History of Digital Money CampbellR.Harvey DukeUniversity,NBERAnd InvestmentStrategyAdvisor,ManGroup,Plc

Total Page:16

File Type:pdf, Size:1020Kb

History of Digital Money CampbellR.Harvey DukeUniversity,NBERAnd InvestmentStrategyAdvisor,ManGroup,Plc InnovationandCryptoventures History of Digital Money CampbellR.Harvey DukeUniversity,NBERand InvestmentStrategyAdvisor,ManGroup,plc February20,2017 CampbellR.Harvey2017 2 Thebeginning Barter • Veryinefficient. • Needtomatchneedsofbuyers/sellers CampbellR.Harvey2017 3 Thebeginning Coins(Gold/Silver) • Needmetaltostartandmaintain CampbellR.Harvey2017 4 Thebeginning PromissoryNotes/Fiat • Needtrust • Needtostartitoffandmaintain CampbellR.Harvey2017 5 Credit ModernonͲline • Buysomethingfromretailerandgiventhemyourcardinformation. Theretailerdealswithbank,creditcardcompany,etc. • Paypal isdifferent.Itisanintermediarythatsitsbetweenyouandthe retailer.YougivecarddetailstoPaypal andPaypal approvesthe transactionandsettleswithretailer.Youdon’tneedtogiveseller creditcarddetails.ApplePayissimilarinthisrespect. • Whilepeoplehesitanttogivecarddetailsonline,wedoitanyways. Lotsofcostlyfraud. CampbellR.Harvey2017 6 Credit CampbellR.Harvey2017 7 Credit CampbellR.Harvey2017 8 DigitalCredit FirstVirtual 1994 • SimilartoPayPal.YougivethemcarddetailsandFVdealtwithretailer • Allcommunicationoveremail.Noencryptionused. • Customerhad90daystodisputechargesandretaileronlygotpaid after90days! CampbellR.Harvey2017 9 http://web.stanford.edu/~joelaw/bennpaper/emoney.html#FV DigitalCredit SETArchitecture*1997 • Avoidsuserhavingtosendcardinformationtoretailers– butavoid havingtoenrollwithintermediary • StandarddevelopedbyVisa/MC/Netscape/IBM/Microsoft/Verisign/RSA http://www.maithean.com/docs/set_bk1.pdf andhttps://en.wikipedia.org/wiki/Secure_Electronic_Transaction CampbellR.Harvey2017 10 DigitalCredit SETArchitecture*1997 • Customerbrowseswebsiteanddecidesonwhattopurchase • Customersendsorderandpaymentinformation,whichincludes2partsinonemessage: a.PurchaseOrder–thispartisformerchant b.CardInformation–thispartisformerchant’sbankonly. • Merchantforwardscardinformation(partb)totheirbank • Merchant’sbankcheckswithIssuerforpaymentauthorization • IssuersendauthorizationtoMerchant’sbank • Merchant’sbanksendauthorizationtomerchant • Merchantcompletestheorderandsendsconfirmationtothecustomer • Merchantcapturesthetransactionfromtheirbank • Issuerprintscreditcardbill(invoice)tocustomer CampbellR.Harvey2017 11 https://en.wikipedia.org/wiki/Secure_Electronic_Transaction DigitalCredit SETArchitecture1997 • AnimportantinnovationintroducedinSETisthe dualsignature.Thepurpose ofthedualsignatureistolinktwomessagesthatareintendedfortwodifferent recipients. • Inthiscase,thecustomerwantstosendtheorderinformation(OI)tothe merchantandthepaymentinformation(PI)tothebank. • Themerchantdoesnotneedtoknowthecustomer'screditͲcardnumber,and thebankdoesnotneedtoknowthedetailsofthecustomer'sorder. • Thecustomerisaffordedextraprotectionintermsofprivacybykeepingthese twoitemsseparate.However,thetwoitemsmustbelinkedinawaythatcan beusedtoresolvedisputesifnecessary. • Thelinkisneededsothatthecustomercanprovethatthispaymentis intendedforthisorderandnotforsomeothergoodsorservice. CampbellR.Harvey2017 12 DigitalCredit SETArchitecture1997 • HashesoftheOIandthePIareindependentlycalculatedbythecustomer. • Thedualsignatureistheencryptedhash(withthecustomer'sprivatekey)of theconcatenatedhashesofPIandOI. • Thedualsignatureissenttoboththemerchantandthebank.Theprotocol arrangesforthemerchanttoseethehashofthePIwithoutseeingthePIitself, andthebankseesthehashoftheOIbutnottheOIitself. • ThedualsignaturecanbeverifiedusingthehashoftheOIorPI.Itdoesn't requiretheOIorPIitself.ItshashdoesnotrevealthecontentoftheOIorPI, andthusprivacyispreserved. CampbellR.Harvey2017 13 DigitalCredit CyberCash 1994 • UsedSETarchitecture. • DigitalcashproductcalledCyberCoin whichallowedformicroͲtransactions • FirstcompanytogetUSapprovalforexportingencryption • KilledbyY2K! CampbellR.Harvey2017 14 DigitalCredit WhyCybercash andSETfailed* • ProblemsurroundscertificatesͲ awaytosecurelyassociatea cryptographicidentity(publickey)withareallifeidentity. • WebsitesneedtoobtaincertificatesfromaCertificateAuthoritylike VerisignorSymantec • CyberCash andSETrequirednotjustmerchants– butallusersgeta certificate(verycostlyprocess) *Visa,Mastercard,andAmericanExpressuseaprotocolknownas3ͲDSecure.Eachhastheirownnameforthis. CampbellR.Harvey2017 15 DigitalCredit InmidͲ1990s,W3Cwaslookingintostandardizingfinancialpayments– nothinghappeneduntiltheyannouncedrevisitinginOctober2015 CampbellR.Harvey2017 16 CryptoCash Cash • Anonymous • TransactionscanoccuroffͲline • Nointermediary • Butneedstobeinitiallycreatedandendowed Note • Bitcoinnotcompletelyanonymous • NeedtobeonͲline CampbellR.Harvey2017 17 CryptoCash Cryptocurrency • Intuition.Igiveoutpiecesofpaperthatcanberedeemedforacertain amountbyme.Isignthepiecesofpaper.Peoplemusttrustmeandmy signatureneedstobeunforgeable. • Thisishowcurrencystartedintermsofpromissorynotes • Wecouldhaveadigitalversionbutweknowyoucanmakeperfectdigital copies–thesocalled“doublespend”problem • Soyoucouldaddnotjustasignaturebutaserialnumber.Whenaretailer getsthenote,youcheckaledgerfortheserialnumbertomakesureit hasnotalreadybeenspent. CampbellR.Harvey2017 18 CryptoCash Cryptocurrency • Needacentralservertokeeptrackofserialnumbers.Once,youcollect enoughnotes,youpresentthemtotheauthorityandtheyissueyoufresh serialnumbers(youcanonlyspendonce) • Notethisisnotanonymouslikerealcash CampbellR.Harvey2017 19 CryptoCash DavidChaum – Digitalmoneypioneer, 1983 • Determineswaytokeepanonymousandprevent doublespending • Iissueanote.Youpickaserialnumber(long randomnumber).Isignitandamunabletosee theserialnumber(blindsignature) • Requirescentralserverandeverytransaction goesthroughserver • OffͲlineideadevelopedin1988 CampbellR.Harvey2017 20 CryptoCash DavidChaum – Digitalmoneypioneer,1983 • Everydigitalcoinissuedtoyouencodesyouridentity– butnoone(not eventhebank)candecodeit • Whenyoudoatransaction,therecipientrequiresyoutodecodepart– butnotall • Butifyouattempttodoublespend,therecipientcanputthetwo decodedpartstogetheranddetermineyouridentity • Clunkyinthatyoucan’tsplitcoins CampbellR.Harvey2017 21 CryptoCash DavidChaum – Digicash,1990 • ThecashinDigicash wasknownasecash CampbellR.Harvey2017 22 CryptoCash DavidChaum – Digicash,1990 • Clientsanonymous,merchantsarenot • Nosplittingcoinssoawalletwouldhavecoinsofvarioussizes • TomakeanonͲlinepurchase,merchantwouldhavetoacceptecash • Whenyouclickonthepayment,ittakestoyoutoDigicash website,andopena reversewebconnection–i.e.yourmachineneedstoactlikeaserver(need yourownIPandtheISPneedstoallowincomingconnections) • Ifconnectionsuccessful,softwarewouldbelaunchedtodotransaction • 100%collateralizedbasedonUSdollar CampbellR.Harvey2017 23 CryptoCash DavidChaum – Digicash,1990 • Digicash evenhadahardwarewallet • Mondex (acquiredbyMastercard)andVisaCash twotechnologies • Likecash,ifyoulosewallet,youloseyourmoney • Ifhardwarefailsorcardfails,moneyisalsogone CampbellR.Harvey2017 24 CryptoCash DavidChaum – Digicash,1990 • Anumberofcompetingideasarose • Forexample,therewasaproposaltogive“change”– butthisdestroyed theanonymity. CampbellR.Harvey2017 25 CryptoCash WhydidDigicash fail? • Hardtopersuademerchantstouseit • DidnotsupportuserͲtoͲusertransactions Note • Bitcoindoesnotdistinguishbetweenusersandmerchants CampbellR.Harvey2017 26 CryptoCash Commoditybackedcurrencies • EͲgold.100%collateralizedbygold • Digigold fractionallycollateralized However • Anycollateralizedcurrencywillfluctuatewiththevalueoftheunderlying, whetherUSdollaroracommodity • Whatifadigitalcurrencyisnottiedtoanycollateral? CampbellR.Harvey2017 27 CryptoCash NoCollateralDigitalcurrencies • Scarcity isessentialforaviablecurrency • CynthiaDwork andMoniNaor proposedgettingyour computertosolvepuzzles • Theirapplicationwastoeliminateemailspam http://www.wisdom.weizmann.ac.il/~naor/PAPERS/pvp.pdf CampbellR.Harvey2017 28 CryptoCash NoCollateralDigitalcurrencies • AdamBackproposessimilarideahashcash in 1997(againinthecontextofeliminating spam) Note • Bitcoin“proofofwork”hasasimilarideato Hashcash http://www.cypherspace.org/hashcash/hashcash.pdf CampbellR.Harvey2017 29 CryptoCash Whydidhashcash fail? • Spamnotthatbigofaproblem • Anyways,hackerscouldtakeovercommuters,createhashcash,andthen useittofinanceemailspammingefforts Note • Also,thereispotentiallyunlimitedcurrencycreationinhashcash – you justneedtosolveapuzzle.Incontrast,bitcoinhasscarcity. CampbellR.Harvey2017 30 CryptoCash Ledger • Blockchain ideagoesbackatleastto1991inthecontextofdocument dating(StuartHaberandScottStornetta) • Whenanewdocumentcomestoaserver,theserver“signs”the documentwithatimeͲstampandareference(orpointer)totheprevious document.Theentirehistoryischainedtogether. • Alaterpapersuggestedusingblocksofdocumentsratherthanindividual documents https://www.anf.es/pdf/Haber_Stornetta.pdf CampbellR.Harvey2017 31 CryptoCash Ideasclosetobitcoin • BͲmoneybyWeiDai(memberofthecypherpunks) • Anyonecancreatemoney(hashingproblem) • Peertopeernetwork • Eachnodemaintainsaledger,butitisnotagloballedgerlikebitcoin– justwhatpeoplethinkeveryone’sbalanceis. http://www.weidai.com/bmoney.txt CampbellR.Harvey2017 32 CryptoCash Ideasclosetobitcoin • Notethereispoliticalaspecttothiswork,inparticularwiththe cypherpunk group • EricHughes:ACypherpunk’s Manifesto1993 "Privacyisnecessaryforanopensocietyintheelectronicage....Wecannot expectgovernments,corporations,orotherlarge,facelessorganizationsto grantusprivacy...Wemustdefendourownprivacyifweexpecttohave any....Cypherpunks writecode.Weknowthatsomeonehastowrite softwaretodefendprivacy,and...we'regoingtowriteit." http://www.activism.net/cypherpunk/manifesto.html CampbellR.Harvey2017 33 CryptoCash Bitgold • NickSzabo(hadideain1998)but beganpromotingitin2005
Recommended publications
  • Crypto Garage Developed and Executed the Contract of a P2P
    April 19, 2019 Crypto Garage, Inc. NEWS RELEASE Crypto Garage Developed and Executed the Contract of a P2P Protocol Based Crypto Asset Derivative Settled in Bitcoin 〜Executed First Derivative Contract with Blockstream〜 Crypto Garage, Inc. (HQ: Tokyo; Representative Director: Masahito Okuma; Crypto Garage), a Fintech company developing blockchain financial services and also a subsidiary of Digital Garage, Inc. (TSE first section: 4819; HQ: Tokyo; Representative Director, President Executive Officer and Group CEO: Kaoru Hayashi; DG) developed a peer-to- peer crypto asset derivative contract protocol and executed a contract based on this protocol on the Bitcoin Blockchain. Blockstream Corporation (HQ: Victoria Canada; CEO: Adam Back; Blockstream), the global leader in blockchain technology and financial cryptography, and Crypto Garage entered into a derivative contract that locks the future Bitcoin price [on a collared basis] in order to hedge the Bitcoin price fluctuation risk against the US dollar. Crypto Garage developed a P2P derivative technology based on the Discreet Log Contracts (https://dci.mit.edu/smart-contracts) that Thaddeus Dryja from MIT Digital Currency Initiatives proposed. This contract is a smart contract applied on the Bitcoin Blockchain and requires the agreement and posting of collateral by both parties. The agreed terms and collateral are defined on the Bitcoin Blockchain. Since settlement is cryptographically secured, this contract minimizes counterparty risk, such as breach of contract and other contract termination events. Contact: Hiroshi Ikemoto, Leo Shiraishi, Corporate Communication Dept., Digital Garage, Inc. Email: [email protected], TEL: +81-3-6367-1101 April 19, 2019 Crypto Garage, Inc. NEWS RELEASE The bitcoin price for the maturity date is determined by the ICE Cryptocurrency Data Feed, as agreed upon by both parties in advance.
    [Show full text]
  • Company Overview
    October 19, 2018 250845436 Cryptocurrency | Victoria, BC | Founded: 2014 | Employees: 60 | https://blockstream.com/ PHONE: N/A WIKIPEDIA: https://en.wikipedia.org/wiki/Blockstream BLOOMBERG: https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=273952098 LINKEDIN: https://www.linkedin.com/company/blockstream/ COMPANY OVERVIEW Blockstream is a dual-mission blockchain development company, looking to simultaneously improve the state of the art in blockchain technology while identifying opportunities for application and commercialization of such developments. Blockstream aims to make significant contribution to the blockchain ecosystem through its open- source development of blockchain infrastructure as well as industry software solutions. SENIOR MANAGEMENT Adam Back: Co-Founder & CEO (2014-present). Currently: Applied Cryptographer (independent), working on hashcash, committed transactions, homomorphic values, and researching blockchain decentralization and scalability (2010-present). Education: PhD Computer Science, University of Exeter (1995). Pieter Wuille: Co-Founder & Core Tech Engineer (2014-present). Previously: Site Reliability Engineer, Google (2012- 2014); PhD Researcher, K.U.Leuven (2007-2011). Education: PhD Computer Science, K.U. Leuven (2007). Samson Mow: Chief Strategy Officer (2017-present). Previously: COO, BTCC (2015-2017); Director of Production, Ubisoft (2009-2011). Currently: Founder and CEO, Pixelmatic (2011-present). Education: BBA Management Information Systems & Marketing, Simon Fraser University (2002). HISTORY Blockstream was founded in 2014 by Adam Back, Pieter Wuille, Greg Maxwell, and a group of other prominent blockchain developers with the goal of accelerating blockchain development and its commercial applications. Several of the founders were involved in the original development of Bitcoin.1 Since the inception of Blockstream, it has launched several products, established major business and technical partnerships, raised two rounds of funding, and expanded its reach internationally.
    [Show full text]
  • Science and Technology Briefings– No
    Briefing ___ Understanding Blockchain s ___ April 4 2 0 1 8 How A Blockchain Works Summary The protocol that powers Bitcoin appeared 10 years ago as a combination of existing technologies. The blockchain enables decentralized and secure transactions without the need for a trusted third party. The potential applications are much broader than just cryptocurrencies and while they are extremely promising, today the technology is generally not yet mature enough for large scale solutions. Further research and innovation are needed to solve blockchain’s scalability limitations as well as its high energy consumption. Source : OPECST from Blockchain France Mrs Valéria Faure-Muntian and Mr Claude de Ganay, Members of the National Assembly, Mr Ronan Le Gleut, Senator Context This memo answers a request from the common fact- The invention of hashcash by Adam Back in 1997 was a finding mission on “Use cases of the blockchain and significant achievement in the idea of validating other data certification technologies” created by the transactions using cryptographic hashes, called “proof National Assembly. It will be followed by a more of work”(4). The goal of these technologies is to remove advanced memo. What we refer to as the blockchain the need for “trusted third parties”, by relying instead are the technologies for storing and transmitting on a distributed network of trust based on an data allowing the creation of distributed, immutable “digital ledger”. duplicated ledgers, without a centralized authority, The obstacle to overcome lies in the problem of secured through cryptography, and organized into double spending (the risk that the same asset could be linked blocks of information at regular intervals of spent twice) and, more generally, around network fault time.
    [Show full text]
  • Virtual Currencies Bitcoin & What Now After Liberty Reserve, Silk Road
    Richmond Journal of Law and Technology Volume 20 | Issue 4 Article 3 2014 Virtual Currencies Bitcoin & What Now After Liberty Reserve, Silk Road, and Mt. Gox? Lawrence Trautman Follow this and additional works at: http://scholarship.richmond.edu/jolt Part of the Banking and Finance Law Commons, and the Computer Law Commons Recommended Citation Lawrence Trautman, Virtual Currencies Bitcoin & What Now After Liberty Reserve, Silk Road, and Mt. Gox?, 20 Rich. J.L. & Tech 13 (2014). Available at: http://scholarship.richmond.edu/jolt/vol20/iss4/3 This Article is brought to you for free and open access by UR Scholarship Repository. It has been accepted for inclusion in Richmond Journal of Law and Technology by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Richmond Journal of Law & Technology Volume XX, Issue 4 VIRTUAL CURRENCIES; BITCOIN & WHAT NOW AFTER LIBERTY RESERVE, SILK ROAD, AND MT. GOX? Lawrence Trautman* Cite as: Lawrence Trautman, Virtual Currencies Bitcoin & What Now After Liberty Reserve, Silk Road, and Mt. Gox?, 20 RICH. J.L. & TECH. 13 (2014), http://jolt.richmond.edu/v20i4/article13.pdf. I. OVERVIEW [1] During 2013, the U.S. Treasury Department evoked the first use of the 2001 Patriot Act1 to exclude virtual currency provider Liberty Reserve from the U.S. financial system.2 This article will discuss: the regulation of virtual currencies, cybercrimes and payment systems, darknets, Tor and the “deep web,” Bitcoin; Liberty Reserve, Silk Road, and Mt. Gox. Virtual currencies have quickly become a reality, gaining significant traction in a very short period of time, and are evolving rapidly.
    [Show full text]
  • Brute-Force Cryptanalysis with Aging Hardware: Controlling Half the Output of SHA-256 Mellila Bouam, Charles Bouillaguet, Claire Delaplace
    Brute-Force Cryptanalysis with Aging Hardware: Controlling Half the Output of SHA-256 Mellila Bouam, Charles Bouillaguet, Claire Delaplace To cite this version: Mellila Bouam, Charles Bouillaguet, Claire Delaplace. Brute-Force Cryptanalysis with Aging Hard- ware: Controlling Half the Output of SHA-256. 2019. hal-02306904v1 HAL Id: hal-02306904 https://hal.archives-ouvertes.fr/hal-02306904v1 Preprint submitted on 7 Oct 2019 (v1), last revised 26 Jun 2021 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Brute-Force Cryptanalysis with Aging Hardware: Controlling Half the Output of SHA-256 Mellila Bouam1, Charles Bouillaguet2, Claire Delaplace3 1 Ecole Superieure d’Informatique, Alger, Algeria [email protected] 2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France [email protected] 3 Horst Görtz Institute for IT Security Ruhr University Bochum, Germany [email protected] Abstract. This paper describes a “three-way collision” on SHA-256 trun- cated to 128 bits. More precisely, it gives three random-looking bit strings whose hashes by SHA-256 maintain a non-trivial relation: their XOR starts with 128 zero bits.
    [Show full text]
  • Bitcoin White Paper Made Simple
    Bitcoin White Paper Made Simple A guide to understanding the Bitcoin white paper for people without an advanced degree in computer geekery CONTENTS 2 WTF 3 Incentive 23 Background 7 Reclaiming Disk Space 23 Introduction 10 Simplified Payment Verification 23 Transactions 13 Combining and Splitting Value 23 Timestamp Server 13 Privacy 23 Proof of Work 13 Calculations 23 Network 13 Conclusion 28 BR.THE BLOCKCHAIN REVIEW 3 WTF BR.THE BLOCKCHAIN REVIEW WTF 4 Most of us regular folk have been scratching our average work required is exponential in heads in utter bewilderment ever since the release of the number of zero bits required and can the Bitcoin White Paper in 2008. I mean common. be verified by executing a single hash. For WTF is going on, right? our timestamp network, we implement the proof-of-work by incrementing a nonce in Take a look at this… the block until a value is found that gives the block’s hash the required zero bits. Once To implement a distributed timestamp the CPU effort has been expended to make it ” server on a peer-to-peer basis, we will need satisfy the proof-of-work, the block cannot to use a proof-of-work system similar to be changed without redoing the work.” Adam Back’s Hashcash [6], rather than Yep. This is not a drill. newspaper or Usenet posts. The proof-of- work involves scanning for a value that That’s a real excerpt from the Bitcoin White Paper. when hashed, such as with SHA-256, the In fact, it addresses one of the most important hash begins with a number of zero bits.
    [Show full text]
  • What Satoshi Did Not Know Invited Keynote Address
    What Satoshi Did Not Know Invited Keynote Address Gavin Andresen? Bitcoin Foundation 1 Introduction When Bitcoin was invented six years ago (cf. [8]), Barack Obama had just been inaugurated president and Lady Gaga had just released her first big single. If you are 20 years old, that probably seems like forever ago. If you are 48 like me, that seems like not all that long ago. I first heard about Bitcoin in 2010, and was attracted to it because it combined economics, peer-to-peer networking and crypto in a really interesting way. I'm going to talk about what we have learned over the last six years. Satoshi knew a lot, but he wasn't omniscient { I think there were a lot of things, both big and small, that he didn't know when he was inventing Bitcoin. I will finish by talking about some things that I think we still do not know. 2 What Satoshi Didn't Know I think one of the things Satoshi did not know is would it bootstrap? Would anybody, besides geeks like me and him, be interested in this complicated piece of technology? Is there some way of creating value out of nothing? Because that's the thing that trips up most people: how can you bootstrap a currency from literally zero value? It had no worth for the first year of its life. I don't think Satoshi knew if this was possible or not. If you go back and look at some of his early writings, he was completely wrong about the ways it might bootstrap.
    [Show full text]
  • Université Du Québec À Montréal Opérations Non Rudimentaires De Tables De Hachage Distribuées Et Clavardage En Groupe Sû
    UNIVERSITÉ DU QUÉBEC À MONTRÉAL OPÉRATIONS NON RUDIMENTAIRES DE TABLES DE HACHAGE DISTRIBUÉES ET CLAVARDAGE EN GROUPE SÛR DE BOUT EN BOUT MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE PAR SIMON DÉSAULNIERS SEPTEMBRE 2019 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522 - Rév .07-2011). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l 'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l 'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l 'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.» REMERCIEMENTS Je tiens à remercier mes anciens collègues chercheurs et concepteurs de logiciels pour leur accueil chaleureux et leur enthousiasme distingué au travail. C'est dans l'ambiance réalisée par la présence de gens comme Andreas Traczyk, Alexandre Viau, Guillaume Roguez et Adrien Béraud que j'ai pu m'épanouir et connaître l'expérience de travail dans une équipe RD sur des sujets passionnants comme les systèmes distribués, et ce en ayant le souci du respect de l'utilisateur en dévelop- pant des solutions libres.
    [Show full text]
  • A Comprehensive Survey on Blockchain's Technology
    Graduado en Matemáticas e Informática Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Informáticos TRABAJO FIN DE GRADO A Comprehensive Survey on Blockchain’s Technology Autor: Alejandro Esquivias Cañadas Director: Dr. Kashif Sharif BEIJING, JUNIO 2019 Acknowledgments This thesis was done in collaboration with Beijing Institute of Technology, with Dr. Kashif Sharif as the supervisor and with the help of Biswas Sujit. I would like to thank my family for all the support, Andrea for the help with the cryptography part as well as the constant support she gave me. Last but not least I would like to thank all the friends (Dani and Omar particularly) I have shared good memories with and have helped me during these years. CONTENTS I- INTRODUCTION ............................................................................................................... 1 1. Overview of Thesis ............................................................................................................ 1 2. Motivation ......................................................................................................................... 2 3. Contributions ..................................................................................................................... 2 II- BLOCKCHAIN TECHNOLOGY INTRODUCTION ................................................ 5 1. Blockchain overview .......................................................................................................... 5 1.1- Difference between symmetric and asymmetric
    [Show full text]
  • Download Particl.Pdf
    A Private and Decentralized Marketplace Kewde ⚪ Anonymous upon till now.. ⚪ Bachelor’s degree in business engineering (last year) ⚪ 21 years old, but fascinated by computers at the age of 12 ⚪ Interests Programming, security, anonymity, applied cryptography, decentralized networks, cryptocurrencies, automation, [email protected] electronics PGP: 09CF4376 ⚪ Dutch & French Research & Development Maintainer Open Source software and funding ⚪ Many Open Source projects are struggling to get by… ⚪ Grants and user donations (e.g. Tor, Signal, …) ⚪ Traditional business model doesn’t apply here Some privacy projects that were struggling to get by ⚪ On the verge of abandonment ⚪ Maintained by Werner Koch ⚪ Raised $135K in grants and donations after a cry for help ⚪ Hardened Android OS ⚪ Developed by Daniel Micay (strcat), James Donaldson (dnj) CopperheadOS ⚪ Open Source but not Free, adopted a more restrictive licence copperhead.co/android There’s one category that seems to have it somewhat figured out Cryptocurrencies Privacy cryptocurrencies ⚪ Economic incentive for ⚪ Works for financial privacy developers, community ⚪ Hopefully we’ll see more privacy members, ... projects sustained by the ⚪ Not relying on charity, grants cryptocurrency model etc. ⚪ Interesting to see how they fund themselves “A platform that integrates a variety of tools to take back privacy.” ⚪ Cryptocurrency: Private transactions ⚪ SMSG: end-to-end encrypted messaging ⚪ Private Marketplace (in progress) Particl — A Private and Decentralized Marketplace Why? ⚪ Marketplaces these days require an absurd amount of personal information & trust ⚪ Centralized marketplaces have a lot of power over sellers & buyers ⚪ Businesses are generally more interested in privacy than the average person ⚪ An open system allows competitors to easily identify your customers, best selling products, ..
    [Show full text]
  • Shareholder Letter
    Dear Shareholders, Today we announced that Aker1 has established Seetee2, a new com- pany that will invest in exciting projects and companies throughout the Bitcoin ecosystem while keeping all of its liquid investable assets in bit- coin3. Te new company has a capitalisation of NOK 500 million, an amount we aim to increase signifcantly over time as we gain experience and identify exciting opportunities. Before I proceed with our story, I want to state upfront that I am aware that Bitcoin is often criticised for a number of perceived chal- lenges, including its electricity consumption, its inability to scale with re- spect to transactions, and its potential to facilitate anonymous illegiti- mate payments. We believe that Bitcoin can be a solution rather than a problem for each of those, but we will get to the arguments for that later. Seetee’s strategy is threefold. First, we will use bitcoin as our treasury asset and join the community. In Bitcoin speak, we will be hodlers. We will be different, but additive. Perhaps not as rebellious as the cypherpunks who invented Bitcoin. But 1 Aker has a 180-year history as an important industrial group in Norway. In 1996, I proudly became the main shareholder and our family still owns more than two thirds of the company today. For more information, see https://www.akerasa.com/en. 2 Contra terrene, C.T., or seetee, is a term from two science fction books by Jack Williamson, Seetee Ship and Seetee Shock, where it refers to antimat- ter. In physics, antimatter is the opposite of matter, which is the costliest material to produce according to some sources.
    [Show full text]
  • Polkadot: Vision for a Heterogeneous Multi-Chain Framework Draft 1
    POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 DR. GAVIN WOOD FOUNDER, ETHEREUM & PARITY [email protected] Abstract. Present-day blockchain architectures all suffer from a number of issues not least practical means of extensi- bility and scalability. We believe this stems from tying two very important parts of the consensus architecture, namely canonicality and validity, too closely together. This paper introduces an architecture, the heterogeneous multi-chain, which fundamentally sets the two apart. In compartmentalising these two parts, and by keeping the overall functionality provided to an absolute minimum of security and transport, we introduce practical means of core extensibility in situ. Scalability is addressed through a divide-and-conquer approach to these two functions, scaling out of its bonded core through the incentivisation of untrusted public nodes. The heterogeneous nature of this architecture enables many highly divergent types of consensus systems interop- erating in a trustless, fully decentralised \federation", allowing open and closed networks to have trust-free access to each other. We put forward a means of providing backwards compatibility with one or more pre-existing networks such as Ethereum. We believe that such a system provides a useful base-level component in the overall search for a practically implementable system capable of achieving global-commerce levels of scalability and privacy. 1. Preface technological promise and grand talk, we have yet to see significant real-world deployment of present technology. This is intended to be a technical \vision" summary We believe that this is down to five key failures of present of one possible direction that may be taken in further de- technology stacks: veloping the blockchain paradigm together with some ra- tionale as to why this direction is sensible.
    [Show full text]