Neuroscience-Based Nomenclature (Nbn) for Clinical Psychopharmacology and Neuroscience

Total Page:16

File Type:pdf, Size:1020Kb

Neuroscience-Based Nomenclature (Nbn) for Clinical Psychopharmacology and Neuroscience Editorial http://dx.doi.org/10.9758/cpn.2016.14.2.115 pISSN 1738-1088 / eISSN 2093-4327 Clinical Psychopharmacology and Neuroscience 2016;14(2):115-116 Copyrightⓒ 2016, Korean College of Neuropsychopharmacology Neuroscience-based Nomenclature (NbN) for Clinical Psychopharmacology and Neuroscience As of May 2016, Clinical Psychopharmacology and spite the difference in their drug profiles. Moreover, the in- Neuroscience will encourage the use of Neuroscience- volvement of the serotonergic system also has to be consid- based Nomenclature (NbN) for all publications and ered for some drugs. However, such differences are not re- correspondence. NbN has been developed to replace the flected in the current system. current indication-based nomenclature and to provide a To overcome these limitations of the current nomencla- contemporary and useful framework for more scientific ture, following an initiative of the European Congress of and better informed pharmacological decisions. Several Neuropsychopharmacology (ECNP), a taskforce for psy- other leading journals in the field, including Biological chotropic nomenclature was established with representa- Psychiatry, CNS Spectrums, European Psychiatry, Interna- tives from 5 international organizations: the ECNP, Asian tional Journal of Neuropsychopharmacology, Neuropsy- College of Neuropsychopharmacology (AsCNP), Ameri- chopharmacology, and others have endorsed this nomen- can College of Neuropsychopharmacology (ACNP), clature for its use in submissions. International College of Neuropsychopharmacology The current nomenclature is based on clinical in- (CINP), and International Union of Basic and Clinical dications; for example, drugs used for mania and psychosis Pharmacology (IUPHAR). The mission of this taskforce is they are classified as “mood stabilizers” and “antipsychot- to provide a pharmacologically-driven (rather than in- ic drugs”, respectively. While this conventional nomencla- dication-based) nomenclature that embeds contemporary ture has been widely used in clinical as well as research set- neuroscience understanding of how medicines act, to help tings, there are a number of limitations to this system. First, clinicians to make informed choices when they are trying boundaries among various categories of psychotropic to figure out what would be the next “pharmacological drugs, using the current nomenclature have become step”, and to decrease stigma and enhance adherence by a unclear. “Antipsychotic drugs” and “mood stabilizers” are naming system that lays out the rationale for selecting a good examples; antipsychotic drugs are used for not only specific psychotropic.1,2) schizophrenia, but also mood disorders, including bipolar In the first edition of the NbN, 108 psychotropics are disorder and treatment resistant depression. On the other included. The NbN provides a pharmacological driven no- hand, mood stabilizers are often prescribed for a mood menclature focusing on pharmacology and mode of action, component in any psychiatric disorder. This discrepancy which reflects current knowledge and understanding about between their names and indications often confuses pa- the targeted neurotransmitter, molecule, system being tients and their caregivers and sometimes leads to a mis- modified, and mode/mechanism of action. It also includes understanding of the effects of prescribed medications. 4 additional dimensions: (1) approved indications, (2) effi- Second, up-to-date scientific knowledge on these drugs cacy and side effects, (3) “practical note” which summa- has not been reflected in the current nomenclature. This is rizes the clinical knowledge that has been prioritized by a serious issue since the current system was created nearly “filtering” though the taskforce’s “opinion sieve”, and (4) half a century ago. For example, dopamine receptor antag- neurobiology.3) The easiest and recommended way to ac- onists and a partial dopamine receptor agonist are currently cess the newest version of the NbN is to use the approved included in the same category of “antipsychotic drugs” de- app, which is freely available on the project’s website (http://nbnomenclature.org/). In this website, there is a 3) Corresponding author: Hiroyuki Uchida, MD, PhD special tag - For Authors, too. Department of Neuropsychiatry, Keio University School of Medicine, The NbN project has just started. Taking into account 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan new findings and new insights, including feedback from Tel: +81-3-5363-3829, Fax: +81-3-5379-0187 E-mail: [email protected] users, the NbN will be updated on a yearly basis. Since it al- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 115 116 H. Uchida, et al. ways needs time to change the culture, we understand the No financial support for this manuscript was received transition will likely involve some expected and un- from any pharmaceutical companies. expected responses from the field. However, we rather be- lieve that such responses and feedback will surely improve REFERENCES the quality of the NbN, which in turn will be beneficial for 1. Zohar J, Nutt DJ, Kupfer DJ, Moller HJ, Yamawaki S, clinicians, researchers, patients as well as their caregivers. Spedding M, et al. A proposal for an updated neuropsy- chopharmacological nomenclature. Eur Neuropsychopharmacol 2014;24:1005-1014. ■ Acknowledgments 2. Zohar J, Stahl S, Moller HJ, Blier P, Kupfer D, Yamawaki Dr. Uchida has received grants from Astellas S, et al. A review of the current nomenclature for psychotropic Pharmaceutical, Eisai, Otsuka Pharmaceutical, Shionogi, agents and an introduction to the Neuroscience-based Nomenclature. Eur Neuropsychopharmacol 2015;25:2318-2325. Dainippon-Sumitomo Pharma, Eli Lilly, Mochida Phar- 3. European Congress of Neuropsychopharmacology. Neuroscience- maceutical, Meiji-Seika Pharma, and Yoshitomi Yakuhin based Nomenclature [Internet]. Utrecht, the Netherlands: and speaker’s honoraria from Otsuka Pharmaceutical, Eli ENCP ; Year [cited at 2016 Mar 1]. Available from: http:// nbnomenclature.org/. Lilly, Shionogi, Pfizer, Yoshitomi Yakuhin, Dainippon- Sumitomo Pharma, Meiji-Seika Pharma, MSD, and Janssen Pharmaceutical within the past three years. Dr. Yamawaki has received donation for research from 1,2 2,3 Hiroyuki Uchida , Shigeto Yamawaki , Astellas, Pfizer and MSD (all less than 10,000 USD/year), 4 5 Won-Myong Bahk , Duk-In Jon honoraria for lectures from Glaxo Smith Kline, Astellas, Daiichi Sankyo, Japan Eli Lilly, Takeda, Otsuka, Eisai, Dai 1Department of Neuropsychiatry, Nippon Sumitomo, Shionogi, Meiji Seika, Mochida and Keio University School of Medicine, Tokyo, Pfizer (all less than 5,000 USD/year). Dr. Bahk has re- 2Neuroscience-based Nomenclature Taskforce, ceived chairperson and speaker’s honoraria from Asian College of Neuropsychopharmacology, Tokyo, AstraZeneca, Glaxo Smith Kline, Eli Lilly, Pfizer, Janssen, 3Department of Psychiatry and Neurosciences, Takeda, Otsuka, Mitsubishi Tanabe, Dainippon Sumitomo Hiroshima University, Hiroshima, Japan, Pharma, Bukwang, Jeil and Boryung. Dr. Jon has received 4Department of Psychiatry, College of Medicine, honoraria for lectures and consulting from Otsuka, Eli The Catholic University of Korea, Seoul, Lilly, Glaxo Smith Kline, Pfizer, Janssen, Dai Nippon 5Department of Psychiatry, Hallym University Sumitomo, Dongwha, Jeil and Whanin. Sacred Heart Hospital, Anyang, Korea.
Recommended publications
  • The 5-HT6 Receptor Antagonist SB-271046 Selectively Enhances Excitatory Neurotransmission in the Rat Frontal Cortex and Hippocampus Lee A
    The 5-HT6 Receptor Antagonist SB-271046 Selectively Enhances Excitatory Neurotransmission in the Rat Frontal Cortex and Hippocampus Lee A. Dawson, Ph.D., Huy Q. Nguyen, B.S., and Ping Li, B.S. Preclinical evidence has suggested a possible role for the 5-HT6 increases in extracellular glutamate levels in both frontal receptor in the treatment of cognitive dysfunction. However, cortex and dorsal hippocampus, respectively. These effects were currently there is little neurochemical evidence suggesting the completely attenuated by infusion of tetrodotoxin but mechanism(s) which may be involved. Using the selective unaffected by the muscarinic antagonist, atropine. Here we 5-HT6 antagonist SB-271046 and in vivo microdialysis, we demonstrate for the first time the selective enhancement of have evaluated the effects of this compound on the modulation excitatory neurotransmission by SB-271046 in those brain of basal neurotransmitter release within multiple brain regions regions implicated in cognitive and memory function, and of the freely moving rat. SB-271046 produced no change in provide mechanistic evidence in support of a possible basal levels of dopamine (DA), norepinephrine (NE) or 5-HT therapeutic role for 5-HT6 receptor antagonists in the in the striatum, frontal cortex, dorsal hippocampus or nucleus treatment of cognitive and memory dysfunction. accumbens. Similarly, this compound had no effect on [Neuropsychopharmacology 25:662–668, 2001] excitatory neurotransmission in the striatum or nucleus © 2001 American College of Neuropsychopharmacology. accumbens. Conversely, SB-271046 produced 3- and 2-fold Published by Elsevier Science Inc. KEY WORDS: 5-HT6 receptor; SB-271046; Microdialysis; sma et al. 1993; Ruat et al.
    [Show full text]
  • M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Defic
    M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Deficits in Sprague–Dawley and Wistar Rats Geoffrey B. Varty, Ph.D., Vaishali P. Bakshi, Ph.D., and Mark A. Geyer, Ph.D. a In a recent study using Wistar rats, the serotonergic 5-HT2 1 receptor agonist cirazoline disrupts PPI. As risperidone a receptor antagonists ketanserin and risperidone reduced the and M100907 have affinity at the 1 receptor, a final study disruptive effects of the noncompetitive N-methyl-D- examined whether M100907 would block the effects of aspartate (NMDA) antagonist dizocilpine on prepulse cirazoline on PPI. Risperidone partially, but inhibition (PPI), suggesting that there is an interaction nonsignificantly, reduced the effects of dizocilpine in Wistar between serotonin and glutamate in the modulation of PPI. rats, although this effect was smaller than previously In contrast, studies using the noncompetitive NMDA reported. Consistent with previous studies, risperidone did antagonist phencyclidine (PCP) in Sprague–Dawley rats not alter the effects of dizocilpine in Sprague–Dawley rats. found no effect with 5-HT2 antagonists. To test the hypothesis Most importantly, M100907 pretreatment fully blocked the that strain differences might explain the discrepancy in effect of dizocilpine in both strains; whereas SDZ SER 082 these findings, risperidone was tested for its ability to had no effect. M100907 had no influence on PPI by itself reduce the PPI-disruptive effects of dizocilpine in Wistar and did not reduce the effects of cirazoline on PPI. These and Sprague–Dawley rats. Furthermore, to determine studies confirm the suggestion that serotonin and glutamate which serotonergic receptor subtype may mediate this effect, interact in modulating PPI and indicate that the 5-HT2A the 5-HT2A receptor antagonist M100907 (formerly MDL receptor subtype mediates this interaction.
    [Show full text]
  • Early-Life Experience, Epigenetics, and the Developing Brain
    Neuropsychopharmacology REVIEWS (2015) 40, 141–153 & 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 REVIEW ............................................................................................................................................................... www.neuropsychopharmacologyreviews.org 141 Early-Life Experience, Epigenetics, and the Developing Brain 1 ,1 Marija Kundakovic and Frances A Champagne* 1Department of Psychology, Columbia University, New York, NY, USA Development is a dynamic process that involves interplay between genes and the environment. In mammals, the quality of the postnatal environment is shaped by parent–offspring interactions that promote growth and survival and can lead to divergent developmental trajectories with implications for later-life neurobiological and behavioral characteristics. Emerging evidence suggests that epigenetic factors (ie, DNA methylation, posttranslational histone modifications, and small non- coding RNAs) may have a critical role in these parental care effects. Although this evidence is drawn primarily from rodent studies, there is increasing support for these effects in humans. Through these molecular mechanisms, variation in risk of psychopathology may emerge, particularly as a consequence of early-life neglect and abuse. Here we will highlight evidence of dynamic epigenetic changes in the developing brain in response to variation in the quality of postnatal parent–offspring interactions. The recruitment of epigenetic pathways for the
    [Show full text]
  • Mechanism of Action of Antidepressants and Mood Stabilizers
    79 MECHANISM OF ACTION OF ANTIDEPRESSANTS AND MOOD STABILIZERS ROBERT H. LENOX ALAN FRAZER Bipolar disorder (BPD), the province of mood stabilizers, the more recent understanding that antidepressants share has long been considered a recurrent disorder. For more this property in UPD have focused research on long-term than 50 years, lithium, the prototypal mood stabilizer, has events, such as alterations in gene expression and neuroplas- been known to be effective not only in acute mania but ticity, that may play a significant role in stabilizing the clini- also in the prophylaxis of recurrent episodes of mania and cal course of an illness. In our view, behavioral improvement depression. By contrast, the preponderance of past research and stabilization stem from the acute pharmacologic effects in depression has focused on the major depressive episode of antidepressants and mood stabilizers; thus, both the acute and its acute treatment. It is only relatively recently that and longer-term pharmacologic effects of both classes of investigators have begun to address the recurrent nature of drugs are emphasized in this chapter. unipolar disorder (UPD) and the prophylactic use of long- term antidepressant treatment. Thus, it is timely that we address in a single chapter the most promising research rele- vant to the pharmacodynamics of both mood stabilizers and MOOD STABILIZERS antidepressants. As we have outlined in Fig. 79.1, it is possible to charac- The term mood stabilizer within the clinical setting is com- terize both the course and treatment of bipolar and unipolar monly used to refer to a class of drugs that treat BPD.
    [Show full text]
  • Neuropsychopharmacology (2015) 40, 2853–2855 © 2015 American College of Neuropsychopharmacology
    Neuropsychopharmacology (2015) 40, 2853–2855 © 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 www.neuropsychopharmacology.org Commentary Neuropsychopharmacology: Reflections on 40 Volumes Alan Frazer*,1 1 Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Neuropsychopharmacology (2015) 40, 2853–2855; doi:10.1038/npp.2015.290 This issue completes volume 40 of Neuropsychopharmaco- methodology has not followed in concert with pre-clinical logy (NPP), with the first issue published in December, 1987. advances such that most efficacy studies still lump together This should be distinguished from our 40th anniversary; what are heterogeneous groups of patients. One might say for the first several years, issues were thin, months were how can we subdivide in the absence of biomarkers, which skipped, and multiple volumes were published per year. To do not exist? But one might also ask how can we hope to find commemorate this accomplishment, the editor-in-chief a biomarker among a group of patients that might have 3, 7, (Dr Carlezon) asked me as in-coming ACNP President to or 10 different pathologies, all leading to the same behavioral write a brief overview of my views on the developments in output. Talk about the chicken and the egg! our field over this time period, using highly cited articles Another theme that continues into the present is the time- published in NPP as a guide. dependent, downstream consequences of acute actions of Early on, two articles highlight themes that continue today. some type of psychotherapeutic drugs that correlate better One is the development of animal models for psychiatric with optimal clinical improvement.
    [Show full text]
  • Pharmacogenomics: the Promise of Personalized Medicine for CNS Disorders
    Neuropsychopharmacology REVIEWS (2009) 34, 159–172 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $30.00 REVIEW ............................................................................................................................................................... www.neuropsychopharmacology.org 159 Pharmacogenomics: The Promise of Personalized Medicine for CNS Disorders Jose de Leon*,1,2,3,4 1 2 Mental Health Research Center, Eastern State Hospital, University of Kentucky, Lexington, KY, USA; College of Medicine, 3 4 University of Kentucky, Lexington, KY, USA; College of Pharmacy, University of Kentucky, Lexington, KY, USA; Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, Medical School, University of Granada, Granada, Spain This review focuses first on the concept of pharmacogenomics and its related concepts (biomarkers and personalized prescription). Next, the first generation of five DNA pharmacogenomic tests used in the clinical practice of psychiatry is briefly reviewed. Then the possible involvement of these pharmacogenomic tests in the exploration of early clinical proof of mechanism is described by using two of the tests and one example from the pharmaceutical industry (iloperidone clinical trials). The initial attempts to use other microarray tests (measuring RNA expression) as peripheral biomarkers for CNS disorders are briefly described. Then the challenge of taking pharmacogenomic tests (compared to drugs) into clinical practice is explained by focusing on regulatory
    [Show full text]
  • Before They Called It Psychopharmacology* Heinz E
    NEUROPSYCHOPHARMACOLOGY 1993-VOL. 8, NO. 4 291 SPECIAL LECTURE Before They Called It Psychopharmacology* Heinz E. Lehmann, M.D. BEFORE THEY CALLED IT Johns Hopkins, who called the domain of psychophar­ PSYCHOPHARMACOLOGY macology "certainly very meager." Macht conducted pharmacologic experiments with opium narcotics and It is a great privilege and honor to be here today, giv­ coal tar analgesics on reaction time, tapping speed, etc., ing the second annual lecture on the history of psy­ much as Kraepelin as early as 1883 had done in Wundt's chopharmacology. My friend Frank Ayd did such an laboratory with alcohol and caffeine, calling it then Phar­ admirable job with his lecture last year, on the early macopsychologie (Macht 1920). history, that I have had a hard problem finding gaps W. Freeman, in 1931, wrote a more general paper to fill. What I have finally chosen to do is to trace for in the Journal of the American Medical Association on you some of the early history, complete with anecdotes, what he called psychochemistry, and in 1935 Thorner which preceded our modern notions of psychology and wrote the fIrst paper resembling our modern concept pharmacology and then to tell you something of my of the term with "Psychopharmacology of Sodium own experiences and findings in the psychiatric world Amytal in Catatonia." I will discuss this paper in more of the 1940s and 1950s, a world that was remarkably detail later . After a careful search of the modern litera­ different and simplistic compared to today. I also in­ ture, I came to the conclusion that official general use tend to give you a subjective "oral history" of my own of the term psychopharmacology in publications dates stumbling attempts to make some sense out of the only to 1960, following a paper by Ross and Cole enti­ vague and somewhat chaotic potpourri of ideas and tled "Psychopharmacology," when also psychophar­ pharmacologic approaches to psychiatric problems a macology appears for the fIrst time as a free-standing half century ago.
    [Show full text]
  • Neuropsychopharmacology - Mirjam A.F.M
    PHARMACOLOGY – Vol. I - Neuropsychopharmacology - Mirjam A.F.M. Gerrits and Jan M. van Ree NEUROPSYCHOPHARMACOLOGY Mirjam A.F.M. Gerrits and Jan M. van Ree Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands Keywords: psychopharmacology, neuropharmacology, central nervous system, antipsychotics, schizophrenia, antidepressants, mood stabilizers, anxiolytics, benzodiazepines Contents 1. Introduction 2. Chemical synaptic transmission in the central nervous system 3. Psychopharmacology and psychotropic drugs 4. Antipsychotics 4.1. Schizophrenia 4.2. Etiology and Pathogenesis of Schizophrenia 4.3. Antipsychotic Drugs 4.3.1. Mechanism of Action 4.3.2. Side Effects of Antipsychotics 4.3.3. Novel Targets for Antipsychotic Drug Action 5. Antidepressants and mood stabilizers 5.1. Etiology and Pathogenesis of Affective Disorders 5.2. Antidepressive Drugs and Mood-stabilizers 5.2.1. Monoamine Oxidase Inhibitors 5.2.2. Tricyclic Antidepressants 5.2.3. Selective 5-HT Uptake Inhibitors 5.2.4. Newer, ‘Atypical’ Antidepressant Drugs 5.2.5. Mood-stabilizers 6. Anxiolytics 6.1. Benzodiazepines 6.1.1. Mechanism of Action 6.1.2. Therapeutic and Side Effects 6.1.3. Pharmacokinetic Aspects Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Neuropsychopharmacology is a broad and growing field that is related to several disciplines, including neuropharmacology, psychopharmacology and fundamental neuroscience. It comprises research on the action of psychoactive drugs on different levels. This ranges from molecular and biochemical characterization, to behavioral effects in experimental animals, and finally to clinical application. Over the years, the developments in the neuropsychopharmacological field have led to advances in our ©Encyclopedia of Life Support Systems (EOLSS) PHARMACOLOGY – Vol.
    [Show full text]
  • Pharmacogenomic Testing for Selected Conditions Final Evidence Report
    Pharmacogenomic testing for selected conditions Final evidence report December 9, 2016 Health Technology Assessment Program (HTA) Washington State Health Care Authority PO Box 42712 Olympia, WA 98504-2712 (360) 725-5126 www.hca.wa.gov/about-hca/health-technology-assessment [email protected] Pharmacogenomic Testing for Selected Conditions A Health Technology Assessment Prepared for Washington State Healthcare Authority FINAL REPORT December 9, 2016 Acknowledgement This report was prepared by: Hayes, Inc. 157 S. Broad Street Suite 200 Lansdale, PA 19446 P: 215.855.0615 F: 215.855.5218 This report is intended to provide research assistance and general information only. It is not intended to be used as the sole basis for determining coverage policy or defining treatment protocols or medical modalities, nor should it be construed as providing medical advice regarding treatment of an individual’s specific case. Any decision regarding claims eligibility or benefits, or acquisition or use of a health technology is solely within the discretion of your organization. Hayes, Inc. assumes no responsibility or liability for such decisions. Hayes employees and contractors do not have material, professional, familial, or financial affiliations that create actual or potential conflicts of interest related to the preparation of this report. WA – Health Technology Assessment December 9, 2016 Table of Contents EVIDENCE SUMMARY ...................................................................................................................................
    [Show full text]
  • Neuropsychopharmacology of JNJ-55308942: Evaluation of a Clinical Candidate Targeting P2X7 Ion Channels in Animal Models of Neuroinflammation and Anhedonia
    www.nature.com/npp ARTICLE Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia Anindya Bhattacharya1, Brian Lord1, Jan-Sebastian Grigoleit1, Yingbo He1, Ian Fraser1, Shannon N. Campbell1, Natalie Taylor1, Leah Aluisio1, Jason C. O’Connor2, Mariusz Papp3, Christa Chrovian1, Nicholas Carruthers1, Timothy W. Lovenberg1 and Michael A. Letavic1 Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1β release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ- 55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1β release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED50 of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1β release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation in mice, assessed at day 2 after a single systemic LPS injection (0.8 mg/kg, i.p.), suggesting a role for P2X7 in microglial activation. In a model of BCG- induced depression, JNJ-55308942 dosed orally (30 mg/kg), reversed the BCG-induced deficits of sucrose preference and social interaction, indicating for the first time a role of P2X7 in the BCG model of depression, probably due to the neuroinflammatory component induced by BCG inoculation.
    [Show full text]
  • Effects of the Kappa-Opioid Receptor Agonist, U69593, on the Development of Sensitization and on the Maintenance of Cocaine Self
    Effects of the Kappa-opioid Receptor Agonist, U69593, on the Development of Sensitization and on the Maintenance of Cocaine Self-administration Susan Schenk, Ph.D., Brian Partridge, M.S., and Toni S. Shippenberg, Ph.D. Previous studies showed that prior administration of with each self-administered cocaine infusion for one group kappa-opioid agonists decreased the development of whereas responding of another group was reinforced by a sensitization to some of the behavioral effects of cocaine. The cocaine infusion alone. On the test day, pretreatment with present study sought to determine whether the development U69593 (0.32 mg/kg) decreased responding during each of sensitization to cocaine’s reinforcing effects was also hour of the 10 hr session for the group that was reinforced sensitive to antagonism by kappa-opioid agonists. During a with cocaine plus the cocaine-associated stimulus. U69593 pretreatment phase, the kappa-opioid agonist, U69593 (0.0 failed to produce a long-lasting disruption of cocaine self- or 0.32 mg/kg) was administered prior to (1) 2 daily administration for rats that were trained and tested without injections of cocaine (0.0 or 20.0 mg/kg), or (2) cocaine or the cocaine-associated stimulus. These data suggest that the saline administered via a yoking procedure. Cocaine acquisition and maintenance of cocaine self-administration pretreatment decreased the latency to acquisition of cocaine are differentially sensitive to manipulations of kappa-opioid self-administration. However, prior administration of systems. Further, the disruption of cocaine self- U69593 during the pretreatment phase failed to attenuate administration by U69593 may be due to interactions with the development of this sensitized response to cocaine’s mechanisms that underlie facilitative effects of stimuli that reinforcing effect.
    [Show full text]
  • Thomas A. Ban Documenting the History of CINP
    International Network for the History of Neuropsychopharmacology Electronic Archives Individual Collections Thomas A. Ban Documenting the History of CINP Edited by Peter R. Martin International Network for the History of Neuropsychopharmacology Risskov 2015 2 3 Contents PREFACE ..................................................................................................................................................... 4 CHAPTER 1: CINP AND ITS PAST .......................................................................................................... 6 Missing from the Membership Directory: Deceased, Retired, or Dropped? ............................................ 7 CHAPTER 2: HISTORY OF THE CINP .................................................................................................. 12 Historical Background ............................................................................................................................ 13 The Founding of CINP (Milan, May 1957 – Zurich, October 1957) ...................................................... 13 Interaction of Basic Scientists and Clinicians (Rome 1958 – Tarragona 1968) ..................................... 14 Communication of Findings (Prague 1970 – Florence 1984) ................................................................. 15 Communication of Interpretations (San Juan 1986 – Paris 2004) .......................................................... 16 Organizational Changes (Melbourne 1996 – Paris 2004) ......................................................................
    [Show full text]