Adelaide International Bird Sanctuary Flyway Partnership Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 7: Species Changing IUCN Red List Status (2014-2015)
IUCN Red List version 2015.4: Table 7 Last Updated: 19 November 2015 Table 7: Species changing IUCN Red List Status (2014-2015) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2014 (IUCN Red List version 2014.3) and 2015 (IUCN Red List version 2015-4) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered, EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2014) List (2015) change version Category Category MAMMALS Aonyx capensis African Clawless Otter LC NT N 2015-2 Ailurus fulgens Red Panda VU EN N 2015-4 -
Nordmann's Greenshank Population Analysis, at Pantai Cemara Jambi
Final Report Nordmann’s Greenshank Population Analysis, at Pantai Cemara Jambi Cipto Dwi Handono1, Ragil Siti Rihadini1, Iwan Febrianto1 and Ahmad Zulfikar Abdullah1 1Yayasan Ekologi Satwa Alam Liar Indonesia (Yayasan EKSAI/EKSAI Foundation) Surabaya, Indonesia Background Many shorebirds species have declined along East Asian-Australasian Flyway which support the highest diversity of shorebirds in the world, including the globally endangered species, Nordmann’s Greenshank. Nordmann’s Greenshank listed as endangered in the IUCN Red list of Threatened Species because of its small and declining population (BirdLife International, 2016). It’s one of the world’s most threatened shorebirds, is confined to the East Asian–Australasian Flyway (Bamford et al. 2008, BirdLife International 2001, 2012). Its global population is estimated at 500–1,000, with an estimated 100 in Malaysia, 100–200 in Thailand, 100 in Myanmar, plus unknown but low numbers in NE India, Bangladesh and Sumatra (Wetlands International 2006). The population is suspected to be rapidly decreasing due to coastal wetland development throughout Asia for industry, infrastructure and aquaculture, and the degradation of its breeding habitat in Russia by grazing Reindeer Rangifer tarandus (BirdLife International 2012). Mostly Nordmann’s Greenshanks have been recorded in very small numbers throughout Southeast Asia, and there are few places where it has been reported regularly. In Myanmar, for example, it was rediscovered after a gap of almost 129 years. The total count recorded by the Asian Waterbird Census (AWC) in 2006 for Myanmar was 28 birds with 14 being the largest number at a single locality (Naing 2007). In 2011–2012, Nordmann’s Greenshank was found three times in Sumatera Utara province, N Sumatra. -
Kerang Lakes Land and Water Action Group(PDF
SUBMISSION 20 RECEIVED 25/08/2017 Kerang Lakes Land & Water Action Group Submission to the Inquiry into the Management, Governance and Use of Environmental Water August 2017 Kerang Lakes Land and Water Action Group President: Stuart Simms Secretary: Raelene Peel Contents Summary ................................................................................................................................................................ 2 1: Introduction ................................................................................................................................................... 3 2. Case Studies: Environmental Management Practices within the Kerang Lakes......................................... 4 2.1. Barr Creek Drainage Diversion Scheme Case Study ............................................................................ 5 2.2. Avoca Marshes and ‘The Sill’ - 1969 to 1991 Case Study .................................................................... 7 2.3 Cullen’s Lake Environmental Watering and Bed Flushing Program Case Study ................................. 9 3. Barriers to the efficient use of environmental water ................................................................................ 11 3.1 Infrastructure and capacity issues ..................................................................................................... 11 3.2 Ineffective management of human resources ................................................................................... 11 3.2.1 Failure to utilise local knowledge -
1 Australian Tidal Currents – Assessment of a Barotropic Model
https://doi.org/10.5194/gmd-2021-51 Preprint. Discussion started: 14 April 2021 c Author(s) 2021. CC BY 4.0 License. Australian tidal currents – assessment of a barotropic model (COMPAS v1.3.0 rev6631) with an unstructured grid. David A. Griffin1, Mike Herzfeld1, Mark Hemer1 and Darren Engwirda2 1Oceans and Atmosphere, CSIRO, Hobart, TAS 7000, Australia 2Center for Climate Systems Research, Columbia University, New York City, NY, USA and NASA Goddard Institute for 5 Space Studies, New York City, NY, USA Correspondence to: David Griffin ([email protected]) Abstract. While the variations of tidal range are large and fairly well known across Australia (less than 1 m near Perth but more than 14 m in King Sound), the properties of the tidal currents are not. We describe a new regional model of Australian 10 tides and assess it against a validation dataset comprising tidal height and velocity constituents at 615 tide gauge sites and 95 current meter sites. The model is a barotropic implementation of COMPAS, an unstructured-grid primitive-equation model that is forced at the open boundaries by TPXO9v1. The Mean Absolute value of the Error (MAE) of the modelled M2 height amplitude is 8.8 cm, or 12 % of the 73 cm mean observed amplitude. The MAE of phase (10°), however, is significant, so the M2 Mean Magnitude of Vector Error (MMVE, 18.2 cm) is significantly greater. The Root Sum Square over the 8 major 15 constituents is 26% of the observed amplitude.. We conclude that while the model has skill at height in all regions, there is definitely room for improvement (especially at some specific locations). -
CHAPTER 1 General Introduction 1.1 Shorebirds in Australia Shorebirds
CHAPTER 1 General introduction 1.1 Shorebirds in Australia Shorebirds, sometimes referred to as waders, are birds that rely on coastal beaches, shorelines, estuaries and mudflats, or inland lakes, lagoons and the like for part of, and in some cases all of, their daily and annual requirements, i.e. food and shelter, breeding habitat. They are of the suborder Charadrii and include the curlews, snipe, plovers, sandpipers, stilts, oystercatchers and a number of other species, making up a diverse group of birds. Within Australia, shorebirds account for 10% of all bird species (Lane 1987) and in New South Wales (NSW), this figure increases marginally to 11% (Smith 1991). Of these shorebirds, 45% rely exclusively on coastal habitat (Smith 1991). The majority, however, are either migratory or vagrant species, leaving only five resident species that will permanently inhabit coastal shorelines/beaches within Australia. Australian resident shorebirds include the Beach Stone-curlew (Esacus neglectus), Hooded Plover (Charadrius rubricollis), Red- capped Plover (Charadrius ruficapillus), Australian Pied Oystercatcher (Haematopus longirostris) and Sooty Oystercatcher (Haematopus fuliginosus) (Smith 1991, Priest et al. 2002). These species are generally classified as ‘beach-nesting’, nesting on sandy ocean beaches, sand spits and sand islands within estuaries. However, the Sooty Oystercatcher is an island-nesting species, using rocky shores of near- and offshore islands rather than sandy beaches. The plovers may also nest by inland salt lakes. Shorebirds around the globe have become increasingly threatened with the pressure of predation, competition, human encroachment and disturbance and global warming. Populations of birds breeding in coastal areas which also support a burgeoning human population are under the highest threat. -
Wetlands Australia
Wetlands Australia National wetlands update August 2014—Issue No 25 Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment. © Copyright Commonwealth of Australia, 2014 Wetlands Australia National Wetlands Update August 2014 – Issue No 25 is licensed by the Commonwealth of Australia for use under a Creative Commons By Attribution 3.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: http://creativecommons.org/licenses/by/3.0/au This report should be attributed as ‘Wetlands Australia National Wetlands Update August 2015 – Issue No 25, Commonwealth of Australia 2014’ The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Cover images Front cover: Wetlands provide important habitats for waterbirds, such as this adult great egret (Ardea modesta) at Leichhardt Lagoon in Queensland (© Copyright, Brian Furby) Back cover: Inland wetlands, like Narran Lakes Nature Reserve Ramsar site in New South Wales, support high numbers of waterbird breeding and provide refuge for birds during droughts (© Copyright, Dragi Markovic) ii / Wetlands Australia August 2014 Contents Introduction to Wetlands Australia August -
Appendix M Migratory Bird Species Recorded in the Bing Bong - Mcarthur River Area
APPENDIX M MIGRATORY BIRD SPECIES RECORDED IN THE BING BONG - MCARTHUR RIVER AREA COMMON NAME SCIENTIFIC NAME RECORDED RECORDED EPBC ACT NORTHERN GROUP FEEDING AREA RECORDED FEEDING IN (Blakers IN (Chatto PROTECTED HEMISPHERE FOODS (Lane METHOD et al 1985) 2000,2001,20 MATTERS MIGRANTS 1987) 03) White-breasted Sea-Eagle Haliaeetus leucogaster x x x bird of prey open water Osprey Pandion haliaetus x bird of prey open water Little Tern Sterna albifrons x x seabird open water dive Bridled Tern Sterna anaethetus x seabird open water dive Lesser Crested Tern ^ Sterna bengalensis seabird open water dive Common Tern ^ Sterna hirundo x seabird open water dive Black-naped Tern Sterna sumatrana x x seabird open water dive Masked Booby ^ Sula dactylatra seabird open water dive Brown Booby * Sula leucogaster seabird open water dive Common Noddy * Anous stolidus seabird open water dive Least Frigatebird * Fregata ariel seabird open water Great Frigatebird * Fregata minor seabird open water Caspian Tern Hydroprogne caspia x x seabird open water dive Streaked Shearwater Puffinus leucomelas x seabird dive Little Curlew ^ Numenius minutus x x shorebird dry grassland insects, vegetable matter Greater Sand-Plover Charadrius leschenaultii x x shorebird intertidal mudflats crabs, marine visual, run worms, insects and peck Lesser Sand-Plover Charadrius mongolus x x shorebird intertidal mudflats crabs, molluscs, crustacea, worms Whimbrel Numenius phaeopus x x x shorebird intertidal mudflats crabs probe Grey Plover Pluvialis squatarola x x shorebird intertidal -
Some Aspects of Feeding Ecology of the Lesser Sand Plover Charadrius Mongolus in Three Different Zones in the Kadalundy Estuary, Kerala, South India
Feeding ecology of Lesser Sand Plover in Kerala, S India – K.M. Aarif Some Aspects of Feeding Ecology of the Lesser Sand Plover Charadrius mongolus in Three Different Zones in the Kadalundy Estuary, Kerala, South India K.M. AARIF Department of Zoology, Mananthavady Campus, Kannur University, Waynad District, Kerala, South INDIA. Email: [email protected] Received 24 October 2009; accepted 12 December 2009 Abstract: The study on feeding ecology of the Lesser Sand Plover (LSP) at Kadalundy estuary from July 2007 to December 2008, revealed that there were 13 species of crustaceans and 16 species of polychaete worms identified in the study area of which all identified small crab species(4 species) and polychaete worms (4 species) were consumed by LSPs. The highest number of crustacean species was found in mangroves (11 species). In contrast the highest species number of polychaete worms (13 species) was seen in the mudflats while no polychaete worm was identified in the sandy beds. Of the Crustaceans, Sesarma quadrata and Ocypoda sp. occurred in all the habitats. Sampling polychaete worms undertaken once a month showed that the number peaked at 39 in December 2008 in mudflats. Using direct observations once a week, the number of feeding birds was at its highest in December and January. Pearson correlation test showed significant relationship between the number of polychaete worms and feeding LSPs both at mudflats and mangroves ( p<0.05) and the Scheffe univariate test (ANOVA) showed significant differences between the three habitat zones ( p<0.01). The highest number of average total pecks at prey was seen at mudflats (82.1 in the morning and 128.0 in the afternoon). -
A Guide to the Birds of Barrow Island
A Guide to the Birds of Barrow Island Operated by Chevron Australia This document has been printed by a Sustainable Green Printer on stock that is certified carbon in joint venture with neutral and is Forestry Stewardship Council (FSC) mix certified, ensuring fibres are sourced from certified and well managed forests. The stock 55% recycled (30% pre consumer, 25% post- Cert no. L2/0011.2010 consumer) and has an ISO 14001 Environmental Certification. ISBN 978-0-9871120-1-9 Gorgon Project Osaka Gas | Tokyo Gas | Chubu Electric Power Chevron’s Policy on Working in Sensitive Areas Protecting the safety and health of people and the environment is a Chevron core value. About the Authors Therefore, we: • Strive to design our facilities and conduct our operations to avoid adverse impacts to human health and to operate in an environmentally sound, reliable and Dr Dorian Moro efficient manner. • Conduct our operations responsibly in all areas, including environments with sensitive Dorian Moro works for Chevron Australia as the Terrestrial Ecologist biological characteristics. in the Australasia Strategic Business Unit. His Bachelor of Science Chevron strives to avoid or reduce significant risks and impacts our projects and (Hons) studies at La Trobe University (Victoria), focused on small operations may pose to sensitive species, habitats and ecosystems. This means that we: mammal communities in coastal areas of Victoria. His PhD (University • Integrate biodiversity into our business decision-making and management through our of Western Australia) -
Birds of Chile a Photo Guide
© Copyright, Princeton University Press. No part of this book may be 88 distributed, posted, or reproduced in any form by digital or mechanical 89 means without prior written permission of the publisher. WALKING WATERBIRDS unmistakable, elegant wader; no similar species in Chile SHOREBIRDS For ID purposes there are 3 basic types of shorebirds: 6 ‘unmistakable’ species (avocet, stilt, oystercatchers, sheathbill; pp. 89–91); 13 plovers (mainly visual feeders with stop- start feeding actions; pp. 92–98); and 22 sandpipers (mainly tactile feeders, probing and pick- ing as they walk along; pp. 99–109). Most favor open habitats, typically near water. Different species readily associate together, which can help with ID—compare size, shape, and behavior of an unfamiliar species with other species you know (see below); voice can also be useful. 2 1 5 3 3 3 4 4 7 6 6 Andean Avocet Recurvirostra andina 45–48cm N Andes. Fairly common s. to Atacama (3700–4600m); rarely wanders to coast. Shallow saline lakes, At first glance, these shorebirds might seem impossible to ID, but it helps when different species as- adjacent bogs. Feeds by wading, sweeping its bill side to side in shallow water. Calls: ringing, slightly sociate together. The unmistakable White-backed Stilt left of center (1) is one reference point, and nasal wiek wiek…, and wehk. Ages/sexes similar, but female bill more strongly recurved. the large brown sandpiper with a decurved bill at far left is a Hudsonian Whimbrel (2), another reference for size. Thus, the 4 stocky, short-billed, standing shorebirds = Black-bellied Plovers (3). -
2020 Dodgy Drongo Twitchathon Report the Drongos Last Won the 30Hr Race Back in 2017 and It Was Great Getting That Team Back Together Again
2020 Dodgy Drongo Twitchathon Report The Drongos last won the 30hr race back in 2017 and it was great getting that team back together again. Maxie the Co-pilot and Simon ‘The Whisperer’ joined the Capt’n for a week of birding out west before heading to our starting point in the mulga. It is here I should mention that the area is currently seeing an absolute boom period after recent rains and was heaving with birds. So with this in mind and with our proven ‘golden route’ we were quite confident of scoring a reasonably good score. We awoke to rain on tin and it didn’t stop as we drove to the mulga, in fact it got heavier.As we sat in the car with 20min until start time we were contemplating if this would kill our run. But as we walked around in the drizzle we soon realised the birds were still active. Simon found a family of Inland Thornbill (a bird I always like to start with), Max had found a roosting Hobby and I’d found some Bee-eaters and Splendid Fairywrens. As the alarm chimed we quickly ticked up all those species as well as Red-capped Robin, Masked and White-browed Woodswallow, Black Honeyeater, White-winged Triller and Budgerigar. The Little Eagle was still on it’s nest and a pair of Plum-headed Finches shot past. We then changed location within the mulga and soon flushed a Little Buttonquail!! Common Bronewing, Owlet-nightjar and Mulga Parrot soon fell and after 20min we were off. -
Bird Vulnerability Assessments
Assessing the vulnerability of native vertebrate fauna under climate change, to inform wetland and floodplain management of the River Murray in South Australia: Bird Vulnerability Assessments Attachment (2) to the Final Report June 2011 Citation: Gonzalez, D., Scott, A. & Miles, M. (2011) Bird vulnerability assessments- Attachment (2) to ‘Assessing the vulnerability of native vertebrate fauna under climate change to inform wetland and floodplain management of the River Murray in South Australia’. Report prepared for the South Australian Murray-Darling Basin Natural Resources Management Board. For further information please contact: Department of Environment and Natural Resources Phone Information Line (08) 8204 1910, or see SA White Pages for your local Department of Environment and Natural Resources office. Online information available at: http://www.environment.sa.gov.au Permissive Licence © State of South Australia through the Department of Environment and Natural Resources. You may copy, distribute, display, download and otherwise freely deal with this publication for any purpose subject to the conditions that you (1) attribute the Department as the copyright owner of this publication and that (2) you obtain the prior written consent of the Department of Environment and Natural Resources if you wish to modify the work or offer the publication for sale or otherwise use it or any part of it for a commercial purpose. Written requests for permission should be addressed to: Design and Production Manager Department of Environment and Natural Resources GPO Box 1047 Adelaide SA 5001 Disclaimer While reasonable efforts have been made to ensure the contents of this publication are factually correct, the Department of Environment and Natural Resources makes no representations and accepts no responsibility for the accuracy, completeness or fitness for any particular purpose of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of this publication.