Open Thesis FINAL3.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Thesis FINAL3.Pdf THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF BIOLOGY THE IDENTIFICATION AND CHARACTERIZATION OF SUFU INTERACTING PROTEINS EMILY VALERIO SPRING 2013 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Biology with honors in Biology Reviewed and approved* by the following: Aimin Liu Associate Professor of Biology Thesis Supervisor Gong Chen Associate Professor of Biology Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT The Hedgehog (Hh) pathway, activated by a special family of proteins, is a prominent pathway in mammalian development and also in the formation of various cancers. When interacting with cells, Hh ligands are responsible for enhancing target Hh gene expression through the activation of Gli-transcriptional activators. Suppressor of Fused (Sufu) is a specific Gli-interacting protein that functions in negatively regulating Gli activity and by doing so, suppressing Gli-activated tumor formation. The extent of how Sufu functions is not yet understood in mammals. In an effort to identify proteins that may interact with Sufu in this pathway, over 50 candidate proteins were identified through a yeast-two hybrid screen. Through much background research, four particular proteins were selected due to their known function and location in the cell: ran-binding protein 9 (RanBP9), transmembrane 131-like precursor (T131L), COP9 signalosome complex subunit 1 isoform (Gps1), and hypothetical protein LOC67513. After performing co-immunoprecipitation assays, we confirmed interactions with T131L, Gps1 and LOC67513. These proteins have also been recognized to interact with both structural domains of Sufu, the N-terminal domain and C-terminal domain. Luciferase reporter assays have indicated that these three proteins have a role in mammalian Hh signaling through promotion of Gli activity. These experiments will hopefully help us gain better understanding of the function of Sufu and the Hedgehog pathway in the human body as well as possibly giving insight in the future as to how it may affect disease development. ii TABLE OF CONTENTS List of Figures..................................................................................................................... iii List of Tables ...................................................................................................................... iv Acknowledgements ............................................................................................................. v 1. Introduction .................................................................................................................... 1 1.1 Hh signaling in development and disease ............................................................... 1 1.2 Our current understanding of Hh signaling in mammals ......................................... 5 1.3 The roles and remaining questions of Sufu ............................................................. 8 2. Materials & Methods....................................................................................................... 11 2.1 Construction of Plasmids ....................................................................................... 11 2.2 Co-Immunoprecipitation Assays ............................................................................ 17 2.3 Dual-Luciferase Reporter Assays ........................................................................... 19 3. Results ............................................................................................................................ 21 3.1 Identification of Sufu-interacting proteins through a Yeast Two-Hyrbid Screen ...... 21 3.2 The interaction between Sufu and T131L, Gps1, Loc67513 fragments are confirmed in mammalian cells ............................................................................. 22 3.3 Full-length T131L, Gps1 and Loc67513 interact with Sufu in mammalian cells ..... 23 3.4 The three proteins interact with both the N- and C-terminal domains of Sufu ......... 25 3.4 The three proteins significantly activate Gli-dependent reporters in Sufu -/- Mef cells ..................................................................................................................... 27 3.5 T131L significantly activates Gli-dependent reporter activation in wild-type Mef cells ..................................................................................................................... 29 3.6 T131L activates Gli-dependent reporter in dose-dependent manner ........................ 32 4. Discussion ...................................................................................................................... 35 Appendix .................................................................................................................... 39 REFERENCES............................................................................................................ 41 iii LIST OF FIGURES Figure 1-1. The expression patterns of mammalian Hedgehog homologues. ........................ 1 Figure 1-2. The Drosophila Hh signaling pathway mechanism ............................................ 5 Figure 1-3 The inactive and active states of mammalian Hh sigaling in cilia. ....................... 7 Figure 2-2. Basic mechanism for co-immunoprecipitation assay . ........................................ 17 Figure 3-1. Co-Immunoprecipitation assay results with protein fragments………………….22 Figure 3-2. Co-Immunoprecipitation assay results with full-length proteins……………...…24 Figure 3-3. Co-Immunoprecipitation assay results with Sufu truncations…………………...26 Figure 3-4. Relative activity of proteins in Sufu -/- Mef cells………………………………...27 Figure 3-5. Relative activity of proteins in Sufu -/- Mef cells with over-expressed Sufu….…28 Figure 3-6. Relative activity of proteins in wild-type Mef cells………………………………30 Figure 3-7. Relative activity of proteins in wild-type Mef cells with over-expressed Sufu….31 Figure 3-8. Relative activity of doses of T131L in wild-type Mef cells………………………33 iv LIST OF TABLES Table 2-1. Phusion PCR environments ................................................................................ 12 Table 2-2. Vector and insert digestion information. ............................................................. 14 Table 5-1. Fusion PCR reaction setups. ............................................................................... 39 Table 5-2. Recipe for 6x loading buffer………………………………………………………39 Table 5-3. Transfection setup…………………………………………………………………39 Table 5-4. Recipe for 1% triton lysis buffer…………………………………………………..40 Table 5-5. Recipe for 5ml SDS Separating Gel……………………………………………….40 Table 5-6. Recipe for 2.5ml SDS Stacking Gel………………………………………………..40 v ACKNOWLEDGEMENTS I would like to sincerely thank Aimin Liu for allowing me the opportunity to work and learn in his lab for the past two years and for guiding me in the thesis writing process. I would also like to thank all of the members of the Liu lab including Huiqing Zeng, Xuan Ye, Hongchen Cai, Rachel Chang and Keren Kohath for instructing me during my time here, and especially Jinling Liu for mentoring me along the way. I would also like to thank my honors advisor, Gong Chen, for reading my thesis and providing me with helpful recommendations. Finally, I would like to thank Penn State and the Eberly College of Science for providing funding to carry out our experiments. 1 1. Introduction 1.1 Hh signaling in development and disease There is an amalgamation of developmental pathways that are at work in organisms as they grow. One pathway in particular, the Hedgehog (Hh) signaling pathway, is prominent in organisms ranging from Drosophila, or fruit flies, to mammals. It not only is significant in developmental patterning, but also has major implications in human disease (Varjosalo and Taipale, 2008). Primarily, this pathway is active during early embryogenesis, but it is also circumstantially active in adults (Fig. 1-1). Figure 1-1. The expression patterns of the mammalian Hedgehog signaling homologues in Mus Musculus (Varjosalo and Taipale, 2008). 2 There are three Hh signaling molecules in mammals. As shown in figure 1-1, these include Sonic Hedgehog (Shh), Desert Hedgehog (Dhh) and Indian Hedgehog (Shh) (Varjosalo and Taipale, 2008). Development of many body areas are dependent upon these morphogenic ligands, and in their absence, defects occur. Of the three ligands, Shh has the most broad expression pattern. It is involved in the determination of the dorso-ventral axis and the left-right axis due to its presence in midline tissues; these tissues include the notochord, floor plate, prechordal plate of the axial mesoderm and ventral forebrain, among others (Varjosalo and Taipale, 2008). It is also present in the zone of polarizing activity, making it a major regulator of limb development and distal limb element patterning, such as in the digits. The development of less critical features, such as teeth and hair growth are also dependent on Shh (Varjasalo and Taipale, 2008). Due to some of its vital functions, the absence of Shh leads to major malformations. Cyclopia, limb defects and even lethal malformations involving the ventral neural tube, ribs, somites, brain and vertebrae occur in Shh null mutants (Beachy et al, 2010). The expression of Dhh, unlike Shh, is confined to a small area. As seen in Figure 1-1, it is mainly involved in testis and ovarian development and functions in concordance with Ihh expression (Varjosalo and Taipale,
Recommended publications
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • New Resources for Transcription Analysis and Genome Fugu
    Downloaded from genome.cshlp.org on July 6, 2011 - Published by Cold Spring Harbor Laboratory Press Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation Melody S. Clark, Yvonne J.K. Edwards, Dan Peterson, et al. Genome Res. 2003 13: 2747-2753 Access the most recent version at doi:10.1101/gr.1691503 References This article cites 51 articles, 26 of which can be accessed free at: http://genome.cshlp.org/content/13/12/2747.full.html#ref-list-1 Article cited in: http://genome.cshlp.org/content/13/12/2747.full.html#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on July 6, 2011 - Published by Cold Spring Harbor Laboratory Press Resource Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation Melody S. Clark,1,7,8 Yvonne J.K. Edwards,1 Dan Peterson,2 Sandra W. Clifton,2 Amanda J. Thompson,1 Masahide Sasaki,3 Yutaka Suzuki,3 Kiyoshi Kikuchi,5,6 Shugo Watabe,5 Koichi Kawakami,4 Sumio Sugano,3 Greg Elgar,1 and Stephen L. Johnson2 1MRC Rosalind Franklin Centre for Genomics Research, (formerly known as the MRC UK HGMP Resource Centre), Genome Campus, Hinxton, Cambridge, CB10 1SB, UK; 2Department of Genetics, Washington University Medical School, St Louis, Missouri 63110, USA; 3The Institute of Medical Science, The University of Tokyo, Shirokanedai,
    [Show full text]
  • Identification of TMEM131L As a Novel Regulator of Thymocyte Proliferation in Humans
    Identification of TMEM131L as a Novel Regulator of Thymocyte Proliferation in Humans This information is current as Nesrine Maharzi, Véronique Parietti, Elisabeth Nelson, of September 25, 2021. Simona Denti, Macarena Robledo-Sarmiento, Niclas Setterblad, Aude Parcelier, Marika Pla, François Sigaux, Jean Claude Gluckman and Bruno Canque J Immunol 2013; 190:6187-6197; Prepublished online 20 May 2013; Downloaded from doi: 10.4049/jimmunol.1300400 http://www.jimmunol.org/content/190/12/6187 Supplementary http://www.jimmunol.org/content/suppl/2013/05/21/jimmunol.130040 http://www.jimmunol.org/ Material 0.DC1 References This article cites 44 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/190/12/6187.full#ref-list-1 Why The JI? Submit online. by guest on September 25, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists,
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Estimation of Non-Null SNP Effect Size Distributions Enables the Detection
    bioRxiv preprint doi: https://doi.org/10.1101/597484; this version posted May 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Estimation of Non-null SNP Effect Size Distributions Enables 2 the Detection of Enriched Genes Underlying Complex Traits 3 1,2 1,2 2-4 4 Wei Cheng , Sohini Ramachandran y, and Lorin Crawford y 5 1 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 6 USA 7 2 Center for Computational Molecular Biology, Brown University, Providence, RI, USA 8 3 Department of Biostatistics, Brown University, Providence, RI, USA 9 4 Center for Statistical Sciences, Brown University, Providence, RI, USA 10 Corresponding E-mail: [email protected]; lorin [email protected] y 11 Abstract 12 Traditional univariate genome-wide association studies generate false positives and negatives due to 13 difficulties distinguishing associated variants from variants with spurious nonzero effects that do not 14 directly influence the trait. Recent efforts have been directed at identifying genes or signaling pathways 15 enriched for mutations in quantitative traits or case-control studies, but these can be computationally 16 costly and hampered by strict model assumptions. Here, we present gene-", a new approach for identifying 17 statistical associations between sets of variants and quantitative traits. Our key insight is that enrichment 18 studies on the gene-level are improved when we reformulate the genome-wide SNP-level null hypothesis 19 to identify spurious small-to-intermediate SNP effects and classify them as non-causal.
    [Show full text]
  • The Landscape of Human Mutually Exclusive Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Discovery of a Molecular Glue That Enhances Uprmt to Restore
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Discovery of a molecular glue that enhances UPRmt to restore proteostasis via TRKA-GRB2-EVI1-CRLS1 axis Authors: Li-Feng-Rong Qi1, 2 †, Cheng Qian1, †, Shuai Liu1, 2†, Chao Peng3, 4, Mu Zhang1, Peng Yang1, Ping Wu3, 4, Ping Li1 and Xiaojun Xu1, 2 * † These authors share joint first authorship Running title: Ginsenoside Rg3 reverses Parkinson’s disease model by enhancing mitochondrial UPR Affiliations: 1 State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 3. National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China 4. Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201204, China. Corresponding author: Ping Li, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Email: [email protected], Xiaojun Xu, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Telephone number: +86-2583271203, E-mail: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • 6187.Full.Pdf
    Identification of TMEM131L as a Novel Regulator of Thymocyte Proliferation in Humans This information is current as Nesrine Maharzi, Véronique Parietti, Elisabeth Nelson, of October 2, 2021. Simona Denti, Macarena Robledo-Sarmiento, Niclas Setterblad, Aude Parcelier, Marika Pla, François Sigaux, Jean Claude Gluckman and Bruno Canque J Immunol 2013; 190:6187-6197; Prepublished online 20 May 2013; doi: 10.4049/jimmunol.1300400 Downloaded from http://www.jimmunol.org/content/190/12/6187 Supplementary http://www.jimmunol.org/content/suppl/2013/05/21/jimmunol.130040 http://www.jimmunol.org/ Material 0.DC1 References This article cites 44 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/190/12/6187.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists,
    [Show full text]
  • Analysis of RNA Expression of Normal and Cancer Tissues Reveals High Correlation of COP9 Gene Expression with Respiratory Chain Complex Components Christina A
    University of Kentucky UKnowledge Toxicology and Cancer Biology Faculty Toxicology and Cancer Biology Publications 12-1-2016 Analysis of RNA Expression of Normal and Cancer Tissues Reveals High Correlation of COP9 Gene Expression with Respiratory Chain Complex Components Christina A. Wicker University of Kentucky, [email protected] Tadahide Izumi University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/toxicology_facpub Part of the Cancer Biology Commons, Cell Biology Commons, and the Medical Toxicology Commons Repository Citation Wicker, Christina A. and Izumi, Tadahide, "Analysis of RNA Expression of Normal and Cancer Tissues Reveals High Correlation of COP9 Gene Expression with Respiratory Chain Complex Components" (2016). Toxicology and Cancer Biology Faculty Publications. 56. https://uknowledge.uky.edu/toxicology_facpub/56 This Article is brought to you for free and open access by the Toxicology and Cancer Biology at UKnowledge. It has been accepted for inclusion in Toxicology and Cancer Biology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Analysis of RNA Expression of Normal and Cancer Tissues Reveals High Correlation of COP9 Gene Expression with Respiratory Chain Complex Components Notes/Citation Information Published in BMC Genomics, v. 17, 983, p. 1-14. © The Author(s). 2016 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
    [Show full text]
  • Genome-Wide Profiling of Druggable Active Tumor Defense Mechanisms to Enhance Cancer Immunotherapy
    bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genome-wide profiling of druggable active tumor defense mechanisms to enhance cancer immunotherapy Rigel J. Kishton1,2,*,#, Shashank J. Patel1,2,†,*, Suman K. Vodnala1,2, Amy E. Decker3, Yogin Patel1,2, Madhusudhanan Sukumar1,2, Tori N. Yamamoto1,2,4, Zhiya Yu1,2, Michelle Ji1,2, Amanda N. Henning1,2, Devikala Gurusamy1,2, Douglas C. Palmer1,2, Winifred Lo1, Anna Pasetto1, Parisa Malekzadeh1, Drew C. Deniger1, Kris C. Wood3, Neville E. Sanjana5,6, Nicholas P. Restifo1,2, #, § 1Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2Center for Cell-Based Therapy, National Cancer Institute, Bethesda, MD 20892, USA 3Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA 4Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA 5New York Genome Center, New York, NY 10013 USA 6Department of Biology, New York University, New York, NY 10003, USA *These authors contributed equally to this work. †Present address: NextCure Inc., Beltsville, MD 20705, USA §Present address: Lyell Immunopharma, South San Francisco, CA 94080, USA #Corresponding authors. NPR: [email protected]. RJK: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • A Chromosome-Centric Human Proteome Project (C-HPP) To
    computational proteomics Laboratory for Computational Proteomics www.FenyoLab.org E-mail: [email protected] Facebook: NYUMC Computational Proteomics Laboratory Twitter: @CompProteomics Perspective pubs.acs.org/jpr A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17 † ‡ § ∥ ‡ ⊥ Suli Liu, Hogune Im, Amos Bairoch, Massimo Cristofanilli, Rui Chen, Eric W. Deutsch, # ¶ △ ● § † Stephen Dalton, David Fenyo, Susan Fanayan,$ Chris Gates, , Pascale Gaudet, Marina Hincapie, ○ ■ △ ⬡ ‡ ⊥ ⬢ Samir Hanash, Hoguen Kim, Seul-Ki Jeong, Emma Lundberg, George Mias, Rajasree Menon, , ∥ □ △ # ⬡ ▲ † Zhaomei Mu, Edouard Nice, Young-Ki Paik, , Mathias Uhlen, Lance Wells, Shiaw-Lin Wu, † † † ‡ ⊥ ⬢ ⬡ Fangfei Yan, Fan Zhang, Yue Zhang, Michael Snyder, Gilbert S. Omenn, , Ronald C. Beavis, † # and William S. Hancock*, ,$, † Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States ‡ Stanford University, Palo Alto, California, United States § Swiss Institute of Bioinformatics (SIB) and University of Geneva, Geneva, Switzerland ∥ Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States ⊥ Institute for System Biology, Seattle, Washington, United States ¶ School of Medicine, New York University, New York, United States $Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia ○ MD Anderson Cancer Center, Houston, Texas, United States ■ Yonsei University College of Medicine, Yonsei University,
    [Show full text]