Polkadot: Vision for a Heterogeneous Multi-Chain Framework Draft 1

Total Page:16

File Type:pdf, Size:1020Kb

Polkadot: Vision for a Heterogeneous Multi-Chain Framework Draft 1 POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 DR. GAVIN WOOD FOUNDER, ETHEREUM & PARITY [email protected] Abstract. Present-day blockchain architectures all suffer from a number of issues not least practical means of extensi- bility and scalability. We believe this stems from tying two very important parts of the consensus architecture, namely canonicality and validity, too closely together. This paper introduces an architecture, the heterogeneous multi-chain, which fundamentally sets the two apart. In compartmentalising these two parts, and by keeping the overall functionality provided to an absolute minimum of security and transport, we introduce practical means of core extensibility in situ. Scalability is addressed through a divide-and-conquer approach to these two functions, scaling out of its bonded core through the incentivisation of untrusted public nodes. The heterogeneous nature of this architecture enables many highly divergent types of consensus systems interop- erating in a trustless, fully decentralised \federation", allowing open and closed networks to have trust-free access to each other. We put forward a means of providing backwards compatibility with one or more pre-existing networks such as Ethereum. We believe that such a system provides a useful base-level component in the overall search for a practically implementable system capable of achieving global-commerce levels of scalability and privacy. 1. Preface technological promise and grand talk, we have yet to see significant real-world deployment of present technology. This is intended to be a technical \vision" summary We believe that this is down to five key failures of present of one possible direction that may be taken in further de- technology stacks: veloping the blockchain paradigm together with some ra- tionale as to why this direction is sensible. It lays out in Scalability: How much resources are spent globally as much detail as is possible at this stage of development on processing, bandwidth and storage for the sys- a system which may give a concrete improvement on a tem to process a single transaction and how many number of aspects of blockchain technology. transactions can be reasonably processed under It is not intended to be a specification, formal or oth- peak conditions? erwise. It is not intended to be comprehensive nor to be a Isolatability: Can the divergent needs of multiple final design. It is not intended to cover non-core aspects parties and applications be addressed to a near- of the framework such as APIs, bindings, languages and optimal degree under the same framework? usage. This is notably experimental; where parameters Developability: How well do the tools work? Do are specified, they are likely to change. Mechanisms will the APIs address the developers' needs? Are ed- be added, refined and removed in response to community ucational materials available? Are the right inte- ideas and critiques. Large portions of this paper will likely grations there? be revised as experimental evidence and prototyping gives Governance: Can the network remain flexible to us information about what will work and what not. evolve and adapt over time? Can decisions be This document includes a core description of the pro- made with sufficient inclusivity, legitimacy and tocol together with ideas for directions that may be taken transparency to provide effective leadership of a to improve various aspects. It is envisioned that the core decentralised system? description will be used as the starting point for an initial Applicability: Does the technology actually ad- series of proofs-of-concept. A final \version 1.0" would be dress a burning need on its own? Is other \mid- based around this refined protocol together with the ad- dleware" required in order to bridge the gap to ditional ideas that become proven and are determined to actual applications? be required for the project to reach its goals. In the present work, we aim to address the first two 1.1. History. issues: scalability and isolatability. That said, we believe the Polkadot framework can provide meaningful improve- • 09/10/2016: 0.1.0-proof1 ments in each of these classes of problems. • 20/10/2016: 0.1.0-proof2 Modern, efficient blockchain implementations such as • 01/11/2016: 0.1.0-proof3 the Parity Ethereum client [17] can process in excess of • 10/11/2016: 0.1.0 3,000 transactions per second when running on perfor- mant consumer hardware. However, current real-world 2. Introduction blockchain networks are practically limited to around 30 Blockchains have demonstrated great promise of util- transactions per second. This limitation mainly origi- ity over several fields including \Internet of Things" nates from the fact that the current synchronous consen- (IoT), finance, governance, identity management, web- sus mechanisms require wide timing margins of safety on decentralisation and asset-tracking. However, despite the the expected processing time, which is exacerbated by the 1 POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT 1 2 desire to support slower implementations. This is due to the reader should be aware that certain mechanisms may the underlying consensus architecture: the state transi- be described (for example interoperation with other pub- tion mechanism, or the means by which parties collate lic networks) which are not directly relevant to Polkadot and execute transactions, has its logic fundamentally tied when deployed under non-public (\permissioned") situa- into the consensus \canonicalisation" mechanism, or the tions. means by which parties agree upon one of a number of possible, valid, histories. This applies equally to both proof-of-work (PoW) sys- 2.2. Previous work. Decoupling the underlying consen- tems such as Bitcoin [15] and Ethereum [5,23] and proof- sus from the state-transition has been informally proposed of-stake (PoS) systems such as NXT [8] and Bitshares [12]: in private for at least two years|Max Kaye was a pro- all ultimately suffer from the same handicap. It is a simple ponent of such a strategy during the very early days of strategy that helped make blockchains a success. However, Ethereum. by tightly coupling these two mechanisms into a single unit A more complex scalable solution known as Chain of the protocol, we also bundle together multiple different fibers, dating back to June 2014 and first published later actors and applications with different risk profiles, differ- that year1, made the case for a single relay-chain and mul- ent scalability requirements and different privacy needs. tiple homogeneous chains providing a transparent inter- One size does not fit all. Too often it is the case that in a chain execution mechanism. Decoherence was paid for desire for broad appeal, a network adopts a degree of con- through transaction latency|transactions requiring the servatism which results in a lowest-common-denominator coordination of disparate portions of the system would optimally serving few and ultimately leading to a failing take longer to process. Polkadot takes much of its ar- in the ability to innovate, perform and adapt, sometimes chitecture from that and the follow-up conversations with dramatically so. various people, though it differs greatly in much of its de- Some systems such as e.g. Factom [21] drop the state- sign and provisions. transition mechanism altogether. However, much of the While there are no systems comparable to Polkadot utility that we desire requires the ability to transition state actually in production, several systems of some relevance according to a shared state-machine. Dropping it solves have been proposed, though few in any substantial level of an alternative problem; it does not provide an alternative detail. These proposals can be broken down into systems solution. which drop or reduce the notion of a globally coherent It seems clear, therefore, that one reasonable direction state machine, those which attempt to provide a globally to explore as a route to a scalable decentralised compute coherent singleton machine through homogeneous shards platform is to decouple the consensus architecture from and those which target only heterogeneity. the state-transition mechanism. And, perhaps unsurpris- ingly, this is the strategy that Polkadot adopts as a solu- tion to scalability. 2.2.1. Systems without Global State. Factom [21] is a sys- 2.1. Protocol, Implementation and Network. Like tem that demonstrates canonicality without the according Bitcoin and Ethereum, Polkadot refers at once to a net- validity, effectively allowing the chronicling of data. Be- work protocol and the (hitherto presupposed) primary cause of the avoidance of global state and the difficulties public network that runs this protocol. Polkadot is in- with scaling which this brings, it can be considered a scal- tended to be a free and open project, the protocol speci- able solution. However, as mentioned previously, the set fication being under a Creative Commons license and the of problems it solves is strictly and substantially smaller. code being placed under a FLOSS license. The project is Tangle [18] is a novel approach to consensus systems. developed in an open manner and accepts contributions Rather than arranging transactions into blocks and form- where ever they are useful. A system of RFCs, not unlike ing consensus over a strictly linked list to give a glob- the Python Enhancement Proposals, will allow a means of ally canonical ordering of state-changes, it largely aban- publicly collaborating over protocol changes and upgrades. dons the idea of a heavily structured ordering and instead Our initial implementation of the Polkadot protocol pushes for a directed acyclic graph of dependent trans- will be known as the Parity Polkadot Platform and will actions with later items helping canonicalise earlier items include a full protocol implementation together with API through explicit referencing. For arbitrary state-changes, bindings. Like other Parity blockchain implementations, this dependency graph would quickly become intractable, PPP is designed to be a general-purpose blockchain tech- however for the much simpler UTXO model2 this becomes nology stack, neither uniquely for a public network nor for quite reasonable.
Recommended publications
  • Peer Co-Movement in Crypto Markets
    Peer Co-Movement in Crypto Markets G. Schwenkler and H. Zheng∗ February 4, 2021y Abstract We show that peer linkages induce significant price co-movement in crypto markets in excess of common risk factors and correlated demand shocks. When large abnormal return shocks hit one crypto, its peers experience unusually large abnormal returns of the opposite sign. These effects are primarily concentrated among smaller peers and revert after several weeks, resulting in predictable returns. We develop trading strategies that exploit this rever- sal, and show that they are profitable even after accounting for trading fees and frictions. We establish our results by identifying crypto peers through co-mentions in online news using novel natural language processing technologies. Keywords: Cryptocurrencies, peers, co-movement, competition, natural language pro- cessing. JEL codes: G12, G14, C82. ∗Schwenkler is at the Department of Finance, Santa Clara University Leavey School of Business. Zheng is at the Department of Finance, Boston University Questrom School of Business. Schwenkler is corresponding author. Email: [email protected], web: http://www.gustavo-schwenkler.com. yThis is a revision of a previous paper by the two authors called \Competition or Contagion: Evidence from Cryptocurrency Markets." We are grateful to Jawad Addoum (discussant), Daniele Bianchi (discussant), Will Cong, Tony Cookson, Sanjiv Das, Seoyoung Kim, Andreas Neuhierl, Farzad Saidi, and Antoinette Schoar, seminar participants at Boston University and the Society for Financial Econometrics, and the participants at the 2020 Finance in the Cloud III Virtual Conference, the 2020 MFA Annual Meeting, the 3rd UWA Blockchain, Cryptocurrency and FinTech Conference, and the 2020 INFORMS Annual Meeting for useful comments and suggestions.
    [Show full text]
  • Blockchain in an Internet-Of-Things Network Based on User Participation
    Blockchain in an Internet-of-Things Network Based on User Participation Robert Ljungblad Computer Science and Engineering, bachelor's level 2019 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering ABSTRACT The internet-of-things is the relatively new and rapidly growing concept of connecting everyday devices to the internet. Every day more and more devices are added to the internet-of-things and it is not showing any signs of slowing down. In addition, advancements in new technologies such as blockchains, artificial intelligence, virtual reality and machine learning are made practically every day. However, there are still much to learn about these technologies. This thesis explores the possibilities of blockchain technology by applying it to an internet-of-things network based on user participation. More specifically, it is applied to a use case derived from Luleå Kommun’s wishes to easier keep track of how full the city’s trash cans are. The goal of the thesis is to learn more about how blockchains can help an internet-of-things network as well as what issues can arise. The method takes an exploratory approach to the problem by partaking in a workshop with Luleå Kommun and by performing a literature study. It also takes a qualitative approach by creating a proof-of-concept solution to experience the technology firsthand. The final proof-of-concept as well as issues that arose during the project are analysed with the help of information gathered and experience gained throughout the project. It is concluded that blockchain technology can help communication in an internet-of-things network based on user participation.
    [Show full text]
  • Linking Wallets and Deanonymizing Transactions in the Ripple Network
    Proceedings on Privacy Enhancing Technologies ; 2016 (4):436–453 Pedro Moreno-Sanchez*, Muhammad Bilal Zafar, and Aniket Kate* Listening to Whispers of Ripple: Linking Wallets and Deanonymizing Transactions in the Ripple Network Abstract: The decentralized I owe you (IOU) transac- 1 Introduction tion network Ripple is gaining prominence as a fast, low- cost and efficient method for performing same and cross- In recent years, we have observed a rather unexpected currency payments. Ripple keeps track of IOU credit its growth of IOU transaction networks such as Ripple [36, users have granted to their business partners or friends, 40]. Its pseudonymous nature, ability to perform multi- and settles transactions between two connected Ripple currency transactions across the globe in a matter of wallets by appropriately changing credit values on the seconds, and potential to monetize everything [15] re- connecting paths. Similar to cryptocurrencies such as gardless of jurisdiction have been pivotal to their suc- Bitcoin, while the ownership of the wallets is implicitly cess so far. In a transaction network [54, 55, 59] such as pseudonymous in Ripple, IOU credit links and transac- Ripple [10], users express trust in each other in terms tion flows between wallets are publicly available in an on- of I Owe You (IOU) credit they are willing to extend line ledger. In this paper, we present the first thorough each other. This online approach allows transactions in study that analyzes this globally visible log and charac- fiat money, cryptocurrencies (e.g., bitcoin1) and user- terizes the privacy issues with the current Ripple net- defined currencies, and improves on some of the cur- work.
    [Show full text]
  • User Manual Ledger Nano S
    User Manual Ledger Nano S Version control 4 Check if device is genuine 6 Buy from an official Ledger reseller 6 Check the box contents 6 Check the Recovery sheet came blank 7 Check the device is not preconfigured 8 Check authenticity with Ledger applications 9 Summary 9 Learn more 9 Initialize your device 10 Before you start 10 Start initialization 10 Choose a PIN code 10 Save your recovery phrase 11 Next steps 11 Update the Ledger Nano S firmware 12 Before you start 12 Step by step instructions 12 Restore a configuration 18 Before you start 19 Start restoration 19 Choose a PIN code 19 Enter recovery phrase 20 If your recovery phrase is not valid 20 Next steps 21 Optimize your account security 21 Secure your PIN code 21 Secure your 24-word recovery phrase 21 Learn more 22 Discover our security layers 22 Send and receive crypto assets 24 List of supported applications 26 Applications on your Nano S 26 Ledger Applications on your computer 27 Third-Party applications on your computer 27 If a transaction has two outputs 29 Receive mining proceeds 29 Receiving a large amount of small transactions is troublesome 29 In case you received a large amount of small payments 30 Prevent problems by batching small transactions 30 Set up and use Electrum 30 Set up your device with EtherDelta 34 Connect with Radar Relay 36 Check the firmware version 37 A new Ledger Nano S 37 A Ledger Nano S in use 38 Update the firmware 38 Change the PIN code 39 Hide accounts with a passphrase 40 Advanced Passphrase options 42 How to best use the passphrase feature 43
    [Show full text]
  • Blockchain Interoperability (Part 3) Polkadot
    December 2020 Blockchain Interoperability (Part 3) Polkadot The Digital Investor Redefining Finance for the New Economy The Digital Investor January 2021 Table of Contents Abstract 2 1. Introduction 3 2. The foundation of Web 3.0 3 3. Architecture 4 4. Consensus mechanism 4 5. Stakeholders 5 6. Economics 5 7. Valuation 7 8. Conclusion 9 Abstract Polkadot is a promising project that should interest investors. First, interoperability increas- es digital asset utilisation, and Polkadot offers all the broadest type of interoperability. The success of DeFi, as a specific interoperability application, shows the potential of these types of solutions. Second, Polkadot and its framework Substrate democratise blockchain Authors development. We expect developers to use this platform to populate the ecosystem with new applications. Both these points together are likely to help Polkadot achieve higher Yves Longchamp network effect. Head of Research SEBA Bank AG Saurabh Deshpande Research Analyst B&B Analytics Private Limited Contact [email protected] 2 Blockchain Interoperability (Part 3) Polkadot 1. Interoperability may take Introduction many forms. In this edition of the Digital Investor, we focus In the November 2020 Digital Investor, we introduced blockchain interoperability or block- on interoperability in a broad chains’ ability to exchange information between different ecosystems. We concluded that interoperability facilitates secure and trustless value exchange, and we expect interop- sense. Polkadot aims to erability solutions to capture value in the future. Therefore, we think that interoperability connect all types of solutions demand investor attention. blockchains and transfer all Interoperability may take many forms. In this edition of The Digital Investor, we focus on types of messages between interoperability in a broad sense.
    [Show full text]
  • Blocksci: Design and Applications of a Blockchain Analysis Platform
    BlockSci: Design and applications of a blockchain analysis platform Harry Kalodner Steven Goldfeder Alishah Chator [email protected] [email protected] [email protected] Princeton University Princeton University Johns Hopkins University Malte Möser Arvind Narayanan [email protected] [email protected] Princeton University Princeton University ABSTRACT to partition eectively. In fact, we conjecture that the use of a tra- Analysis of blockchain data is useful for both scientic research ditional, distributed transactional database for blockchain analysis and commercial applications. We present BlockSci, an open-source has innite COST [5], in the sense that no level of parallelism can software platform for blockchain analysis. BlockSci is versatile in outperform an optimized single-threaded implementation. its support for dierent blockchains and analysis tasks. It incorpo- BlockSci comes with batteries included. First, it is not limited rates an in-memory, analytical (rather than transactional) database, to Bitcoin: a parsing step converts a variety of blockchains into making it several hundred times faster than existing tools. We a common, compact format. Currently supported blockchains in- describe BlockSci’s design and present four analyses that illustrate clude Bitcoin, Litecoin, Namecoin, and Zcash (Section 2.1). Smart its capabilities. contract platforms such as Ethereum are outside our scope. Second, This is a working paper that accompanies the rst public release BlockSci includes a library of useful analytic and visualization tools, of BlockSci, available at github.com/citp/BlockSci. We seek input such as identifying special transactions (e.g., CoinJoin) and linking from the community to further develop the software and explore addresses to each other based on well-known heuristics (Section other potential applications.
    [Show full text]
  • Ethereum Introduction
    Cryptocurrencies & Security on the Blockchain Ethereum Introduction Prof. Tom Austin San José State University Some Brief Ethereum Facts • Number 2 cryptocurrency by market cap. – Not why we are studying it • Core developers – Vitalik Buterin (creator) – Gavin Wood • Block 0 mined July 30, 2015 Ethereum Prehistory: Mastercoin • Protocol layer on top of Bitcoin • Focused on financial contracts – Two-party contracts with enforced terms • October 2013: Vitalik suggested a more flexible scripting language – More limited vision – Not Turing-complete December 2013: Ethereum Proposal • The name "Ethereum" first appears in print • Transaction fees for different actions included – Computational steps paid for in ether (this concept changed later) – Once fees exhausted, processing stops • Contracts became accounts in their own right More History • Gavin Wood joins project – Designs the Ethereum Virtual Machine (EVM). – Writes "The Yellow Paper" in 2014. • Gas model changes – Miners explicitly vote on gas price. – Previous approaches allowed them to implicitly do this anyway. Account Types • Externally owned accounts (EOAs) – Equivalent to accounts in Bitcoin – Have a private key • Contract accounts – Have contract code – No private key • Cannot initiate transactions – Can react to transactions and call other contracts – Contain data Common Features with Bitcoin • Digital currency – Called ether (ETH) • Not "ethereum" – Smallest unit: wei • Proof-of-work blockchain – Ethash – designed to be ASIC-resistant – Much quicker: 14-15 second block time – Plans to move to proof-of-stake (Casper) • Peer-to-peer network Differences from Bitcoin • Turing-complete virtual machine – Almost… – Brings up a lot of security issues • Gas – Prevents denial-of-service attacks – Transactions specify • ETH earmarked for gas • gas-rate • Less conservative development culture – "Move fast and break things" – More frequent hard-forks – Expect changes Lab, Part 1 Create Ethereum MetaMask wallet.
    [Show full text]
  • Merged Mining: Curse Or Cure?
    Merged Mining: Curse or Cure? Aljosha Judmayer, Alexei Zamyatin, Nicholas Stifter, Artemios Voyiatzis, Edgar Weippl SBA Research, Vienna, Austria (firstletterfirstname)(lastname)@sba-research.org Abstract: Merged mining refers to the concept of mining more than one cryp- tocurrency without necessitating additional proof-of-work effort. Although merged mining has been adopted by a number of cryptocurrencies already, to this date lit- tle is known about the effects and implications. We shed light on this topic area by performing a comprehensive analysis of merged mining in practice. As part of this analysis, we present a block attribution scheme for mining pools to assist in the evaluation of mining centralization. Our findings disclose that mining pools in merge-mined cryptocurrencies have operated at the edge of, and even beyond, the security guarantees offered by the underlying Nakamoto consensus for ex- tended periods. We discuss the implications and security considerations for these cryptocurrencies and the mining ecosystem as a whole, and link our findings to the intended effects of merged mining. 1 Introduction The topic of merged mining has received little attention from the scientific community, despite having been actively employed by a number of cryptocurrencies for several years. New and emerging cryptocurrencies such as Rootstock continue to consider and expand on the concept of merged mining in their designs to this day [19]. Merged min- ing refers to the process of searching for proof-of-work (PoW) solutions for multiple cryptocurrencies concurrently without requiring additional computational resources. The rationale behind merged mining lies in leveraging on the computational power of different cryptocurrencies by bundling their resources instead of having them stand in direct competition, and also to serve as a bootstrapping mechanism for small and fledgling networks [27, 33].
    [Show full text]
  • Crypto Garage Developed and Executed the Contract of a P2P
    April 19, 2019 Crypto Garage, Inc. NEWS RELEASE Crypto Garage Developed and Executed the Contract of a P2P Protocol Based Crypto Asset Derivative Settled in Bitcoin 〜Executed First Derivative Contract with Blockstream〜 Crypto Garage, Inc. (HQ: Tokyo; Representative Director: Masahito Okuma; Crypto Garage), a Fintech company developing blockchain financial services and also a subsidiary of Digital Garage, Inc. (TSE first section: 4819; HQ: Tokyo; Representative Director, President Executive Officer and Group CEO: Kaoru Hayashi; DG) developed a peer-to- peer crypto asset derivative contract protocol and executed a contract based on this protocol on the Bitcoin Blockchain. Blockstream Corporation (HQ: Victoria Canada; CEO: Adam Back; Blockstream), the global leader in blockchain technology and financial cryptography, and Crypto Garage entered into a derivative contract that locks the future Bitcoin price [on a collared basis] in order to hedge the Bitcoin price fluctuation risk against the US dollar. Crypto Garage developed a P2P derivative technology based on the Discreet Log Contracts (https://dci.mit.edu/smart-contracts) that Thaddeus Dryja from MIT Digital Currency Initiatives proposed. This contract is a smart contract applied on the Bitcoin Blockchain and requires the agreement and posting of collateral by both parties. The agreed terms and collateral are defined on the Bitcoin Blockchain. Since settlement is cryptographically secured, this contract minimizes counterparty risk, such as breach of contract and other contract termination events. Contact: Hiroshi Ikemoto, Leo Shiraishi, Corporate Communication Dept., Digital Garage, Inc. Email: [email protected], TEL: +81-3-6367-1101 April 19, 2019 Crypto Garage, Inc. NEWS RELEASE The bitcoin price for the maturity date is determined by the ICE Cryptocurrency Data Feed, as agreed upon by both parties in advance.
    [Show full text]
  • Can Ethereum Classic Reach 1000 Dollars Update [06-07-2021] 42 Loss in the Last 24 Hours
    1 Can Ethereum Classic Reach 1000 Dollars Update [06-07-2021] 42 loss in the last 24 hours. At that time Bitcoin reached its all-time high of 20,000 and so did Ethereum ETH which surpassed 1,000. 000 to reach 1; Tezos XTZ is priced at 2. In the unlikely event of a significant change for the worst, we expect the Bitcoin price to continue appreciating. ERC-721 started as a EIP draft written by dete and first came to life in the CryptoKitties project by Axiom Zen. ERC-721 A CLASS OF UNIQUE TOKENS. It does not mandate a standard for token metadata or restrict adding supplemental functions. Think of them like rare, one-of-a-kind collectables. The Standard. Institutions are mandating that they invest in clean green technologies and that s what ethereum is becoming, she said. Unlike bitcoin s so-called proof of work, which rewards miners who are competing against each other to use computers and energy to record and confirm transactions on its blockchain, ethereum plans to adopt the more efficient proof of stake model, which chooses a block validator at random based on how much ether it controls. Kaspar explained her thesis Friday on Yahoo Finance Live, citing new updates coming to the cryptocurrency s network later this year. 42 loss in the last 24 hours. At that time Bitcoin reached its all-time high of 20,000 and so did Ethereum ETH which surpassed 1,000. 000 to reach 1; Tezos XTZ is priced at 2. In the unlikely event of a significant change for the worst, we expect the Bitcoin price to continue appreciating.
    [Show full text]
  • Decentralized Reputation Model and Trust Framework Blockchain and Smart Contracts
    IT 18 062 Examensarbete 30 hp December 2018 Decentralized Reputation Model and Trust Framework Blockchain and Smart contracts Sujata Tamang Institutionen för informationsteknologi Department of Information Technology Abstract Decentralized Reputation Model and Trust Framework: Blockchain and Smart contracts Sujata Tamang Teknisk- naturvetenskaplig fakultet UTH-enheten Blockchain technology is being researched in diverse domains for its ability to provide distributed, decentralized and time-stamped Besöksadress: transactions. It is attributed to by its fault-tolerant and zero- Ångströmlaboratoriet Lägerhyddsvägen 1 downtime characteristics with methods to ensure records of immutable Hus 4, Plan 0 data such that its modification is computationally infeasible. Trust frameworks and reputation models of an online interaction system are Postadress: responsible for providing enough information (e.g., in the form of Box 536 751 21 Uppsala trust score) to infer the trustworthiness of interacting entities. The risk of failure or probability of success when interacting with an Telefon: entity relies on the information provided by the reputation system. 018 – 471 30 03 Thus, it is crucial to have an accurate, reliable and immutable trust Telefax: score assigned by the reputation system. The centralized nature of 018 – 471 30 00 current trust systems, however, leaves the valuable information as such prone to both external and internal attacks. This master's thesis Hemsida: project, therefore, studies the use of blockchain technology as an http://www.teknat.uu.se/student infrastructure for an online interaction system that can guarantee a reliable and immutable trust score. It proposes a system of smart contracts that specify the logic for interactions and models trust among pseudonymous identities of the system.
    [Show full text]
  • A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets
    Journal of Risk and Financial Management Review A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets Nikolaos A. Kyriazis Department of Economics, University of Thessaly, 38333 Volos, Greece; [email protected] Abstract: This study is an integrated survey of GARCH methodologies applications on 67 empirical papers that focus on cryptocurrencies. More sophisticated GARCH models are found to better explain the fluctuations in the volatility of cryptocurrencies. The main characteristics and the optimal approaches for modeling returns and volatility of cryptocurrencies are under scrutiny. Moreover, emphasis is placed on interconnectedness and hedging and/or diversifying abilities, measurement of profit-making and risk, efficiency and herding behavior. This leads to fruitful results and sheds light on a broad spectrum of aspects. In-depth analysis is provided of the speculative character of digital currencies and the possibility of improvement of the risk–return trade-off in investors’ portfolios. Overall, it is found that the inclusion of Bitcoin in portfolios with conventional assets could significantly improve the risk–return trade-off of investors’ decisions. Results on whether Bitcoin resembles gold are split. The same is true about whether Bitcoins volatility presents larger reactions to positive or negative shocks. Cryptocurrency markets are found not to be efficient. This study provides a roadmap for researchers and investors as well as authorities. Keywords: decentralized cryptocurrency; Bitcoin; survey; volatility modelling Citation: Kyriazis, Nikolaos A. 2021. A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets. Journal of Risk and 1. Introduction Financial Management 14: 293. The continuing evolution of cryptocurrency markets and exchanges during the last few https://doi.org/10.3390/jrfm years has aroused sparkling interest amid academic researchers, monetary policymakers, 14070293 regulators, investors and the financial press.
    [Show full text]