ABSTRACT SCHWARZ, TANNER. Distribution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comprehensive Transcriptome Profiling of Root-Knot Nematodes During Plant Infection and Characterisation of Species Specific Trait Chinh Nghia Nguyen
Comprehensive transcriptome profiling of root-knot nematodes during plant infection and characterisation of species specific trait Chinh Nghia Nguyen To cite this version: Chinh Nghia Nguyen. Comprehensive transcriptome profiling of root-knot nematodes during plant infection and characterisation of species specific trait. Agricultural sciences. COMUE Université Côte d’Azur (2015 - 2019), 2016. English. NNT : 2016AZUR4124. tel-01673793 HAL Id: tel-01673793 https://tel.archives-ouvertes.fr/tel-01673793 Submitted on 1 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale de Sciences de la Vie et de la Santé Unité de recherche : UMR ISA INRA 1355-UNS-CNRS 7254 Thèse de doctorat Présentée en vue de l’obtention du grade de docteur en Biologie Moléculaire et Cellulaire de L’UNIVERSITE COTE D’AZUR par NGUYEN Chinh Nghia Etude de la régulation du transcriptome de nématodes parasites de plante, les nématodes à galles du genre Meloidogyne Dirigée par Dr. Bruno FAVERY Soutenance le 8 Décembre, 2016 Devant le jury composé de : Pr. Pierre FRENDO Professeur, INRA UNS CNRS Sophia-Antipolis Président Dr. Marc-Henri LEBRUN Directeur de Recherche, INRA AgroParis Tech Grignon Rapporteur Dr. -
Diversity, Phylogeny, Characterization and Diagnostics of Root-Knot and Lesion Nematodes
Diversity, phylogeny, characterization and diagnostics of root-knot and lesion nematodes Toon Janssen Promotors: Prof. Dr. Wim Bert Prof. Dr. Gerrit Karssen Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie 1 Table of contents Acknowledgements Chapter 1: general introduction 1 Organisms under study: plant-parasitic nematodes .................................................... 11 1.1 Pratylenchus: root-lesion nematodes ..................................................................................... 13 1.2 Meloidogyne: root-knot nematodes ....................................................................................... 15 2 Economic importance ..................................................................................................... 17 3 Identification of plant-parasitic nematodes .................................................................. 19 4 Variability in reproduction strategies and genome evolution ..................................... 22 5 Aims .................................................................................................................................. 24 6 Outline of this study ........................................................................................................ 25 Chapter 2: Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. 1 Abstract -
ABSTRACT WONG, TSZ WAI SAMMI. Management of Root-Knot
ABSTRACT WONG, TSZ WAI SAMMI. Management of Root-knot Nematodes in North Carolina and Sensitivity of Watermelon Pathogens to Succinate Dehydrogenase Inhibitors. (Under the direction of Dr. Lina Quesada-Ocampo). Root-knot nematodes (Meloidogyne spp.) are some of the most economically important and common plant parasitic nematodes in North Carolina cropping systems. These nematodes can be managed using chemical control and cultural methods such as crop rotation. While the southern root-knot nematode, M. incognita, has been a large problem in North Carolina, the guava root-knot nematode, M. enterolobii has become an emerging threat that is impacting many sweetpotato growers. To understand the incidence and distribution of root-knot nematodes (RKN) in the state, soil samples from fields rotated with sweetpotato were collected from 2015 to 2018 across all counties of North Carolina. Amongst these samples, the highest occurrence of RKN-positive were found in Cumberland, Sampson, and Johnston counties. In addition, Sampson and Nash counties had the highest average RKN population density while Wayne and Greene counties had the lowest average RKN population density. Moreover, we analyzed the host susceptibility of 18 plants for a North Carolina population of M. enterolobii by conducting greenhouse trials and measuring the eggs per gram of fresh root (ER) after 45 days. The tomato ‘Rutgers’ was used as a susceptible control. M. enterolobii was able to reproduce on all plants. Two watermelon varieties, cabbage, pepper, one soybean variety, and tobacco were rated as good hosts. Broadleaf signalgrass, corn, one peanut variety, sudangrass, and nutsedge were less susceptible to M. enterolobii and considered poor hosts. -
Nematode Control Alternatives
Nematodes: ATTRA Alternative Controls A Publication of ATTRA - National Sustainable Agriculture Information Service • 1-800-346-9140 • www.attra.ncat.org By Martin Guerena This publication provides general information on the tiny worm-like organisms called nematodes. It NCAT Agriculture contains detailed descriptions of the genera of nematodes that attack plants, as well as various methods Specialist to diagnose, discourage, and manage plant parasitic nematodes in a least toxic, sustainable manner. © 2006 NCAT Contents Introduction Introduction ..................... 1 ematodes are Symptoms and tiny, worm-like, Sampling .......................... 4 Nmulticellular Preventing Further animals adapted to liv- Spread of Nematodes ....................... 4 ing in water. The num- ber of nematode species Managing Soil Biology ............................... 5 is estimated at half a Crop Rotations and mil lion, many of which Cover Crops ...................... 6 are “free-living” types Botanical found in the oceans, Nematicides ..................... 9 in freshwater habitats, Biocontrols ...................... 10 and in soils. Plant-par- Plant Resistance ............11 asitic species form a Red Plastic Mulch ......... 12 smaller group. Nema- www.insectimages.org Solarization .................... 13 todes are common Flooding .......................... 13 in soils all over the Root-knot nematode—Meloidogyne brevicauda Loos Summary ......................... 13 world (Dropkin, 1980; ©Jonathan D. Eisenback, Virginia Polytechnic Institute and State University References ..................... 14 Yepsen, 1984). As a commentator in the early Further Resources ........17 twentieth cen tury wrote: genera and species have particu lar soil and Web Resources ..............17 climatic requirements. For example, cer- Suppliers .......................... 18 If all the matter in the universe except the tain species do best in sandy soils, while nematodes were swept away, our world would oth ers favor clay soils. -
Meloidogyne Enterolobii
Bulletin OEPP/EPPO Bulletin (2016) 46 (2), 190–201 ISSN 0250-8052. DOI: 10.1111/epp.12293 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/103 (2) Diagnostics Diagnostic PM 7/103 (2) Meloidogyne enterolobii Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2011-09. Meloidogyne enterolobii1. This Standard should be used in Revision approved in 2016-04. conjunction with PM 7/76 Use of EPPO diagnostic Terms used are those in the EPPO Pictorial Glossary of protocols. Morphological Terms in Nematology2. of infested plants and plant products, in soil, adhering to 1. Introduction farm equipment or by irrigation water. Currently, close to 100 species of root-knot nematodes have Infestation by root-knot nematodes affects growth, yield, been described (Hunt & Handoo, 2009). All members are obli- lifespan and tolerance to environmental stresses of affected gate endoparasites on plant roots and they occur worldwide. plants. Typical symptoms include stunted growth, wilting, About 10 species are significant agricultural pests, while four leaf yellowing and deformation of plant organs. Crop dam- are major pests and are distributed worldwide in agricultural age due to root-knot nematodes may consist of reduced areas: Meloidogyne incognita, Meloidogyne javanica, quantity and quality of yield. Meloidogyne arenaria and Meloidogyne hapla. The root-knot Meloidogyne enterolobii was first described from Hainan nematode Meloidogyne enterolobii is polyphagous and has Island, China, in 1983. At present, this species has been many host plants including cultivated plants and weeds. It recorded from Africa (Burkina Faso, Ivory Coast, Malawi, attacks woody as well as herbaceous plants. -
Diagnostic Methods for Identification of Root-Knot Nematodes Species from Brazil
Ciência Rural, Santa Maria,Diagnostic v.48: methods 02, e20170449, for identification 2018 of root-knot nematodes specieshttp://dx.doi.org/10.1590/0103-8478cr20170449 from Brazil. 1 ISSNe 1678-4596 CROP PROTECTION Diagnostic methods for identification of root-knot nematodes species from Brazil Tiago Garcia da Cunha1 Liliane Evangelista Visôtto2* Everaldo Antônio Lopes1 Claúdio Marcelo Gonçalves Oliveira3 Pedro Ivo Vieira Good God1 1Instituto de Ciências Agrárias, Universidade Federal de Viçosa (UFV), Campus Rio Paranaíba, Rio Paranaíba, MG, Brasil. 2Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa (UFV), Campus Rio Paranaíba, 38810-000, Rio Paranaíba, MG, Brasil. E-mail: [email protected]. *Corresponding author. 3Instituto Biológico, Campinas, SP, Brasil. ABSTRACT: The accurate identification of root-knot nematode (RKN) species (Meloidogyne spp.) is essential for implementing management strategies. Methods based on the morphology of adults, isozymes phenotypes and DNA analysis can be used for the diagnosis of RKN. Traditionally, RKN species are identified by the analysis of the perineal patterns and esterase phenotypes. For both procedures, mature females are required. Over the last few decades, accurate and rapid molecular techniques have been validated for RKN diagnosis, including eggs, juveniles and adults as DNA sources. Here, we emphasized the methods used for diagnosis of RKN, including emerging molecular techniques, focusing on the major species reported in Brazil. Key words: DNA, esterase, Meloidogyne, molecular biology, morphological pattern. Métodos diagnósticos usados na identificação de espécies do nematoide das galhas do Brasil RESUMO: A identificação acurada de espécies do nematoide das galhas (NG) (Meloidogyne spp.) é essencial para a implementação de estratégias de manejo. -
Newer Species of Root-Knot Nematodes Pathogens That Rank
Newer Species of Root-knot Nematodes Pathogens that rank among the top 5 disease causing agents in world. Donald W. Dickson, Nematologist University of Florida Gainesville, FL 1855 – Berkeley was first person to report root-knot nematodes. Discovered on cucumber roots, glasshouse in England History of root‐knot nematodes 1) 1887 – Brazilian scientist (Goeldi) observed root-knot nematodes in coffee, coined the name Meloidogyne (Gr. = honey + female), 2) Goeldi named nematode as Meloidogyne exigua, the coffee root-knot nematode. 1887 – 1949 – Several names applied to these nematodes that induced galls on plant roots: Ditylenchus Anguillula Heterodera radicicola Heterodera marioni 1889 – Neal and Atkinson were the first scientists to report root-knot nematodes in North America. As scientists began to dig deeper into rkn, many variants discovered, referred to as “races” Why identify root-knot nematodes Nonchemical tactics for management, e.g., host resistance or crop rotation are becoming more important in agriculture. Species differ in damage potential, environmental requirements, and host range. Precise identification is often required for effective managment. There are challenges RKN have conserved morphology Life stages occur in different habitats Indistinct species boundaries, maybe mixed Species have potential for hybridization Polyploidy History of root‐knot nematodes 1949 – B. G. Chitwood (USA) 1) Re-established the genus Meloidogyne. 2) Based on morphological features described 5 species, and 1 subspecies. 3) Redescribed M. exigua. Root-knot Nematodes Meloidogyne spp. Currently over 100 species described. Four are most common, occur worldwide. Infect numerous agricultural crops. 1. M. incognita –– southern root-knot nematode 2. M. javanica – Javanese root-knot nematode 3. -
Medidas Gerais De Controle De Nematóides Da Batata
http://journal.unoeste.br/index.php/ca/index DOI: 10.5747/ca.2021.v17.n2.a427 ISSN on-line 1809-8215 Submetido: 18/08/2020 Revisado: 23/03/2021 Aceito: 08/04/2021 Evaluation of eggplant and gilo genotypes and interspecific hybrids as to root-knot nematode resistance Jadir Borges Pinheiro1, Giovani Olegario da Silva1, Jhenef Gomes de Jesus2, Danielle Biscaia1, Raphael Augusto de Castro e Melo1 1Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. 2Centro Universitário ICESP, Brasília, DF. E-mail: [email protected] Resumo No Brasil, as culturas da berinjela e do jiló são importantes para a economia de pequenas propriedades localizadas principalmente nos estados do Sudeste, bem como de outras regiões, com expressivo volume de produção o ano todo nos mercados atacadistas locais. No entanto, essas espécies são muito suscetíveis aos nematoides das galhas e há poucas ou quase nenhuma fonte conhecida de resistência. Desta forma, o objetivo do presente estudo foi buscar fontes de resistência aos nematoides das galhas em genótipos de berinjela e jiló; bem como em híbridos interespecíficos para uso como porta-enxertos. Foram realizados três experimentos: no primeiro, realizado em 2013, foram avaliados 10 acessos experimentais de berinjela, um híbrido entre berinjela e jiló, e um híbrido de Solanum stramonifolium com berinjela para a reação ao Meloidogyne enterolobii. No segundo, em 2016, foram avaliados 20 acessos experimentais de jiló, para a reação ao M. incognita, M. javanica e M. enterolobii. E no terceiro, em 2017, foram avaliados um acesso e dois híbridos experimentais de berinjela, e um híbrido de Solanum scuticum com berinjela, para a reação ao M. -
JOURNAL of NEMATOLOGY Reproduction of Meloidogyne Enterolobii on Selected Root-Knot Nematode Resistant Sweetpotato (Ipomoea
JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-063 e2020-63 | Vol. 52 Reproduction of Meloidogyne enterolobii on selected root-knot nematode resistant sweetpotato (Ipomoea batatas) cultivars Janete A. Brito1,*, Johan Desaeger2 3 and D.W. Dickson Abstract 1Florida Department of Agriculture and Consumer Services, Division The ability of Meloidogyne enterolobii to reproduce on selected of Plant Industry, Gainesville, FL sweetpotato (Ipomoea batatas) cultivars (Beauregard, Covington, 32614-7100. Evangeline, Hernandez, and Orleans (LA 05-111)) was evaluated in two greenhouse experiments, each with 10 replicates. All cultivars, 2 Entomology and Nematology except Beauregard (control) and Orleans, were reported previously Department, Gulf Coast Research as moderately resistant or resistant to M. incognita, Fusarium and Education Center, University of oxysporum f. sp. batatas, and Streptomyces ipomoeae. Plants were Florida, Wimauma, FL 33598. inoculated with M. enterolobii (5,000 eggs/plant) and arranged in 3Entomology and Nematology a completely randomized design in a greenhouse with an average Department, Institute of Food and daily temperature of 24.8°C. Galls and egg masses per root system Agricultural Sciences, University of (0-5 scale), eggs per egg mass, eggs per gram of fresh root (gfr), Florida, Gainesville, FL 32611-0620. and reproduction factor (RF) were determined. Meloidogyne enterolobii infected and reproduced on all the sweetpotato cultivars. *E-mail: [email protected] The nematode induced galls on both fibrous and storage roots, This paper was edited by regardless of the cultivar, as well as induced necrosis and cracks Horacio Lopez-Nicora. on storage roots. The lesions and cracks on the storage roots were more visually pronounced on Hernandez than those on other Received for publication cultivars. -
Using Resistance to Combat Root-Knot Disease in Tomato
Using Resistance to Combat Root-Knot Disease in tomato Johan Desaeger, Don Dickson, Homan Regmi and Silvia Vau University of Florida Florida Nematology Giants Retiring Dr. Don Dickson Dr. Joe Noling Resistance to Combat Tomato Root-Knot Disease • Florida: little interest in using root-knot nematode resistant tomato cultivars • California: majority of processing tomato are resistant cultivars • Why resistance? • Viable alternative? How was tomato resistant to root-knot nematode (RKN) developed: Solanum peruvianum • 1940’s – RKN resistance from wild sp. www.lomasdeatiquipa.com Solanum peruvianum - Mi-1 gene • Resistance to 3 spp. M. incognita, M. javanica, and M. arenaria • Several Mi-genes : Mi-1 to Mi-9 -only Mi- 1 incorporated in tomato cv’s Crops with nematode resistant genes - root-knot nematode Almost all resistance against “endoparasitic” nematodes Host plant Gene or source Meloidogyne spp. Carrot Mj - 1 Mi, Mj Clover TRKR M. trifoliophila Coffee Mex - 1 M. exigua Common bean Me 1, Me2, Me 3 Mh, Mi, Mj Cotton Rkn 1, RKN2 Mi Cowpea RK, Rk2, rk3 Ma, Mh, Mi, Mj Grape N, Mur1 Ma, Mi Lucerne Mj - 1 Mh, Mi Lima bean Mir -1, Mig- 1, Mjg- 1 Mi, Mj Groundnut (peanut) Arachis spp. hybrids Ma, Mj Pepper Me1, 3,4,7; Mech1,2 Ma, Mi, Mj, M. chitwoodi Potato Rmc1, MfaXIIspI M. chitwoodi, Mh, M. fallax, Mi Prunus (peach) Ma Mj, Mi, Ma, Mf Soybean 2 QTLs Mj Sugarbeet Beta vulgaris spp. Ma, M. chitwoodi, Mh, M. fallax Sweet potato Mi, Mj, Ma Tobacco Rk Mi Tomato Mi1 – Mi9 Ma, Mi, Mj Wheat Triticum tauschii Mi, Mj, M. -
The Possible Biotechnological Use of Edible Mushroom Bioproducts for Controlling Plant and Animal Parasitic Nematodes
Hindawi BioMed Research International Volume 2020, Article ID 6078917, 12 pages https://doi.org/10.1155/2020/6078917 Review Article The Possible Biotechnological Use of Edible Mushroom Bioproducts for Controlling Plant and Animal Parasitic Nematodes Gloria Sarahi Castañeda-Ramírez,1,2 Juan Felipe de Jesús Torres-Acosta,2 José Ernesto Sánchez,3 Pedro Mendoza-de-Gives ,1 Manases González-Cortázar,4 Alejandro Zamilpa ,4 Laith Khalil Tawfeeq Al-Ani ,5,6 Carlos Sandoval-Castro,2 Filippe Elias de Freitas Soares ,7 and Liliana Aguilar-Marcelino 1 1Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Km 11 Carretera Federal Cuernavaca- Cuautla, No. 8534, Col. Progreso, Morelos, Jiutepec, CP 62550, Mexico 2Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100 Mérida, Yucatán, Mexico 3El Colegio de la Frontera Sur, Apdo. Postal 36, C.P. 30700 Tapachula, Chiapas, Mexico 4Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1. Col. Centro, C.P. 62790 Xochitepec, Morelos, Mexico 5School of Biology Science, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia 6Department of Plant Protection, College of Agriculture Engineering Science, University of Baghdad, Baghdad, Iraq 7Department of Chemistry, Universidade Federal de Lavras, CEP, 37200900 Minas Gerais, Brazil Correspondence should be addressed to Liliana Aguilar-Marcelino; [email protected] Received 17 February 2020; Revised 8 May 2020; Accepted 11 June 2020; Published 24 June 2020 Academic Editor: Vincenzo Veneziano Copyright © 2020 Gloria Sarahi Castañeda-Ramírez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Meloidogyne Enterolobii
EPPO Datasheet: Meloidogyne enterolobii Last updated: 2020-09-11 IDENTITY Preferred name: Meloidogyne enterolobii Authority: Yang & Eisenback Taxonomic position: Animalia: Nematoda: Chromadorea: Rhabditida: Meloidogynidae Other scientific names: Meloidogyne mayaguensis Rammah & Hirschmann view more common names online... EPPO Categorization: A2 list view more categorizations online... EPPO Code: MELGMY more photos... Notes on taxonomy and nomenclature Meloidogyne enterolobii was described by Yang & Eisenback (1983) from roots of pacara earpod trees ( Enterolobium contortisiliquum), on Hainan Island in China. In 1988 Rammah and Hirschmann described M. mayaguensis from roots of eggplant (Solanum melongena) from Puerto Rico and indicated that this new species ‘superficially resembles M. enterolobii’ but shows ‘several distinct morphological features and a unique malate dehydrogenase pattern (N3c)’. Karssen et al. (2012) re-studied the holo- and paratypes of both species and confirmed M. mayaguensis as a junior synonym for M. enterolobii. HOSTS The root-knot nematode Meloidogyne enterolobii is polyphagous and has many host plants including cultivated crops and weeds. It infests herbaceous as well as woody plants. The main hosts of commercial importance include Coffea arabica (coffee) [it is noted that while coffee can be susceptible to some populations of M. enterolobii, it has been reported as resistant to other ones (see details in the control paragraph)], Gossypium hirsutum (cotton), Cucumis sativus (cucumber), Solanum melongena (eggplant), Psidium guajava (guava), Carica papaya (papaya), Capsicum annuum (pepper), Solanum tuberosum (potato), Glycine max (soybean), Ipomoea batatas (sweet potato), Nicotiana tabacum (tobacco), Solanum lycopersicum (tomato), and Citrullus lanatus (watermelon). For G. hirsutum, Brito et al. (2004) reported that four Florida isolates of M. enterolobii reproduced on this host, which confirmed the original description by Yang & Eisenback (1983).