6187.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

6187.Full.Pdf Identification of TMEM131L as a Novel Regulator of Thymocyte Proliferation in Humans This information is current as Nesrine Maharzi, Véronique Parietti, Elisabeth Nelson, of October 2, 2021. Simona Denti, Macarena Robledo-Sarmiento, Niclas Setterblad, Aude Parcelier, Marika Pla, François Sigaux, Jean Claude Gluckman and Bruno Canque J Immunol 2013; 190:6187-6197; Prepublished online 20 May 2013; doi: 10.4049/jimmunol.1300400 Downloaded from http://www.jimmunol.org/content/190/12/6187 Supplementary http://www.jimmunol.org/content/suppl/2013/05/21/jimmunol.130040 http://www.jimmunol.org/ Material 0.DC1 References This article cites 44 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/190/12/6187.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of TMEM131L as a Novel Regulator of Thymocyte Proliferation in Humans Nesrine Maharzi,*,†,‡ Ve´ronique Parietti,*,†,‡ Elisabeth Nelson,*,†,‡ Simona Denti,*,†,‡ Macarena Robledo-Sarmiento,*,†,‡ Niclas Setterblad,x Aude Parcelier,*,†,‡ Marika Pla,{ Franc¸ois Sigaux,*,†,‡ Jean Claude Gluckman,*,†,‡ and Bruno Canque*,†,‡ In this study, we identify transmembrane protein 131–like (TMEM131L) as a novel regulator of thymocyte proliferation and demonstrate that it corresponds to a not as yet reported inhibitor of Wnt signaling. Short hairpin RNA–mediated silencing of TMEM131L in human CD34+ hematopoietic progenitors, which were then grafted in NOD-SCID/IL-2rgnull mice, resulted in both thymocyte hyperproliferation and multiple pre– and post–b-selection intrathymic developmental defects. Consistent with deregu- lated Wnt signaling, TMEM131L-deficient thymocytes expressed Wnt target genes at abnormally high levels, and they displayed both constitutive phosphorylation of Wnt coreceptor LRP6 and b-catenin intranuclear accumulation. Using T cell factor reporter Downloaded from assays, we found that membrane-associated TMEM131L inhibited canonical Wnt/b-catenin signaling at the LRP6 coreceptor level. Whereas membrane-associated TMEM131L did not affect LRP6 expression under basal conditions, it triggered lysosome- dependent degradation of its active phosphorylated form following Wnt activation. Genetic mapping showed that phosphorylated LRP6 degradation did not depend on TMEM131L cytoplasmic part but rather on a conserved extracellular domain proximal to the membrane. Collectively, these data indicate that, during thymopoiesis, stage-specific surface translocation of TMEM131L may regulate immature single-positive thymocyte proliferation arrest by acting through mixed Wnt-dependent and -independent http://www.jimmunol.org/ mechanisms. The Journal of Immunology, 2013, 190: 6187–6197. ollowing extravasation from the blood, early thymus mature pro–double-negative (DN)1 human thymocytes (CD34hi 2 immigrants establish lymphostromal synapses with cortical CD7++CD1a ) correlates with both the onset of cell proliferation thymic epithelial cells, which triggers proliferation and and upregulation of T lineage–affiliated genes (5). Downstream F int + + 2 drives their specification along the T cell lineage through the si- transition from the DN1 (CD34 CD7 CD5 CD1a ) to DN2 multaneous activation of the IL-7R, c-Kit, sonic hedgehog, Wnt/ (CD34loCD7+CD5+CD1a+) stage coincides with definitive T lin- LEF/T cell factor (TCF), and Notch signaling pathways (1–3). eage commitment and initiation of TCRb D-J rearrangements (6). 2 2 by guest on October 2, 2021 Most current evidence suggests that activation of the Frizzled/ Subsequently, thymocytes reach the DN3a (CD34 CD4intCD8a ) LRP6 receptor complex by its cognate ligands (Wnt1–4) reg- stage, when they stop proliferating to complete V-DJb rearrange- ulates survival and proliferation of early thymus immigrants, ment, and pass through the b-selection checkpoint to become 2 whereas Notch1 ligation by Delta-like 4 also drives commitment DN3b thymocytes (CD34 CD4intCD8a+) (3, 7). Later on, post–b- toward the T lineage (4). Acquisition of CD5 by the most im- selection DN3b thymocytes further upregulate CD4, acquire ex- pression of CD8b-chain, and reach the double-positive (DP) stage where rearrangement of the TCRa locus takes place. Although most *Laboratoire De´veloppement du Syste`me Immunitaire de l’Ecole Pratique des evidence indicates that simultaneous termination of Wnt and Notch Hautes Etudes, Institut Universitaire d’He´matologie, Hoˆpital Saint-Louis, 75571 signaling plays an important role in DN3a proliferation arrest, the Paris, France; †INSERM Unite´ 944, Institut Universitaire d’He´matologie, Hoˆpital Saint-Louis, 75571 Paris, France; ‡Universite´ de Paris 7/Centre National de la underlying mechanisms remain poorly defined. There is evidence Recherche Scientifique Unite´ Mixte de Recherche 7212, Institut Universitaire that E proteins (E2A, HEB) play an important role in DN3a pro- d’He´matologie, Hoˆpital Saint-Louis, 75571 Paris, France; xPlateforme Technologi- que, Institut Universitaire d’He´matologie, Hoˆpital Saint-Louis, 75571 Paris, France; liferation arrest, but whether they interfere with Notch or Wnt and {Unite´ Mixte de Recherche en Sante´ 940, Institut Universitaire d’He´matologie, signaling has not yet been investigated (8–11). Ikaros/IKZF1 also Hoˆpital Saint-Louis, 75571 Paris, France participate in the process through both induction of CDKN1B/ Received for publication February 11, 2013. Accepted for publication April 4, 2013. p27KIP1 (12) and interruption of Notch signaling following binding This work was supported by INSERM, the Association pour la Recherche contre le to proximal RBPJ-responsive elements in the HES1 promoter (13– Cancer, the Comite´ de Paris de la Ligue Nationale contre le Cancer, and by the Ecole 16). The mechanisms of Wnt signaling downmodulation in DN3a Pratique des Hautes Etudes. thymocytes are less well characterized. It has been shown that Address correspondence and reprint requests to Prof. Bruno Canque, Institut Uni- versitaire d’He´matologie, Centre Hayem, 1 Avenue Claude Vellefaux, 75475 Paris a p53-dependent ubiquitin E3 ligase complex involving Siah1, SIP Cedex 10, France. E-mail address: [email protected] (CacyBP), Skp1, and Ebi promotes b-catenin degradation in pre–b- The online version of this article contains supplemental material. selection thymocytes (17). However, that SIP-deficient pre–b- Abbreviations used in this article: BM, bone marrow; CDS, coding sequence; CHD, selection thymocytes display increased susceptibility to apo- conserved homology domain; DN, double-negative; DP, double-positive; ECD, ex- ptosis does not support the view that this pathway could play an tracellular domain; ER, endoplasmic reticulum; HPC, hematopoietic progenitor cell; kd, knocked down; L, long; MA-ICD, membrane-anchored intracellular domain; important role in thymocyte proliferation. Consistent with this NSG, NOD-scid/gc2/2; RT-qPCR, quantitative RT-PCR; S, short; shRNA, short hairpin view, conditional ablation of b-catenin does not affect thymocyte RNA; SP, single-positive; TCF, T cell factor; TMEM131L, transmembrane protein proliferation or differentiation (18, 19). 131–like. In this study, we identify transmembrane protein 131–like Copyright Ó 2013 by The American Association of Immunologists, Inc. 0022-1767/13/$16.00 (TMEM131L) as a negative regulator of thymocyte proliferation www.jimmunol.org/cgi/doi/10.4049/jimmunol.1300400 6188 TMEM131L REGULATES HUMAN INTRATHYMIC PROLIFERATION and provide evidence that it corresponds to a proximal inhibitor of (all from BD Biosciences) or CD8-PE-Cy7 (BioLegend) mAbs. The in- the canonical Wnt pathway with which it interferes through in- tracellular TCRb-chain was detected with the TCRbF1-allophycocyanin duction of lysosome-dependent degradation of the active phos- (Cytognos) mAb and the Cytofix/Cytoperm kit (BD Biosciences). For cell proliferation analysis, mice were injected i.p. with 1 mg BrdU 16 and 10 h phorylated form of the LRP6 coreceptor. before analysis. Cell surface proteins were labeled as above; cells that had incorporated BrdU were detected using a BrdU flow kit (BD Biosciences). Materials and Methods Data were analyzed using FlowJo software. HL60 cells transduced with a lentiviral CMV-Luc reporter (Addgene) Plasmid constructs and cell protein analysis were injected s.c. in nonirradiated NSG mice. Longitudinal follow-up by Full-length TMEM131L coding sequence (CDS) was obtained from the in vivo optical imaging for assessing luciferase activity using the IVIS Deutsches Ressourcenzentrum fu¨r Genomforschung; long (L) and short (S) Spectrum bioluminescence-fluorescence optical imaging system (Caliper isoform CDS were subcloned in frame with the Flag epitope into a pFlag Life
Recommended publications
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • New Resources for Transcription Analysis and Genome Fugu
    Downloaded from genome.cshlp.org on July 6, 2011 - Published by Cold Spring Harbor Laboratory Press Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation Melody S. Clark, Yvonne J.K. Edwards, Dan Peterson, et al. Genome Res. 2003 13: 2747-2753 Access the most recent version at doi:10.1101/gr.1691503 References This article cites 51 articles, 26 of which can be accessed free at: http://genome.cshlp.org/content/13/12/2747.full.html#ref-list-1 Article cited in: http://genome.cshlp.org/content/13/12/2747.full.html#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on July 6, 2011 - Published by Cold Spring Harbor Laboratory Press Resource Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation Melody S. Clark,1,7,8 Yvonne J.K. Edwards,1 Dan Peterson,2 Sandra W. Clifton,2 Amanda J. Thompson,1 Masahide Sasaki,3 Yutaka Suzuki,3 Kiyoshi Kikuchi,5,6 Shugo Watabe,5 Koichi Kawakami,4 Sumio Sugano,3 Greg Elgar,1 and Stephen L. Johnson2 1MRC Rosalind Franklin Centre for Genomics Research, (formerly known as the MRC UK HGMP Resource Centre), Genome Campus, Hinxton, Cambridge, CB10 1SB, UK; 2Department of Genetics, Washington University Medical School, St Louis, Missouri 63110, USA; 3The Institute of Medical Science, The University of Tokyo, Shirokanedai,
    [Show full text]
  • Identification of TMEM131L As a Novel Regulator of Thymocyte Proliferation in Humans
    Identification of TMEM131L as a Novel Regulator of Thymocyte Proliferation in Humans This information is current as Nesrine Maharzi, Véronique Parietti, Elisabeth Nelson, of September 25, 2021. Simona Denti, Macarena Robledo-Sarmiento, Niclas Setterblad, Aude Parcelier, Marika Pla, François Sigaux, Jean Claude Gluckman and Bruno Canque J Immunol 2013; 190:6187-6197; Prepublished online 20 May 2013; Downloaded from doi: 10.4049/jimmunol.1300400 http://www.jimmunol.org/content/190/12/6187 Supplementary http://www.jimmunol.org/content/suppl/2013/05/21/jimmunol.130040 http://www.jimmunol.org/ Material 0.DC1 References This article cites 44 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/190/12/6187.full#ref-list-1 Why The JI? Submit online. by guest on September 25, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists,
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Estimation of Non-Null SNP Effect Size Distributions Enables the Detection
    bioRxiv preprint doi: https://doi.org/10.1101/597484; this version posted May 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Estimation of Non-null SNP Effect Size Distributions Enables 2 the Detection of Enriched Genes Underlying Complex Traits 3 1,2 1,2 2-4 4 Wei Cheng , Sohini Ramachandran y, and Lorin Crawford y 5 1 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 6 USA 7 2 Center for Computational Molecular Biology, Brown University, Providence, RI, USA 8 3 Department of Biostatistics, Brown University, Providence, RI, USA 9 4 Center for Statistical Sciences, Brown University, Providence, RI, USA 10 Corresponding E-mail: [email protected]; lorin [email protected] y 11 Abstract 12 Traditional univariate genome-wide association studies generate false positives and negatives due to 13 difficulties distinguishing associated variants from variants with spurious nonzero effects that do not 14 directly influence the trait. Recent efforts have been directed at identifying genes or signaling pathways 15 enriched for mutations in quantitative traits or case-control studies, but these can be computationally 16 costly and hampered by strict model assumptions. Here, we present gene-", a new approach for identifying 17 statistical associations between sets of variants and quantitative traits. Our key insight is that enrichment 18 studies on the gene-level are improved when we reformulate the genome-wide SNP-level null hypothesis 19 to identify spurious small-to-intermediate SNP effects and classify them as non-causal.
    [Show full text]
  • The Landscape of Human Mutually Exclusive Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Open Thesis FINAL3.Pdf
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF BIOLOGY THE IDENTIFICATION AND CHARACTERIZATION OF SUFU INTERACTING PROTEINS EMILY VALERIO SPRING 2013 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Biology with honors in Biology Reviewed and approved* by the following: Aimin Liu Associate Professor of Biology Thesis Supervisor Gong Chen Associate Professor of Biology Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT The Hedgehog (Hh) pathway, activated by a special family of proteins, is a prominent pathway in mammalian development and also in the formation of various cancers. When interacting with cells, Hh ligands are responsible for enhancing target Hh gene expression through the activation of Gli-transcriptional activators. Suppressor of Fused (Sufu) is a specific Gli-interacting protein that functions in negatively regulating Gli activity and by doing so, suppressing Gli-activated tumor formation. The extent of how Sufu functions is not yet understood in mammals. In an effort to identify proteins that may interact with Sufu in this pathway, over 50 candidate proteins were identified through a yeast-two hybrid screen. Through much background research, four particular proteins were selected due to their known function and location in the cell: ran-binding protein 9 (RanBP9), transmembrane 131-like precursor (T131L), COP9 signalosome complex subunit 1 isoform (Gps1), and hypothetical protein LOC67513. After performing co-immunoprecipitation assays, we confirmed interactions with T131L, Gps1 and LOC67513. These proteins have also been recognized to interact with both structural domains of Sufu, the N-terminal domain and C-terminal domain.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Genome-Wide Profiling of Druggable Active Tumor Defense Mechanisms to Enhance Cancer Immunotherapy
    bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genome-wide profiling of druggable active tumor defense mechanisms to enhance cancer immunotherapy Rigel J. Kishton1,2,*,#, Shashank J. Patel1,2,†,*, Suman K. Vodnala1,2, Amy E. Decker3, Yogin Patel1,2, Madhusudhanan Sukumar1,2, Tori N. Yamamoto1,2,4, Zhiya Yu1,2, Michelle Ji1,2, Amanda N. Henning1,2, Devikala Gurusamy1,2, Douglas C. Palmer1,2, Winifred Lo1, Anna Pasetto1, Parisa Malekzadeh1, Drew C. Deniger1, Kris C. Wood3, Neville E. Sanjana5,6, Nicholas P. Restifo1,2, #, § 1Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2Center for Cell-Based Therapy, National Cancer Institute, Bethesda, MD 20892, USA 3Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA 4Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA 5New York Genome Center, New York, NY 10013 USA 6Department of Biology, New York University, New York, NY 10003, USA *These authors contributed equally to this work. †Present address: NextCure Inc., Beltsville, MD 20705, USA §Present address: Lyell Immunopharma, South San Francisco, CA 94080, USA #Corresponding authors. NPR: [email protected]. RJK: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE CELL BIOLOGY Copyright © 2020 The Authors, some rights reserved; Broadly conserved roles of TMEM131 family exclusive licensee American Association proteins in intracellular collagen assembly for the Advancement of Science. No claim to and secretory cargo trafficking original U.S. Government Zhe Zhang1, Meirong Bai1, Guilherme Oliveira Barbosa1, Andrew Chen1, Yuehua Wei1,2, Works. Distributed 1 1 1 1,3 2 1,3 under a Creative Shuo Luo , Xin Wang , Bingying Wang , Tatsuya Tsukui , Hao Li , Dean Sheppard , Commons Attribution 1,2 1,4 Thomas B. Kornberg , Dengke K. Ma * NonCommercial License 4.0 (CC BY-NC). Collagen is the most abundant protein in animals. Its dysregulation contributes to aging and many human disorders, including pathological tissue fibrosis in major organs. How premature collagen proteins in the endoplasmic reticulum (ER) assemble and route for secretion remains molecularly undefined. From an RNA interference screen, we identified an uncharacterized Caenorhabditis elegans gene tmem-131, deficiency of which impairs collagen production and activates ER stress response. We find that amino termini of human TMEM131 contain bacterial PapD chaperone– like domains, which recruit premature collagen monomers for proper assembly and secretion. Carboxy termini of TMEM131 interact with TRAPPC8, a component of the TRAPP tethering complex, to drive collagen cargo trafficking from ER to the Golgi. We provide evidence that previously undescribed roles of TMEM131 in collagen recruitment and secretion are evolutionarily conserved in C. elegans, Drosophila, and humans. INTRODUCTION factor (GEF) to activate Rab GTPase (guanosine triphosphatase) to Collagen is the major extracellular component of connective tissues promote ER-to-Golgi cargo trafficking.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Supporting Information for Proteomics DOI 10.1002/Pmic.200500648
    Supporting Information for Proteomics DOI 10.1002/pmic.200500648 Fiona M. McCarthy, Amanda M. Cooksey, Nan Wang, Susan M. Bridges, G. Todd Pharr and Shane C. Burgess Modeling a whole organ using proteomics: The avian bursa of Fabricius ª 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com Supporting Text: Determining Tissue Expression Patterns for Transcription Factors. We identified 107 transcription factors (TFs) from post-hatch bursas. Since the Transfac database (1) did not contain all of these TFs, we used PubMed literature searches to determine expression patterns for each. For each transcription factor, we searched PubMed for a combination of the protein and gene names, as determined by both NCBI and UniProt records. For example, Pax7 (gi:2576239; UniProt O42349) was searched as both PAX7 and Pax-7. In each case, articles were manually searched to confirm TF expression. We combined the TF names with the following terms to obtain reported tissue expression patterns: 1. Expression in the bursa. AND bursa* OR DT40 eg. (Pax7 OR “Pax-7”) AND (bursa* OR DT40) returned no items. 2. Expression in immune tissue. AND lymphocyte* OR leukocyte* OR “bone marrow” OR spleen OR “embryonic liver” OR hematopoietic eg. (Pax7 OR “Pax-7”) AND (lymphocyte* OR leukocyte* OR “bone marrow” OR spleen OR “embryonic liver” OR hematopoietic) returned 17 articles. 3. Expression during development. AND development OR embryo* eg. (Pax7 OR “Pax-7”) AND (development OR embryo*) returned 135 articles. 4. Expression in nervous tissue. AND neuron* OR nervous OR CNS OR retina* 1 eg. (Pax7 OR “Pax-7”) AND (neuron* OR nervous OR CNS OR retina*) returned 53 articles.
    [Show full text]