization 80d after the last
Recommended publications
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Secretome Screening Reveals Immunomodulating Functions Of
    www.nature.com/scientificreports OPEN Secretome screening reveals immunomodulating functions of IFNα‑7, PAP and GDF‑7 on regulatory T‑cells Mei Ding1*, Rajneesh Malhotra2, Tomas Ottosson2, Magnus Lundqvist3, Aman Mebrahtu3, Johan Brengdahl1, Ulf Gehrmann2, Elisabeth Bäck4, Douglas Ross‑Thriepland5, Ida Isaksson6, Björn Magnusson1, Kris F. Sachsenmeier7, Hanna Tegel3, Sophia Hober3, Mathias Uhlén3, Lorenz M. Mayr5, Rick Davies5, Johan Rockberg3 & Lovisa Holmberg Schiavone1* Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing efector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as diferentiation, proliferation and suppressive function. Identifcation of secreted proteins that afect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput fow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF‑7, IL‑10, PAP and IFNα‑7 were identifed as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic‑dead version of the protein did not induce an increase in FOXP3 expression.
    [Show full text]
  • Affiliations
    Supplementary material Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1 *Nils Landegren1,2, Donald Sharon3,4, Eva Freyhult2,5,6,, Åsa Hallgren1,2, Daniel Eriksson1,2, Per-Henrik Edqvist7, Sophie Bensing8, Jeanette Wahlberg9, Lawrence M. Nelson10, Jan Gustafsson11, Eystein S Husebye12, Mark S Anderson13, Michael Snyder3, Olle Kämpe1,2 Nils Landegren and Donald Sharon contributed equally to the work Affiliations 1Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Sweden 2Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden 3Department of Genetics, Stanford University, California, USA 4Department of Molecular, Cellular, and Developmental Biology, Yale University, Connecticut, USA 1 5Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University 6Bioinformatics Infrastructure for Life Sciences 7Department of Immunology, Genetics and Pathology, Uppsala University, Sweden and Science for Life Laboratory 8 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden 9Department of Endocrinology and Department of Medical and Health Sciences and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden 10Integrative Reproductive Medicine Group, Intramural Research Program on Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. 11Department
    [Show full text]
  • Proteome-Wide Survey of the Autoimmune Target Repertoire In
    www.nature.com/scientificreports OPEN Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine Received: 28 October 2015 Accepted: 23 December 2015 syndrome type 1 Published: 01 February 2016 Nils Landegren1,2,*, Donald Sharon3,4,*, Eva Freyhult2,5,6, Åsa Hallgren1,2, Daniel Eriksson1,2, Per-Henrik Edqvist7, Sophie Bensing8, Jeanette Wahlberg9, Lawrence M. Nelson10, Jan Gustafsson11, Eystein S Husebye12, Mark S Anderson13, Michael Snyder3 & Olle Kämpe1,2 Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features multiple autoimmune disease manifestations. It is caused by mutations in the Autoimmune regulator (AIRE) gene, which promote thymic display of thousands of peripheral tissue antigens in a process critical for establishing central immune tolerance. We here used proteome arrays to perform a comprehensive study of autoimmune targets in APS1. Interrogation of established autoantigens revealed highly reliable detection of autoantibodies, and by exploring the full panel of more than 9000 proteins we further identified MAGEB2 and PDILT as novel major autoantigens in APS1. Our proteome-wide assessment revealed a marked enrichment for tissue-specific immune targets, mirroringAIRE ’s selectiveness for this category of genes. Our findings also suggest that only a very limited portion of the proteome becomes targeted by the immune system in APS1, which contrasts the broad defect of thymic presentation associated with AIRE-deficiency and raises novel questions what other factors are needed for break of tolerance. Autoimmune responses can ultimately be defined at the molecular level by the specific interaction between T- or B-cell receptors and a distinct self-molecule. In tissue-specific autoimmune disorders the immune system typically target molecules that are exclusively expressed in the affected tissue and involve a combined cellular and humoral response with cognate specificities1–3.
    [Show full text]
  • Heatmaps - the Gene Expression Edition
    Heatmaps - the gene expression edition Jeff Oliver 20 July, 2020 An application of heatmap visualization to investigate differential gene expression. Learning objectives 1. Manipulate data into a ‘tidy’ format 2. Visualize data in a heatmap 3. Become familiar with ggplot syntax for customizing plots Heatmaps for differential gene expression Heatmaps are a great way of displaying three-dimensional data in only two dimensions. But how can we easily translate tabular data into a format for heatmap plotting? By taking advantage of “data munging” and graphics packages, heatmaps are relatively easy to produce in R. Getting started We are going to start by isolating different types of information by imposing structure in our file managment. That is, we are going to put our input data in one folder and any output such as plots or analytical results in a different folder. We can use the dir.create to create these two folders: dir.create("data") dir.create("output") For this lesson, we will use a subset of data on a study of gene expression in cells infected with the influenza virus (doi: 10.4049/jimmunol.1501557). The study infected human plasmacytoid dendritic cells with the influenza virus, and compared gene expression in those cells to gene expression in uninfected cells. Thegoal was to see how the flu virus affected the function of these immune system cells. The data for this lesson is available at: http://tinyurl.com/flu-expression-data or https://jcoliver.github.io/ learn-r/data/GSE68849-expression.csv. Download this comma separated file and put it in the data folder.
    [Show full text]
  • Microarray Analysis of Colorectal Cancer Stromal Tissue Reveals Upregulation of Two Oncogenic Mirna Clusters
    Published OnlineFirst March 27, 2012; DOI: 10.1158/1078-0432.CCR-11-1078 Clinical Cancer Human Cancer Biology Research Microarray Analysis of Colorectal Cancer Stromal Tissue Reveals Upregulation of Two Oncogenic miRNA Clusters Naohiro Nishida1,4, Makoto Nagahara2, Tetsuya Sato3, Koshi Mimori1, Tomoya Sudo1, Fumiaki Tanaka1, Kohei Shibata1, Hideshi Ishii1,4, Kenichi Sugihara2, Yuichiro Doki4, and Masaki Mori1,4 Abstract Purpose: Cancer stroma plays an important role in the progression of cancer. Although alterations in miRNA expression have been explored in various kinds of cancers, the expression of miRNAs in cancer stroma has not been explored in detail. Experimental Design: Using a laser microdissection technique, we collected RNA samples specific for epithelium or stroma from 13 colorectal cancer tissues and four normal tissues, and miRNA microarray and gene expression microarray were carried out. The expression status of miRNAs was confirmed by reverse transcriptase PCR. Furthermore, we investigated whether miRNA expression status in stromal tissue could influence the clinicopathologic factors. Results: Oncogenic miRNAs, including two miRNA clusters, miR-17-92a and miR-106b-25 cluster, were upregulated in cancer stromal tissues compared with normal stroma. Gene expression profiles from cDNA microarray analyses of the same stromal tissue samples revealed that putative targets of these miRNA clusters, predicted by Target Scan, such as TGFBR2, SMAD2, and BMP family genes, were significantly downregulated in cancer stromal tissue. Downregulated putative targets were also found to be involved in cytokine interaction and cellular adhesion. Importantly, expression of miR-25 and miR-92a in stromal tissues was associated with a variety of clinicopathologic factors. Conclusions: Oncogenic miRNAs were highly expressed in cancer stroma.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Recombinant Human Cytokines
    HOME recombinant human cytokines rh 4-1BBL / CD137L (4-1BB Ligand) Catalog# Biol.Activity Size Price 11345180 5 – 10 ng/ml 5 µg 49 EUR 11345184 5 – 10 ng/ml 20 µg 139 EUR rh 4-1BBR / CD137 (4-1BB Receptor) Catalog# Biol.Activity Size Price 11344120 90% inhibition using 1µg 5 µg 49 EUR 11344124 90% inhibition using 1µg 20 µg 139 EUR rh Activin A active (source Nicotiana benthamiana) Catalog# Biol.Activity Size Price 11344471 < 5 ng/ml 1 µg 42 EUR 11344470 < 5 ng/ml 5 µg 89 EUR 11344474 < 5 ng/ml 25 µg 199 EUR 11344476 < 5 ng/ml 100 µg 599 EUR rh Activin A (source E.coli) Catalog# Biol.Activity Size Price 11344962 2 µg 49 EUR 11344963 10 µg 129 EUR rh Activin B active (source Nicotiana benthamiana) Catalog# Biol.Activity Size Price 11345252 2 µg 39 EUR 11345253 10 µg 149 EUR rh Acrp30 HEK (Adiponectin HEK derived) Catalog# Biol.Activity Size Price 11344462 6 µg/ml 2 µg 49 EUR 11344463 6 µg/ml 10 µg 139 EUR rh AREG (Amphiregulin) Catalog# Biol.Activity Size Price 11344803 5 -10 ng/ml 10 µg 49 EUR 11344805 5 -10 ng/ml 50 µg 139 EUR rh Artemin Catalog# Biol.Activity Size Price 11343772 4 - 8 ng/ml 2 µg 39 EUR rh BAFF / CD257 (B- Lymphocyte Stimulator) Catalog# Biol.Activity Size Price 11343430 10 ng/ml 5 µg 49 EUR 11343434 10 ng/ml 20 µg 99 EUR 11343436 10 ng/ml 100 µg 379 EUR rh BAFF-R / CD268 (B-Lymphocyte Stimulator Receptor / TNFRSF13C) Catalog# Biol.Activity Size Price 11344440 1.0 - 5.0 µg/ml 5 µg 49 EUR 11344444 1.0 - 5.0 µg/ml 20 µg 139 EUR HOME recombinant human cytokines rh BCA-1 (CXCL13) Catalog# Biol.Activity Size Price 11344180
    [Show full text]
  • Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance
    Author Manuscript Published OnlineFirst on April 4, 2018; DOI: 10.1158/1078-0432.CCR-17-3008 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance Zhenqing Ye1; Haidong Dong2,3; Ying Li1; Tao Ma1,4; Haojie Huang4; Hon-Sing Leong4; Jeanette Eckel-Passow1; Jean-Pierre A. Kocher1; Han Liang5; LiguoWang1,4,* 1Division of Biomedical Statistics and Informatics, Department of Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, United States of America 2Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States of America 3Department of Urology, Mayo Clinic, Rochester, Minnesota 55905, United States of America 4Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, United States of America 5Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America Running title: Pervasive Deletion of Interferon/Defensin in Human Cancers Keywords: Homozygous deletion, Type-I interferon, Defensin, immunotherapy resistance, cancer * Correspondence to: Liguo Wang, Ph.D. Associate Professor Division of Biomedical Statistics and Informatics, Mayo Clinic 200 1st St SW Rochester, MN 55905, USA Phone: +1-507-284-8728 Fax: +1-507-284-0745 Email: [email protected] The authors declare no potential conflicts of interest. 1 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 4, 2018; DOI: 10.1158/1078-0432.CCR-17-3008 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Specialized Interferon Ligand Action in COVID19
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.29.21261325; this version posted August 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Specialized interferon ligand action in COVID19 Matthew D. Galbraith1,2, Kohl T. Kinning1, Kelly D. Sullivan1,3, Paula Araya1, Keith P. Smith1, Ross E. Granrath1, Jessica R. Shaw1, Ryan Baxter4, Kimberly R. Jordan4, Seth Russell5, Monika Dzieciatkowska6, Julie A. Reisz6, Fabia Gamboni6, Francesca CenDali6, Tusharkanti Ghosh7, AnDrew A. Monte8, Tellen D. Bennett9, Kirk C. Hansen6, Elena W.Y. Hsieh4,10, Angelo D’AlessanDro6, and Joaquin M. Espinosa1,2* Affiliations: 1Linda Crnic Institute for Down SynDrome, University of ColoraDo Anschutz MeDical Campus; Aurora, CO, USA. 2Department of Pharmacology, University of ColoraDo Anschutz MeDical Campus; Aurora, CO, USA. 3Department of PeDiatrics, Section of Developmental Biology, University of ColoraDo Anschutz MeDical Campus; Aurora, CO, USA. 4Department of Immunology anD Microbiology, University of ColoraDo Anschutz MeDical Campus; Aurora, CO, USA. 5Data Science to Patient Value, University of Colorado Anschutz Medical Campus; Aurora, CO, USA. 6Department of Biochemistry anD Molecular Genetics, University of ColoraDo Anschutz MeDical Campus; Aurora, CO, USA. 7Department of Biostatistics anD Informatics, ColoraDo School of Public Health; Aurora, CO, USA. 8Department of Emergency MeDicine, University of ColoraDo Anschutz MeDical Campus; Aurora, CO, USA. 9Department of PeDiatrics, Sections of Informatics anD Data Science anD Critical Care MeDicine, University of ColoraDo Anschutz Medical Campus; Aurora, CO, USA.
    [Show full text]
  • Study Protocol: Amendment 3
    (!') GILEAU CLINICAL STUDY PROTOCOL Study Title: A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Gemcitabine and Nab-paclitaxel combined with Momelotinib in Subjects with Previously Unu·eated Metastatic Pancreatic Ductal Adenocarcinoma Preceded by a Dose-fmding, Lead-in Phase Sponsor: Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404 USA IND Number: 120605 EudraCT Number: 2014-004480-20 ClinicalTrials.gov Identifier: NCT021 01021 Indication: Previously unu·eated metastatic pancreatic ductal adenocarcinoma Protocol ID: GS-US-370-1296 Clinical Trials Manager: Name: PPD Telephone: PPD Gilead Medical Monitor: Name: Peter Lee, MD, PhD Telephone: PPD Clinical Program Manager: Name: PPD Telephone: PPD Protocol Version/Date: Original: 11 Febmary 2014 Amendment 1: 14 March 2014 Amendment 2: 25 August 2014 Amendment 3: 16 July 2015 CONFIDENTIALITY STATEMENT The inf01mation contained in this document, pruiicularly unpublished data, is the prope1iy or under conu·ol of Gilead Sciences, Inc., and is provided to you in confidence as an investigator, potential investigator, or consultant, for review by you, your staff, and an applicable Institutional Review Board or Independent Ethics Committee. The infonnation is only to be used by you in connection with authorized clinical studies of the investigational dmg described in the protocol. You will not disclose any of the infonnation to others without written authorization from Gilead Sciences, Inc., except to the extent necessa1y to obtain infonned consent from those persons
    [Show full text]