______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______412 ISSN 1306-3022 CARTOGRAPHY AND DISTRUBUTION OF SPECIES ACCORDING TO HABITATS DIVERSITY IN ZIBAN BISKRA-ALGERIA

Nacima Deghiche-Diab*,**, Mohamed Belhamra*,**, Lahcen Deghiche** and Meriem Boultif*

* CRSTRA. Center for Scientific and Technical Rechearch on Arid Regions. PoBox. 1682. Biskra, ALGERIA. ** Departement of Agronomic Sciences, Laboratory of Ecosystem Diversity and Dynamics of Agricultural Production Systems in Arid Region, University Mohamed Khider. Biskra, ALGERIA.

[Deghiche-Diab, N., Belhamra, M., Deghiche, L. & Boultif, M. 2020. Cartography and distrubution of insects species according to habitats diversity in Ziban Biskra-Algeria. Munis Entomology & Zoology, 15 (2): 412-421]

ABSTRACT: Obtained results during study carried out at three different habitats; wetland, steppe and palm grove in Biskra region, were treated using ecological analyses abundance, Jacquard index and illustrated in card established using GIS mapping. From 205 total collected species in Biskra region, 148 species were from palm grove, 127 from wetland habitat and only 95 from steppe one. The similarity index shows 72% similarity between Site A and Site B and 70% (10 species) similarity between Site B and Site C, whereas minimal similarity obtained between Site A and Site C 69 % (7 species).

KEY WORDS: Wetland habitat, Ziban palm grove, insects’ cartography, distribution, steppe

With their presence on the Earth for more than 400 million years, insects constitute an unprecedented biological success and an essential component for life on our planet (Gilles, 2019). They occupy a broad thermal spectrum from the coldest to desert areas (Daly et al., 1998; Kergoat, 2004). Considering the climate change effect at all levels of organization of living or plant, arid areas suffer irreversible losses in biodiversity (Belhamra et al., 2014; Deghiche-Diab, 2015). Because insects are extremely sensitive to various types of environmental disturbances (Duelli, 1997; Duelli & Obrist, 1998), a number of their groups occur or have specific habitat requirements (Lewis et al., 1997). To our knowledge, the investigation on list of present in Ziban region was largely documented (Tarai, 1991; Achoura & Belhamra, 2010; Kocak & Kamel, 2015; Degiche-diab et al., 2015a,b; Degiche-Diab & Belhamra, 2019) no previous work has attempted an integrative analysis on the diversity and distribution, nor to discuss the implications of habitat preferences and geographic distributions of major insect groups in Ziban arid region. This study aims to describe and analyze the patterns of insect species diversity, regional spatial distribution, and the relationship between species habitat preferences and geographic ranges of insect groups on Ziban habitats.

MATERIAL AND METHODS

Study area Due to its geographic location and its climate, Biskra (Ziban) (34° 50’N 5° 48’E) hosts a large number of natural and artificial habitats (Fig. 1).

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______ISSN 1306-3022 413 In order to study structural variability of entomofauna living in, three habitats were chosen, the wetland dam of Foum El Gharza at Sidi Okba, steppe habitat at Ouled Djellel and an oasis one at El Hadjeb their characteristics are reported in Table 1.

Sampling methods A periodic sampling from september 2018 until august 2019, was performed from 9 pitfall traps (Barber, 1931; Benkhelil & Doumandji, 1992) located separately in each chosen habitat (Fig. 2). Its effectiveness has been demonstrated by many authors (Southwood, 1968; Greenslade, 1973; Scudder, 2000). It allows to know the complex stand and to obtain an image of numerical insects variation (Moulin et al., 2007, Lhoir et al., 2003). The collected specimens from each habitat were separated using magnifier binocular in laboratory. Samples were identified until genus and species for the majority specimens using guids for identification (Chopade, 1943; Chenery, 1993; Hampt & Hampt, 1998; La Planches & Gorge, 2008; Brague-Bouragba, 2010; Dozière et al., 2017). They were stored in collection boxes and kept in the entomology laboratory.

Ecological Analysis In this part we present an integrative analysis on diversity levels, distributional patterns, and the implications of habitat preferences and geographic distributions of insect groups in Ziban, Biskra region. Data on species structure, abundance, diversity and differences in community composition at each habitat were analysed using PAST (Paleontological Statistics; Version 2.17) software. The relationships between insect and its habitat diversity parameters were verified using Jacquard (J=a/(a+b+c) and Sorensen (S= 2C (A+B) index also. The obtained information’s were illustrated tthrough the use of GIS Geographic Information software and aerial photographs. The polygons assigning the different habitat types have been drawn.

RESULTS AND DISCUSSION

Over 205 species collected from different habitats, wetland represented by dam of Foum El Gherza and steppe region represented by Ouled Djellel and palm grove of Ain Ben Noui at El Hadjeb municipality during 2018-2019. The most important richness was calculated from Ain Ben Noui palm grove with 148 species, followed by the wetland habitat with 127 species and 95 species from steppe habitat (Fig. 3). In wetland habitat, a total of 1 692 individuals, 127 species belonging to 11 orders grouping; Coleoptera (32 species), Hymenoptera (26 species), Diptera (16 species), (15 species) and Lepidoptera (8 species) order. Steppe habitat was represented by 95 species belonging to 8 orders. The most represented orders were from Coleoptera (36 species and 11 families), Hymenoptera (22 species and 10 families), and Lepidoptera (9 species and 6 families). Whereas palm grove habitat groups an important wealth (148 species and 11 orders) compared to both habitat. The Coleoptera order was the best represented with 41 species covering 10 different families. In second position, Hymenoptera order with 35 species and 15 families, Lepidoptera and the Hemiptera orders come in the third position with 13 species. The least important order in the palm grove was Embidae order (Fig. 4).

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______414 ISSN 1306-3022 In terms of abundance, the most abundant order in wetland habitat was; Coleoptera (515 individual), Hymenoptera (302 individual), Hemiptera (221 individual), Odonatoptera (174 individual) and Lepidoptera (112 individual) orders. Whearas, Tapinoma sp. (4.4%), Hippodamia variegata (3.78%), Lestes dryas (3.19%) and Diptera Musca domestica (2.96%) were the moste abundante species (Fig. 5. 1a, 2a). The abundant presence of Hymenoptera and coleoptera order was also indicated by Bacha (2010) working at Foum El Kherza dam. In addition results obtained by Chenchouni et al. (2015) from Sabkha Djendli were semilar to those of our study. In steppe region the most abundant order were Coleoptera (786 individual), Hymenoptera (601 individuals), Hemiptera (177 individuals) and Orthoptera (100 individuls). Whereas the most abundant species were those belonging to Hymenopteran; Tetramorium biskrensis kahenae (15.89%), Coléopteran Erodius emondi (7%), Hippodamia variegata (5.19%), Coccinella septempunctata (5.84%) and nitidula (4.36%) (Fig. 5. 1b, 2b). In south of Algeria, Naturel habitat were also treated by several auteurs Hadjoudj et al. (2018), in Ouargla region that establish a list of 57 species collected in naturel habitat (steppe) vs 42 species in cultivated (palm grove). Also, Souttou et al. (2015) that have established his study in naturel habitat at Djelfa indicate that Hymenoptera order was mostly represented by Formicidae family (86.1%). From Tigzirt region, Ouadjine (2014), indicate also the importance of Hymenoptera order specialy Teteramorium biskrensis and Messor sp in their pitfall traps. In palm grove habitat the most abundant orders were Coleoptera (661 individual), Hymenoptera (560 individual), Diptera (262 individual), Orthoptera (260 individual) and Hemiptera (216 individual) orders. In terms of species, the moste abundante in palm grove were those belonging to Diptera order, Musca domestica (3.37%), Coleoptera order of wich Coccinella septempunctata (3.20%), species belong to Orthoptera Acrida pellucida algeriana (2.68%) and Hyménoptera order Polistes dominula (2.60%) (Figs. 5. 1c, 2c). Palm grove ecosystem was recently well studied Zergoun (1994) in Ghardaïa oasis, Hellal (1996); Remini (1997); Farhi & Souttou (2004); Tarai (1991); Achoura et Belhamra (2010); Deghiche-Diab et al. (2015a,b); Deghiche-Diab (2015) in Biskra oasis; Benameur-Saggou (2010) in Ouargla. The important presence of coleoptera order in all type of habitat can be explained by the fact that they constitute 25% of all living in planet (Erwin, 1982). Also as reported (Powell, 2009; Rosenzweig, 1995; Hunt et al., 2007) this order includes more species than any other order. Another explanation can be related to their adaptation (Sheikh et al., 2017) to all climate condition, they are found in all major habitats adapting to the hardest conditions. They can fertilize millions of plants but also they act as a basis for the food web. For this their presence can be also related to the variability of their diet from vegetative foliage (trees, their bark, flowers, leaves, and roots), underground and dead or decaying ones (Gullan & Cranston, 2010). In addition Rowe & Richardson, (2001), demonstrate that in habitat leaf litter is used as a source of food by insects rather than a refuge. The presence of other order in few numbers could be attributed to the low dispersal ability as well as their scarcity in habitat (Cobos, 1987). Because insects are sensitive to ecosystem changes (Kremen et al., 1993; Davis et al., 2001), and environmental modifications, they constitute a model of choice for assessing the diversity of habitats (Haddad et al., 2009). Their diversity depends on the spatial and structural conditions of the habitat (Walker & Del

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______ISSN 1306-3022 415 Moral, 2003), while their abundance provides indications of measurement of ecosystem health and terrestrial ecological processes (Gullan & Cranston, 2010). To date, there has been no attempt to predict how insect species can be distributed across different biogeographic regions (Stork, 2018). For this, in addition to determining the entomological wealth for each habitat, we looked at another problem which is mapping of the presence and distribution of collected species at each chosen plots in each habitat. From the 205 species collected in different habitat, 35 were associated to both wetland and palm grove habitats, 10 were present in wetland and steppe habitats, whereas only 7 species were in common between palm grove and steppe habitat (Fig. 6). Sorensen and Jacquard index were calculated to assess the similarity of insect communities between the different habitats (wetland, steppe and palm grove). Analysis of the table 2 indicates that Sorensen similarity index values were between 69% and 72 %. And those of Jacquard were between 40% and 50%. Jacquard similarity index shows 72% similarity between Site A (Wetland) and Site B (steppe), 70% similarity between Site B and Site C (palm grove), whereas minimal similarity is seen between Site A and Site C (69%) (Fig. 7). The previous results were confirmed by Bray-Curtis cluster analysis data that shows that A habitat (Wetland) and B habitat (steppe) form a small cluster and C (palm grove) habitat is joined to it through a bigger cluster. This also suggests that A habitat (Wetland) and B habitat (steppe) are similar in insect composition rather than C (palm grove) habitat. This finding is in contrast to the observation made by Moitreyee (2014), where he found that 9 families of collected using standard trapping methods from three different habitats where one Site (B), showed the highest diversity. While our results are similar to those of Deghiche-Diab & Belhamra (2019), where Jacquard similarity index calculated, for the five palm groves in Ziban oasis argue that the highest value recorded was between Ain Ben Noui and Sidi Okba palm grove with 47%. In general, results of our study indicate high patrimonial potentialities for the tow habitat (wetland and palm grove), where we found, in addition to the presence of other orders (Coleoptera, Orthoptera, Lepidoptera, Hymenoptera, ...), the dominance of Odontoptera and Diptera orders, that their presence is related to the presence of water in comparison to steppe habitat (Ramade, 2003 ; Dajoz, 2003). Species belonging to Odonatoptera order were usually fond in abundant number near to the point of water in wetland habitat. This type of habitat that gives the opportunities to large number of species to co-habitat with each other as for Lepidoptera species developed on two successive hosts (plants and Myrmica specis) (Coic, 2018). For this lot of studies Goffart & Waeyenbergh (1994), Goffart et al. (1995), agree with our results and indicate the importance of habitat diversity structure juxtaposition that are capital elements for all insects. In palm grove habitat, the difference on species distribution could be attributed to the habitats heterogeneity (crops and weeds) (Fontier, 2008). The high diversity of species in palm groves may be attributed to the habitat complexity, stability and food availability (Deghiche-Diab et al., 2015a,b). In their studies (Strong et al., 1984) supports the positive relationship between insect species richness and plant diversity in our case under oasis conditions. The current study is consistent with the results of Chenchouni et al. (2015) that work in Sabkha Djindli and reported that Dermaptera, Orthoptera and Coleoptera orders was positively correlated with vegetation cover and plants richness.

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______416 ISSN 1306-3022 Whereas Viladerbo (1973) disagrees with our results and finds that palm grove is an extremely special biotope, not very favorable to the development of insects in general. Another possible explanation that palm grove is grazed area fertilized by dung therefore stimulate the development of both flowering weeds that attract more pollinators (butterflies) that could be a good indicators of vegetation heterogeneity (Kremen, 1992). While cattle dung favor the abundance of coleoptera species (Deghiche-Diab, 2015a,b; Chenchouni et al., 2015; Deghiche- Diab, 2019). As conclusion species distribution and composition in different habitats can be related to different conditions. At first, in their study Taheri & Reyes-Lopez (2015), indicate that different factors such as season, altitude, aridity, geology and vegetation types and animal farming practices have an effect on the composition and distribution of species. Semida et al. (2001), indicate that a change in environmental conditions may have double effect by increasing diversity of one while decreasing the diversity of others species. For this Ramade (1984), specify that temperature controls all the metabolic phenomena of species and communities and effect their distribution in the biosphere. All this can explain that some insects survive in the hardest habitats, species such as flies that tolerate temperatures above 40 °C (Maret, 2009). Moreover, soil characteristics can have effects on spatial distribution of soil communities (Bardgett et al., 2005) as ants that walk in the desert on hot sands at 50 °C (Maret, 2009). As for abiotic factors, several authors confirm the importance of biotic one on the distribution of species (Bonnemaison, 1962). In natural ecosystem, coleoptera and orthoptera orders are a useful groups of insects that play an important role (Abdullah et al., 2015) by constituting basic diet (given their big size) of steppe insectivorous as birds and lizards (Souttou et al., 2011) as for the stability of ecosystem in association with the typical vegetation of the natural environment. Moreover, as indicated (Jaulin & Soldati, 2003), Orthoptera order represents the most important biomass in natural environments significantly affected by the modification vegetation structure and directly threatened by its reduction. Results of this study are just an introduction to big concept that must be verified under different types of conditions and for other investigations.

LITERATURE CITED

Abdullah, M. M. D., Salmah, Y. & Izfa, R. H. 2015. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in peninsular malaysia. UKM FST Postgraduate Colloquium. AIP Conf. Proc. Achoura, A. & Belhamra, M. 2010. Aperçu sur la faune Arthropodologique des palmeraies d’El-Kantara université Mohamed Khider Biskra. Courrier Savoir, 10: 93-101. Bacha, B. 2010. Diagnostic ecologique d'une zone humide artificielle : le barrage de Foum El Gherza (Biskra, Algerie).Thèse Magister. Université de Biskra, 140 p. Barber, H. S. 1931. Traps for cave inhabiting insects. Journal of the Elisha Michell Scientific Society, 46: 259-266. Bardgett, R. D., Usher, M. B. & Hopkins, D. W. 2005. Biological diversity and function in soils. Cambridge University Press, Cambridge, New York. 411 pp. Belhamra, M., Farhi, Y., Deghiche-Diab, N., Farhi, K., Mezerdi, F., Abssi, K., Drouai, H. & Boukrabouza A. 2014. État des lieux, conservation et possibilité de valorisation des ressources biologiques dans le Sud et l’Est algérien 14th Annual Sahelo-Saharan. Interest Group Meeting -Research Center in Biodiversity and Genetic Resources of the University of Porto. Communication orale. Benameur-Saggou, H. 2009. La faune des palmeraies de Ouargla: Interactions entre les principaux écosystèmes. Thèse Magister. Université Kasdi Merbah Ouargla. 184 p. Benkhelil, M. L. & Doumandji, S. 1992. Notes écologiques sur la composition et la structure du peuplement des coléoptères dans le parc national de Babor (Algérie). Med Fac. Landbouww. Uni. Gent. 57: 617-626. Bonnemaison, L. 1962. Les ennemis animaux des plantes cultivées et des forets. Tome I. Ed. Sep, Paris, 599. Brage-Bouragba, N. 2010. Guide de quelques artropodes en région semis arides. MADR, INRF., 100 p. Boudot, J. P. & De Knijf, G. 2012. Nouvelles données sur les Odonates du Maroc oriental et méridional (Odonata). Martinia, 28 (1). Chenchouni, H., Menasria ,T., Neffr, S., Chafaa, S., Bradai, L., Chaibi, R., Mekahlia, N. M., Bendjoudi, D. & Si Bachir, A. 2015. Spatiotemporal diversity, structure and trophic guilds of insect assemblages in a semi-arid Sabkha ecosystem. PeerJ 3: 860. DOI 10.7717/peerj.860.

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______ISSN 1306-3022 417 Chinery, M. 1993. Collins guide insects of Britain and Northern Europe. 3rded of (1973). Harper Collins publishers. London. Chopard, L. 1943. Orthopteroïdes de l’Afrique du Nord. Larose, Paris, 450 p. Cobos, A. 1987. La Coleoptero fauna endemica almeriense. Graellsia, 43: 3-17. Coïc, B., Dumeige, B., Guth, M. O., Macqueron, G., Muller, F. & Triplet, P. 2018. zones humide infos . La revue du Groupe « Zones humides », laboratoire d’idées pour les terres d’eaux, N° 95-96. Collins & Thomas 1989. The Conservation of Insects and their habitats; 15th Symposium of the Royal Entomological Society of London, 14-15 September, London, Academic Press: 213-236. Daly, H. V., Doyen, J. T. & Purcell, A. H. 1998. Introduction to insect biology and diversity, 2nd ed. oxford university press, Oxford, New York. Dajoz, R. 2002. Les Coléoptères carabidés et ténébrionidés, écologie et Biologie. Paris. Lavoisier. Davis, L. et al. 2001. The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks. Genetics, 157 (3): 1179-89. Deghiche-Diab, N. 2015. Biodiversité des arthropodes et des plantes spontanées dans un agroécosysteme oasien. Biskra.Algérie. Thèse Magister. Université de Biskra. 98 p. Deghiche-Diab, N. 2019. Flore adventice des oasis des Ziban. Edition INRAA. 150 p. Deghiche-Diab, N. & Belhamra, M. 2019. Diversity of Coleoptera in Ziban Palm Groves. Biskra, Algeria. Centre for Entomological Studies Ankara. 201: 1-9. Deghiche-Diab, N., Porcelli, F. & Belhamra M. 2015a. Entomofauna of Ziban oasis. Journal of Insect Science, Oxford, 15 (41). Deghiche-Diab, N. Deghiche, L. & Belhamra, M. 2015b. Inventory of in an agro-ecosystem Ziban oasis, Ain Ben Noui, Biskra, Algeria. Journal of Entomology and Zoology Studies, 3 (4): 229-234. Dozière, A., Valarcher, J. & Clément, Z. 2017. Papillons des jardins, des prairies et des champs. Guide de terrain pour les observatoires de sciences participatives. Escourbiac, 133. Duelli, P. 1997. Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agriculture Ecosystems and Environment, 62: 81-91. Duelli, P. & Obrist M. K. 1998. In search of the best correlates for local organismal biodiversity in cultivated areas. Biodiversity and Conservation, 7: 297-309. Erwin, T. L. 1982. Tropical forests: their richness in Coleoptera and other species. Coleopt. Bull., 36: 74-75. Farhi, Y. & Souttou, K. 2004. Inventaire de la faune des milieux naturelles des Ziban. Rapport finale. C.R.S.T.R.A.. 35 p. Fontier, S., Denis, P. V., Le Pretre, A., Devoult, D., Luczak, C. 2008. Ecosystèmes, structures fonctionnement, évolution : 4ième édidtion. Dunod. 588 p. Jaulin, S. & Soldati, F. 2003. Coléoptères, Orthoptères et Mantoptères du Domaine expérimental de Cazes, Inventaires et proposition de gestion. OPIE Languedoc-Roussillon. 44 p. Haddad, N. M., Crutsinger, G. M., Gross, K., Haarstad J., Knops, J. M. & Tilman, D. 2009. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecology Letters, 12: 1029-1039. Hadjoudj, M., Souttou, K. & Doumandji, S. 2018. The diversity of arthropods community in dunes and a palm grove ( Phoenix dactylifera) in the Touggourt region (Septentrionale Sahara). International Journal of Tropical Insect Science, 1-11. Hampt, H. & Hampt, J. 1998. Guide des mouches et des moustiques l’identification des espèces europiènnes. Allemmenggne.de la chaux et Nustlé. 350 p. Hellal, M. 1996. L’entomofaune de la palmeraie de Ain Ben Naoui (W. Biskra). Mém.Ing.Inst. Nat. Agro. El Harrach., 67 p. Hunt, T., Bergsten, J. & Levkanicova, Z. 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a super radiation,Science, 318: 1913-1916. Gilles, B. 2019. Disparition Des Insectes: Causes Et Conséquences. https://passion-entomologie.fr/disparition-des- insectes/ Goffart, Ph. & Waeyenbergh, M. 1994. Exigences écologiques et gestion des populations de deux papillons des prairies ardennaises: le cuivré et le nacré de la bistorte (Lycaena helle, Proclossiana eunomia). Les Cahiers des Réserves Naturelles-RNOB, 7: 21-29. Goffart, Ph. & Waeyenbergh, M. 1995. Gestion des fonds de vallée ardennais et conservation des populations de papillons diurnes: vers une remise en question de la gestion traditionnelle?. Les Cahiers des Réserves Naturelles- RNOB, 8: 45-56. Google earth. 2019. www.googleearth. Greenslade, P. J. M. 1973. Sampling ants with pitfall traps: digging-in effects. Insectes Soc., 20: 343-353. Gullan, P. J. & Cranston, P. S. 2010. The Insects: An Outline of Entomology, John Wiley et Sons, Oxford, UK, 4th edition. Kergoate, G. J. 2004. Genre Bruchidius (Coleoptera, Bruchidae): un modèle pour l’étude des relations évolutives entre les insectes et les plantes. Thèse Doctorat en Biologie. Université Paris 6-Pierre et Marie Curie. 201 p. Kremen, C. 1992. Assessing the indicator properties of species assemblages for natural areas monitoring, Ecol. Appl., 2: 203-217. Kremen, C., Colwell, Rk., Erwin, T. F., Murphy, D. D., Noss, R. F. & Sanjayan, M. A. 1993. Terrestrial arthropod assemblage: their use in conservation planning. Convention Biology, 7 (4): 796-808. Sheikh, A. A., Rehman, N. Z. & Kumar, R. 2017. Diverse adaptations in insects: A Review. Journal of Entomology and Zoology Studies, 5 (2): 343-350. Koçak, A. O. & Kemal, M. 2015. Annotated lists on the Lepidoptera of Algeria, based upon the info-system of the cesa. Center of Entomological Studies Ankara. Priamus, 34: 1-794. La Planches, G. & Gorge, A. 2008. Papillons de médetérannée. Edition Sud., 203 p. Lewis, W. J., Lenteren, J. C. V., Phatak, S. C. & Tumlinson, J. H. 1997. A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences of the United States of America, 94: 12243- 12248. Letourneau, D. K. & Goldstein, B. 2001. Pest damage and arthropod community structure in organic vs. conventional tomato production in California. Journal of AppliedEcology, 38: 557-570. Lhoir, E., Fagot J., Thieren, Y. & Gilson, G. 2003. Efficacité du piégeage, par les méthodes classiques, des Coléoptères saproxyliques en Région wallonne (Belgique). Notes fauniques de Gembloux, 50: 49-61. Maret, J. 2009. Fiche technique d’entomologie. Le petit monde des insectes. CPIE de vercors. file:///H:/d%20soutenance/adaptation%20habitats%20des%20insectes.pdf

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______418 ISSN 1306-3022 Moitreyee, B. 2014. Diversity and Composition of Beetles (Order: Coleoptera) of Durgapur, West Bengal, India. Hindawi. V. 2014, 6 p. Moulin, N., Jolivet, S., Mériguet, B. & Zagatti, P. 2007. Méthodologie de suivis scientifiques des espèces patrimoniales (faune) sur le territoire du Parc naturel régional du Vexin français – Entomofaune. OPIE – PNR Vexin français. 66 p. Oudjiane, A., Doumandji, S., Daoudi-Hacini, S. & Boussad, F. 2014. Biodiversite des inventaires entomologiques dans la region de Tigzirt. AFPP. dixième conférence internationale sur les ravageurs en agriculture montpellier 22 et 23 octobre 2014. PAST: Paleontological Statistics; Version 2.17. software. Powell, J. A. 2009. Coleoptera,” in Encyclopedia of Insects, H. Vincent Resh and T. Ring Carde, Eds., Academic Press, New York, NY, USA, 2nd edition. 199 p. Ramade, F. 1984. Eléments d’écologie- Ecologie fondamentale. Ed. Mc GrawHill, Paris, 397 p. Ramade, F. 2003. Eléments d’écologie. Ecologie fondamentale. 3èmEd. Dunod, Paris, 690 p. Rosenzweig, M. L. 1995. Species Diversity in Space and Time, Cambridge University Press. Rowe, L. & Richardson, J. S. 2001. Community response to experimental food depletion: Resource tracking by stream invertebrates. Oecologia, 129: 473-480. Scudder, G. G. E. 2000. Pifall trapping. Ecological Monitoring and Assessement Network. British Columbia, Canada. http://eqb-dqe.cciw.ca/eman. Semida, F. M., Abdel-Dayem, M. S., Zalat, S. M. & Gilbert, S. F. 2011. Habitat heterogeneity, altitudinal gradients in relation to diversity in South Sinai, Egypt. Proceedings of the First International Conference (Egyptian British Biological Society, EBB Soc). Egyptian Journal of Biology, 3: 137-146. Southwood, T. R. E. 1968. Insect Abundance. Symposia of the Royal Entomological Society of London, Blackwell Scientific Publications, Oxford, 4: 2-25. Souttou, K., Sekour, M., Ababsa, L., Guezoul, O., Bakouka, F. & Doumandji, S. 2011. Arthropodofaune recenses par la technique des pots barber dans un reboisement de Pin d’Alep a Sehary Guebly (Djelfa). Revue des BioRessources, 1: 19-26. Souttou, K., Choukri, K., Sekour, M., Guezoul, O., Ababsa, L. & Doumandji, S. 2015. Ecologie des arthropodes en zone reboisée de Pin d’Alep dans une région présaharienne à Chbika (Djlefa, Algérie). Faunistic Entomology, 68: 159-172. Strong, D. R., Lawton, J. H. & Southwood, R. 1984. Insects on plants: community patterns and mechanisms. Harvard University Press, Cambridge, Massachusetts. Stork, N. E. 2018. How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63: 31-45. Taheri, A. & Reyes-Lo´pez, J. L. 2015. Five new records of ants (Hymenoptera: Formicidae) from Morocco. Journal of Insect Science, 15:1-3. doi: 10.1093/jisesa/iev022. Tarai, N. 1991. Contribution à l'étude bioécologique des peuplements orthoptérologiques dans la région de Biskra et régime alimentaire de Ailopus thalassinus (Fabricius, 1781). Thèse Ing. agro. Inst. nat. agro., El Harrach, 66 p. Walker & Del Moral, 2003. Primary Succession and Ecosystem Rehabilitation. Cambridge university press. 429. Villiers, A. 1946. Coléoptères Cérambycides de l'Afrique du Nord, Faune de l'Empire Français, ORSC Paris, 5: 1-152. Viladerbo, A. 1973. Principaux parasites de la datte et du dattier. In: Munier (P.), Le Palmier dattier. Paris: Maisonneuve et Larose, pp. 67-95. Zergoun, Y. 1994. Bioécologie des Orthoptères dans la région de Ghardaia régime alimentaire d’Acrotylus patruelis (Herrich Schaeffer, 1838) Orthoptera–Acrididae. Thèse Magister, Inst. Nati. Agro., El Harrach, 116 p.

Table 1. Characteristics of habitats in chosen site.

Table 2. Jacquard and Sorensen index similarity calculated for different habitat.

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______ISSN 1306-3022 419

Figure 1. Map location of Biskra region and chosen site; Sidi Okba, Ouled Djellel, El Hadjeb.

Figure 2.Chosen habitat: a.wetland, b.steppe, c. palm grove.

Figure 3. Total collected species, families and orders from different habitats during study period (2018-2019).

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______420 ISSN 1306-3022

Figure 4. Importance of orders and families in Ziban habitats.

Figure 5. 1. Location of habitat study and 2. distribution of species in a. wetland, b. steppe, c. palm grove.

______Mun. Ent. Zool. Vol. 15, No. 2, June 2020______ISSN 1306-3022 421

Figure 6. Common species between three different habitats (wetland, steppe, palm grove) in Biskra region.

Figure 7. Bray-Curtis cluster analysis (single linkage).