Modeling Components and Frameworks WithUML

Total Page:16

File Type:pdf, Size:1020Kb

Modeling Components and Frameworks With�UML Modeling Components and Frameworks withUML or more than a decade ven- Sun Microsystem’s JavaBeans defini- dors have hyped and under tion has developed into the Enter- delivered the promises of prise JavaBeans (EJB) specification, object modeling and com- which supports both transaction and F Fponent technologies. As a persistence services for enterprise result, object modeling applications [4]. Similarly, Microsoft’s tools are in disrepute in many devel- COM definition has evolved into the As localized opment organizations, and the DCOM and COM+ specifications, semantics of the term “component- and supports the Microsoft Transac- objects evolve based” have been diluted to an extent tion Server (MTS) for enterprise reminiscent of what occurred to the applications [3]. into distributed expression “object-oriented” in the While analyzing the evolution of components, previous software generation. these technologies it is important to However, if we put aside our note that strong synergies exist developers are skepticism and evaluate recent between them. The coarse granularity asking that UML advances in these technologies, we of components in relation to classes find encouraging signs that they are promotes the modularity and reuse provide better catching up with some of their goals of object modeling. Conversely, support for hyperbole. Many object modeling the rigorous specification discipline of tools can now generate production- object modeling supports the inter- component-based quality skeleton code from structural face-based design and replaceability development models, and some of them can also aims of components. Consequently, it derive useful methods from behav- is not surprising that component using EJB and ioral models. While they still fall far Integrated Development Environ- COM+. short of the ambitious goals of full ments (IDEs) are converging with “round-trip engineering,” their visual object modeling tools, a trend improvements mark significant that is likely to continue. progress toward automating the soft- This article explores some of the Cris ware development process. synergies between object modeling kobryn Likewise, the leading component and components by examining how standards have evolved from nascent the de facto object modeling lan- definitions of simple architectures to guage standard, the Unified Model- mature specifications of complete ing Language (UML), supports the runtime environments. For example, leading enterprise component archi- COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 31 tecture standards—EJB and Figure 1. Component and interface notation. COM+/MTS (or COM+ for short). It is presumed the reader is generally familiar with how Realize relationship Longhand Component UML is used to specify software notation for «interface» showing Calculate systems; the central focus here interface showing ShoppingCart attributes and operations operations +calcWeight() is UML component-modeling +calcShipping() +Weight +calcTotal() +Shipping capabilities. ... ... +orderItems ... Components in UML 1.3 +calcWeight() The current UML specification, «interface» +calcShipping() ChangeOrder ... UML 1.3, defines a component +addItem(item:OrderItem) +addItem(item:Item) +deleteItem() as follows: +deleteItem() ... +saveItem() ... component: A physical, replaceable part of a system that Component and interface notations showing details packages implementation and Calculate provides the realization of a set Shorthand ("lollipop") ChangeOrder ShoppingCart of interfaces. A component rep- notation for resents a physical piece of interface implementation of a system, Component and interface notations hiding details including software code (source, binary or executable) or equivalents such as scripts or Figure 2. Deployment diagram example. command files [9]. A computational primaryServer:appServer node, in this case «database» an application PrimaryDB: It is important to note that server primaryQuoter: «call» AccountsDB QuoteService this definition tends to be «call» restrictive and emphasizes the primaryBroker use of components for imple- :StockBroker mentation modeling (compare In a failover this with analysis and design scenario, the backupBroker modeling). This point will be «copy» «copy» «copy» becomes the primaryBroker addressed later in this article. «become» and vice versa Indicates The UML notation for com- replication «become» ponents is summarized in Fig- ure 1. In this diagram a backupServer:appServer ShoppingCart component for backupBroker :StockBroker an e-business application is «call» shown as a rectangle with two «call» «database» smaller rectangles protruding backupQuoter: backupDB: QuoteService from its side. At the top of the AccountsDB diagram the component is shown with attributes, opera- tions, and the interfaces Calcu- late and ChangeOrder, which are drawn using found in implementation model diagrams, such as longhand interface notation (rectangles that contain component diagrams and deployment diagrams. A an operations compartment). At the bottom of the component diagram shows the organization and diagram the component is shown in a more compact dependencies of components, and a deployment representation where the attributes and operations diagram shows how component and class instances are elided and the interfaces are drawn using short- are deployed on computational nodes. An example hand (“lollipop”) interface notation. of a deployment diagram that uses components is Although UML components may be shown in shown in Figure 2. any structural modeling diagram, they are typically The example shows a simple failover scenario for 32 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM Table 1. Semantic comparison of components, advanced UML modeling topic, subsystem, and classes. problematic. One of the most common problems modelers COMPONENT SUBSYSTEM CLASS encounter is the semantic overlap Is a classifier? + + + between components and related Can have operations? + + + classifiers, such as classes and sub- Can have methods? – – + systems, which are defined as fol- Can have attributes? + – + lows: Can have interfaces? + + + Can be associated? + + + class: A description of a set of Can have thread of – – + objects that share the same control? attributes, operations, methods, Can be nested? + + + relationships, and semantics. A Is a grouping construct? – + + class may use a set of interfaces Can import/access? – + – to specify collections of opera- Represents a unit in a + + – tions it provides to its environ- physical system? ment [9]. Contains implementation + – – subsystem: A grouping of model of model elements? elements that represents a behav- Can create instances? + + (optional) + ioral unit in a physical system. A Instances typically reside + – – subsystem offers interfaces and on nodes? has operations. In addition, the model elements of a subsystem an online stockbroker system, where several compo- can be partitioned into specification and realization nents deployed on an instance of the primary appli- elements [9]. cation server node (primaryServer) are replicated on the backup application server node (backupServer). The semantics of components, subsystems, and On the primaryServer the primaryBroker, an instance classes are compared in Table 1. The table shows that of the component StockBroker, calls the interfaces of all three classifiers can have operations and inter- the primaryQuoter (an instance of the QuoteService faces, may be associated with other classifiers, can be component) and the primaryDB (an instance of the nested, and may create instances. Components are AccountsDB component). Component replication similar to subsystems and differ from classes in that and migration are shown by «copy» and «become» they cannot have threads of control and they repre- dependency flows, which are part of standard UML. sent units in physical systems. Components differ from subsystems and classes because they are not a Semantic Overlap: Components, Classes, grouping construct; they alone can contain the and Subsystems implementation of model elements, and their The fact that UML is a general-purpose modeling instances typically reside on computational nodes. language is both a strength and a weakness. Although Only subsystems can import or access other model software developers find they can use UML to model elements. most software problems in a variety of ways, they are It is important to note that, while all three classi- frequently overwhelmed by their options. The prob- fiers may conform to a set of interfaces, interfaces are lem is exacerbated by the dearth of pragmatic exam- usually most closely associated with components. ples and the lack of tools that support advanced Although it is relatively common to see a class with- constructs. Many of the examples in UML modeling out an interface during analysis, and subsystems may books tend to be trivial or academic, and frequently use model elements other than interfaces for specifi- do not address the practical problems faced by devel- cation (for example, use cases and statecharts), a opers. As for modeling tools, the author knows of none component without an interface may be technically that fully implements the UML 1.1 semantics and well-formed but suspect. This reflects the longstand- notation (adopted three years ago), let alone one that ing and intimate relationship between component- completely or correctly implements the current UML based development and interface-based design. 1.3 specification (which was adopted a year
Recommended publications
  • Uml.Sty, a Package for Writing UML Diagrams in LATEX
    uml.sty, a package for writing UML diagrams in LATEX Ellef Fange Gjelstad March 17, 2010 Contents 1 Syntax for all the commands 5 1.1 Lengths ........................................ 5 1.2 Angles......................................... 5 1.3 Nodenames...................................... 6 1.4 Referencepoints ................................. 6 1.5 Colors ......................................... 6 1.6 Linestyles...................................... 6 2 uml.sty options 6 2.1 debug ......................................... 6 2.2 index.......................................... 6 3 Object-oriented approach 7 3.1 Colors ......................................... 10 3.2 Positions....................................... 10 4 Drawable 12 4.1 Namedoptions .................................... 12 4.1.1 import..................................... 12 5 Element 12 5.1 Namedoptions .................................... 12 5.1.1 Reference ................................... 12 5.1.2 Stereotype................................... 12 5.1.3 Subof ..................................... 13 5.1.4 ImportedFrom ................................ 13 5.1.5 Comment ................................... 13 6 Box 13 6.1 Namedoptionsconcerninglocation . ....... 13 6.2 Boxesintext ..................................... 14 6.3 Named options concerning visual appearance . ......... 14 6.3.1 grayness.................................... 14 6.3.2 border..................................... 14 1 6.3.3 borderLine .................................. 14 6.3.4 innerBorder.................................
    [Show full text]
  • Development of an Entity Component System Architecture for Realtime Simulation
    Fachbereich 4: Informatik Development of an Entity Component System Architecture for Realtime Simulation Bachelorarbeit zur Erlangung des Grades Bachelor of Science (B.Sc.) im Studiengang Computervisualistik vorgelegt von Trevor Hollmann Erstgutachter: Prof. Dr.-Ing. Stefan Müller (Institut für Computervisualistik, AG Computergraphik) Zweitgutachter: Kevin Keul, M.Sc. (Institut für Computervisualistik, AG Computergraphik) Koblenz, im September 2019 Erklärung Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ja Nein Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. .................................................................................... (Ort, Datum) (Unterschrift) Abstract The development of a game engine is considered a non-trivial problem. [3] The architecture of such simulation software must be able to manage large amounts of simulation objects in real-time while dealing with “crosscutting concerns” [3, p. 36] between subsystems. The use of object oriented paradigms to model simulation objects in class hierar- chies has been reported as incompatible with constantly changing demands dur- ing game development [2, p. 9], resulting in anti-patterns and eventual, messy re-factoring. [13] Alternative architectures using data oriented paradigms re- volving around object composition and aggregation have been proposed as a result. [13, 9, 1, 11] This thesis describes the development of such an architecture with the explicit goals to be simple, inherently compatible with data oriented design, and to make reasoning about performance characteristics possible. Concepts are for- mally defined to help analyze the problem and evaluate results. A functional implementation of the architecture is presented together with use cases common to simulation software. Zusammenfassung Die Entwicklung einer Spiele-Engine wird als nichttriviales Problem betrach- tet.
    [Show full text]
  • Component Diagrams in UML
    9. UML Component Diagrams Page 1 of 4 Component Diagrams in UML The previous articles covered two of the three primary areas in which the UML diagrams are categorized (see Article 1)—Static and Dynamic. The remaining two UML diagrams that fall under the category of Implementation are the Component and Deployment diagrams. In this article, we will discuss the Component diagram. Basics The different high-level reusable parts of a system are represented in a Component diagram. A component is one such constituent part of a system. In addition to representing the high-level parts, the Component diagram also captures the inter- relationships between these parts. So, how are component diagrams different from the previous UML diagrams that we have seen? The primary difference is that Component diagrams represent the implementation perspective of a system. Hence, components in a Component diagram reflect grouping of the different design elements of a system, for example, classes of the system. Let us briefly understand what criteria to apply to model a component. First and foremost, a component should be substitutable as is. Secondly, a component must provide an interface to enable other components to interact and use the services provided by the component. So, why would not a design element like an interface suffice? An interface provides only the service but not the implementation. Implementation is normally provided by a class that implements the interface. In complex systems, the physical implementation of a defined service is provided by a group of classes rather than a single class. A component is an easy way to represent the grouping together of such implementation classes.
    [Show full text]
  • Using the UML for Architectural Description?
    Using the UML for Architectural Description? Rich Hilliard Integrated Systems and Internet Solutions, Inc. Concord, MA USA [email protected] Abstract. There is much interest in using the Unified Modeling Lan- guage (UML) for architectural description { those techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. IEEE P1471, the Recommended Practice for Architectural Description, represents an emerging consensus for specifying the content of an architectural descrip- tion for a software-intensive system. Like the UML, IEEE P1471 does not prescribe a particular architectural method or life cycle, but may be used within a variety of such processes. In this paper, I provide an overview of IEEE P1471, describe its conceptual framework, and investigate the issues of applying the UML to meet the requirements of IEEE P1471. Keywords: IEEE P1471, architectural description, multiple views, view- points, Unified Modeling Language 1 Introduction The Unified Modeling Language (UML) is rapidly maturing into the de facto standard for modeling of software-intensive systems. Standardized by the Object Management Group (OMG) in November 1997, it is being adopted by many organizations, and being supported by numerous tool vendors. At present, there is much interest in using the UML for architectural descrip- tion: the techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. Such techniques enable architects to record what they are doing, modify or ma- nipulate candidate architectures, reuse portions of existing architectures, and communicate architectural information to others. These descriptions may the be used to analyze and reason about the architecture { possibly with automated support.
    [Show full text]
  • Rational Unified Process - an Overview Uppsala, 2009-02-10
    Rational Unified Process - an overview Uppsala, 2009-02-10 Mikael Broomé Consultant M.Sc. LTH 10 years in Software Development 4 different RUP implementations Project Manager Mentor for Project Managers Applying more and more of agile mindset and techniques E-Mail: [email protected] 2 1 Agenda Why a process for developing software? What is RUP? What is the “RUP-way” of developing software? How is RUP packaged? Advantages by using RUP? Challenges when using RUP? Relation to other processes? 3 A good project delivers the right solution: satisified Users satisfied Sponsor delivers in time delivers on budget 4 2 Challenges Common challenges in software development projects: Capture the “right” requirements. Requirement changes. Different parts of the system do not fit together. Small changes causes big problems. Low quality and poor performance. Major problems identified late in projects. Lack of communication. Difficult to estimate time and cost. Management of environment, platforms and tools. 5 It’s all about (lack of) communication 6 3 Agenda Why a process for developing software? What is RUP? What is the “RUP-way” of developing software? How is RUP packaged? Advantages by using RUP? Challenges when using RUP? Relation to other processes? 7 What is RUP and UML? RUP is a process for development of software that describes what should be performed (activities) who should do it (roles) what the result should be (artifacts). UML is a notation with defined symbols that is worked out by OMG (Object Management Group) is used to make drawings (for example in software development). 8 4 Agenda Why a process for developing software? What is RUP? What is the “RUP-way” of developing software? How is RUP packaged? Advantages by using RUP? Challenges when using RUP? Relation to other processes? 9 JW2 RUP’s Six Best practices 1.
    [Show full text]
  • Network Visualization with R Katherine Ognyanova, POLNET 2015 Workshop, Portland OR
    Network visualization with R Katherine Ognyanova, www.kateto.net POLNET 2015 Workshop, Portland OR Contents Introduction: Network Visualization2 Data format, size, and preparation4 DATASET 1: edgelist ......................................4 DATASET 2: matrix .......................................5 Network visualization: first steps with igraph 5 A brief detour I: Colors in R plots8 A brief detour II: Fonts in R plots 11 Back to our main plot line: plotting networks 12 Plotting parameters ........................................ 12 Network Layouts ......................................... 17 Highlighting aspects of the network ............................... 24 Highlighting specific nodes or links ............................... 27 Interactive plotting with tkplot ................................. 29 Other ways to represent a network ............................... 30 Plotting two-mode networks with igraph ............................ 31 Quick example using the network package 35 Interactive and animated network visualizations 37 Interactive D3 Networks in R .................................. 37 Simple Plot Animations in R .................................. 38 Interactive networks with ndtv-d3 ................................ 39 Interactive plots of static networks............................ 39 Network evolution animations............................... 40 1 Introduction: Network Visualization The main concern in designing a network visualization is the purpose it has to serve. What are the structural properties that we want to highlight?
    [Show full text]
  • Affordit!: a Tool for Authoring Object Component Behavior in Virtual
    AffordIt!: A Tool for Authoring Object Component Behavior in Virtual Reality * † ‡ § Sina Masnadi Andres´ N. Vargas Gonzalez´ Brian Williamson Joseph J. LaViola Jr. Department of Computer Science University of Central Florida (a) (b) (c) (d) Figure 1: These figures show a sequence of steps followed to add a rotation affordance to the door of a washer machine. (a) An object in the scenario (b) Cylinder shape selection wrapping the door. (c) A user sets the amount of rotation the door will be constrained to. (d) An animation generated from the affordance can be visualized. ABSTRACT realistic experiences necessary to a VR scene, but not asset creation In this paper we present AffordIt!, a tool for adding affordances (a situation described in Hughes et al. [17]) which are needed to to the component parts of a virtual object. Following 3D scene build a virtual scene. To alleviate this problem, recent research has been focusing on frameworks to ease users’ authoring process as reconstruction and segmentation procedures, users find themselves with complete virtual objects, but no intrinsic behaviors have been seen in [9, 12, 35]. 3D scene reconstruction [32, 34, 44, 49] provides assigned, forcing them to use unfamiliar Desktop-based 3D editing a suitable solution to the problem. Initially a 3D reconstructed tools. AffordIt! offers an intuitive solution that allows a user to environment will be composed of a continuous mesh which can be segmented via autonomous tools as shown in George et al. [10] and select a region of interest for the mesh cutter tool, assign an intrinsic behavior and view an animation preview of their work.
    [Show full text]
  • Unified Modeling Language 2.0 Part 1 - Introduction
    UML 2.0 – Tutorial (v4) 1 Unified Modeling Language 2.0 Part 1 - Introduction Prof. Dr. Harald Störrle Dr. Alexander Knapp University of Innsbruck University of Munich mgm technology partners (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 2 1 - Introduction History and Predecessors • The UML is the “lingua franca” of software engineering. • It subsumes, integrates and consolidates most predecessors. • Through the network effect, UML has a much broader spread and much better support (tools, books, trainings etc.) than other notations. • The transition from UML 1.x to UML 2.0 has – resolved a great number of issues; – introduced many new concepts and notations (often feebly defined); – overhauled and improved the internal structure completely. • While UML 2.0 still has many problems, current version (“the standard”) it is much better than what we ever had formal/05-07-04 of August ‘05 before. (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 3 1 - Introduction Usage Scenarios • UML has not been designed for specific, limited usages. • There is currently no consensus on the role of the UML: – Some see UML only as tool for sketching class diagrams representing Java programs. – Some believe that UML is “the prototype of the next generation of programming languages”. • UML is a really a system of languages (“notations”, “diagram types”) each of which may be used in a number of different situations. • UML is applicable for a multitude of purposes, during all phases of the software lifecycle, and for all sizes of systems - to varying degrees.
    [Show full text]
  • Sysml, the Language of MBSE Paul White
    Welcome to SysML, the Language of MBSE Paul White October 8, 2019 Brief Introduction About Myself • Work Experience • 2015 – Present: KIHOMAC / BAE – Layton, Utah • 2011 – 2015: Astronautics Corporation of America – Milwaukee, Wisconsin • 2001 – 2011: L-3 Communications – Greenville, Texas • 2000 – 2001: Hynix – Eugene, Oregon • 1999 – 2000: Raytheon – Greenville, Texas • Education • 2019: OMG OCSMP Model Builder—Fundamental Certification • 2011: Graduate Certification in Systems Engineering and Architecting – Stevens Institute of Technology • 1999 – 2004: M.S. Computer Science – Texas A&M University at Commerce • 1993 – 1998: B.S. Computer Science – Texas A&M University • INCOSE • Chapters: Wasatch (2015 – Present), Chicagoland (2011 – 2015), North Texas (2007 – 2011) • Conferences: WSRC (2018), GLRCs (2012-2017) • CSEP: (2017 – Present) • 2019 INCOSE Outstanding Service Award • 2019 INCOSE Wasatch -- Most Improved Chapter Award & Gold Circle Award • Utah Engineers Council (UEC) • 2019 & 2018 Engineer of the Year (INCOSE) for Utah Engineers Council (UEC) • Vice Chair • Family • Married 14 years • Three daughters (1, 12, & 10) 2 Introduction 3 Our Topics • Definitions and Expectations • SysML Overview • Basic Features of SysML • Modeling Tools and Techniques • Next Steps 4 What is Model-based Systems Engineering (MBSE)? Model-based systems engineering (MBSE) is “the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases.” -- INCOSE SE Vision 2020 5 What is Model-based Systems Engineering (MBSE)? “Formal systems modeling is standard practice for specifying, analyzing, designing, and verifying systems, and is fully integrated with other engineering models. System models are adapted to the application domain, and include a broad spectrum of models for representing all aspects of systems.
    [Show full text]
  • Plantuml Language Reference Guide (Version 1.2021.2)
    Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants
    [Show full text]
  • APECS: Polychrony Based End-To-End Embedded System Design and Code Synthesis
    APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Engineering Sandeep K. Shukla, Chair Lamine Mili Alireza Haghighat Chao Wang Yi Deng April 3, 2015 Blacksburg, Virginia Keywords: AADL, CPS, Model-based code synthesis, correct-by-construction code synthesis, Polychrony, code generators, OSATE, Ocarina Copyright 2015, Matthew E. Anderson APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson (ABSTRACT) The development of high integrity embedded systems remains an arduous and error-prone task, despite the efforts by researchers in inventing tools and techniques for design automa- tion. Much of the problem arises from the fact that the semantics of the modeling languages for the various tools, are often distinct, and the semantics gaps are often filled manually through the engineer's understanding of one model or an abstraction. This provides an op- portunity for bugs to creep in, other than standardising software engineering errors germane to such complex system engineering. Since embedded systems applications such as avionics, automotive, or industrial automation are safety critical, it is very important to invent tools, and methodologies for safe and reliable system design. Much of the tools, and techniques deal with either the design of embedded platforms (hardware, networking, firmware etc), and software stack separately. The problem of the semantic gap between these two, as well as between models of computation used to capture semantics must be solved in order to design safer embedded systems.
    [Show full text]
  • Meta-Class Features for Large-Scale Object Categorization on a Budget
    Meta-Class Features for Large-Scale Object Categorization on a Budget Alessandro Bergamo Lorenzo Torresani Dartmouth College Hanover, NH, U.S.A. faleb, [email protected] Abstract cation accuracy over a predefined set of classes, and without consideration of the computational costs of the recognition. In this paper we introduce a novel image descriptor en- We believe that these two assumptions do not meet the abling accurate object categorization even with linear mod- requirements of modern applications of large-scale object els. Akin to the popular attribute descriptors, our feature categorization. For example, test-recognition efficiency is a vector comprises the outputs of a set of classifiers evaluated fundamental requirement to be able to scale object classi- on the image. However, unlike traditional attributes which fication to Web photo repositories, such as Flickr, which represent hand-selected object classes and predefined vi- are growing at rates of several millions new photos per sual properties, our features are learned automatically and day. Furthermore, while a fixed set of object classifiers can correspond to “abstract” categories, which we name meta- be used to annotate pictures with a set of predefined tags, classes. Each meta-class is a super-category obtained by the interactive nature of searching and browsing large im- grouping a set of object classes such that, collectively, they age collections calls for the ability to allow users to define are easy to distinguish from other sets of categories. By us- their own personal query categories to be recognized and ing “learnability” of the meta-classes as criterion for fea- retrieved from the database, ideally in real-time.
    [Show full text]